Add new SentenceTransformer model
Browse files- README.md +27 -371
- model.safetensors +1 -1
README.md
CHANGED
|
@@ -13,7 +13,7 @@ tags:
|
|
| 13 |
- reranking
|
| 14 |
- generated_from_trainer
|
| 15 |
- dataset_size:483820
|
| 16 |
-
- loss:
|
| 17 |
base_model: Alibaba-NLP/gte-modernbert-base
|
| 18 |
widget:
|
| 19 |
- source_sentence: 'See Precambrian time scale # Proposed Geologic timeline for another
|
|
@@ -87,28 +87,28 @@ model-index:
|
|
| 87 |
type: test
|
| 88 |
metrics:
|
| 89 |
- type: cosine_accuracy
|
| 90 |
-
value: 0.
|
| 91 |
name: Cosine Accuracy
|
| 92 |
- type: cosine_accuracy_threshold
|
| 93 |
-
value: 0.
|
| 94 |
name: Cosine Accuracy Threshold
|
| 95 |
- type: cosine_f1
|
| 96 |
-
value: 0.
|
| 97 |
name: Cosine F1
|
| 98 |
- type: cosine_f1_threshold
|
| 99 |
-
value: 0.
|
| 100 |
name: Cosine F1 Threshold
|
| 101 |
- type: cosine_precision
|
| 102 |
-
value: 0.
|
| 103 |
name: Cosine Precision
|
| 104 |
- type: cosine_recall
|
| 105 |
-
value: 0.
|
| 106 |
name: Cosine Recall
|
| 107 |
- type: cosine_ap
|
| 108 |
-
value: 0.
|
| 109 |
name: Cosine Ap
|
| 110 |
- type: cosine_mcc
|
| 111 |
-
value: 0.
|
| 112 |
name: Cosine Mcc
|
| 113 |
---
|
| 114 |
|
|
@@ -173,9 +173,9 @@ print(embeddings.shape)
|
|
| 173 |
# Get the similarity scores for the embeddings
|
| 174 |
similarities = model.similarity(embeddings, embeddings)
|
| 175 |
print(similarities)
|
| 176 |
-
# tensor([[0.
|
| 177 |
-
# [0.
|
| 178 |
-
# [0.
|
| 179 |
```
|
| 180 |
|
| 181 |
<!--
|
|
@@ -213,14 +213,14 @@ You can finetune this model on your own dataset.
|
|
| 213 |
|
| 214 |
| Metric | Value |
|
| 215 |
|:--------------------------|:-----------|
|
| 216 |
-
| cosine_accuracy | 0.
|
| 217 |
-
| cosine_accuracy_threshold | 0.
|
| 218 |
-
| cosine_f1 | 0.
|
| 219 |
-
| cosine_f1_threshold | 0.
|
| 220 |
-
| cosine_precision | 0.
|
| 221 |
-
| cosine_recall | 0.
|
| 222 |
-
| **cosine_ap** | **0.
|
| 223 |
-
| cosine_mcc | 0.
|
| 224 |
|
| 225 |
<!--
|
| 226 |
## Bias, Risks and Limitations
|
|
@@ -254,11 +254,12 @@ You can finetune this model on your own dataset.
|
|
| 254 |
| <code>The newer Punts are still very much in existence today and race in the same fleets as the older boats .</code> | <code>The newer punts are still very much in existence today and run in the same fleets as the older boats .</code> | <code>1</code> |
|
| 255 |
| <code>After losing his second election , he resigned as opposition leader and was replaced by Geoff Pearsall .</code> | <code>Max Bingham resigned as opposition leader after losing his second election , and was replaced by Geoff Pearsall .</code> | <code>1</code> |
|
| 256 |
| <code>The 12F was officially homologated on August 21 , 1929 and exhibited at the Paris Salon in 1930 .</code> | <code>The 12F was officially homologated on 21 August 1929 and displayed at the 1930 Paris Salon .</code> | <code>1</code> |
|
| 257 |
-
* Loss: [<code>
|
| 258 |
```json
|
| 259 |
{
|
| 260 |
"scale": 20.0,
|
| 261 |
"similarity_fct": "cos_sim",
|
|
|
|
| 262 |
"gather_across_devices": false
|
| 263 |
}
|
| 264 |
```
|
|
@@ -281,366 +282,21 @@ You can finetune this model on your own dataset.
|
|
| 281 |
| <code>The newer Punts are still very much in existence today and race in the same fleets as the older boats .</code> | <code>The newer punts are still very much in existence today and run in the same fleets as the older boats .</code> | <code>1</code> |
|
| 282 |
| <code>After losing his second election , he resigned as opposition leader and was replaced by Geoff Pearsall .</code> | <code>Max Bingham resigned as opposition leader after losing his second election , and was replaced by Geoff Pearsall .</code> | <code>1</code> |
|
| 283 |
| <code>The 12F was officially homologated on August 21 , 1929 and exhibited at the Paris Salon in 1930 .</code> | <code>The 12F was officially homologated on 21 August 1929 and displayed at the 1930 Paris Salon .</code> | <code>1</code> |
|
| 284 |
-
* Loss: [<code>
|
| 285 |
```json
|
| 286 |
{
|
| 287 |
"scale": 20.0,
|
| 288 |
"similarity_fct": "cos_sim",
|
|
|
|
| 289 |
"gather_across_devices": false
|
| 290 |
}
|
| 291 |
```
|
| 292 |
|
| 293 |
-
### Training Hyperparameters
|
| 294 |
-
#### Non-Default Hyperparameters
|
| 295 |
-
|
| 296 |
-
- `eval_strategy`: steps
|
| 297 |
-
- `per_device_train_batch_size`: 100
|
| 298 |
-
- `per_device_eval_batch_size`: 100
|
| 299 |
-
- `learning_rate`: 0.0001
|
| 300 |
-
- `adam_beta2`: 0.98
|
| 301 |
-
- `adam_epsilon`: 1e-06
|
| 302 |
-
- `max_steps`: 200000
|
| 303 |
-
- `warmup_steps`: 1000
|
| 304 |
-
- `load_best_model_at_end`: True
|
| 305 |
-
- `optim`: adamw_torch
|
| 306 |
-
- `ddp_find_unused_parameters`: False
|
| 307 |
-
- `push_to_hub`: True
|
| 308 |
-
- `hub_model_id`: redis/langcache-embed-v3
|
| 309 |
-
- `batch_sampler`: no_duplicates
|
| 310 |
-
|
| 311 |
-
#### All Hyperparameters
|
| 312 |
-
<details><summary>Click to expand</summary>
|
| 313 |
-
|
| 314 |
-
- `overwrite_output_dir`: False
|
| 315 |
-
- `do_predict`: False
|
| 316 |
-
- `eval_strategy`: steps
|
| 317 |
-
- `prediction_loss_only`: True
|
| 318 |
-
- `per_device_train_batch_size`: 100
|
| 319 |
-
- `per_device_eval_batch_size`: 100
|
| 320 |
-
- `per_gpu_train_batch_size`: None
|
| 321 |
-
- `per_gpu_eval_batch_size`: None
|
| 322 |
-
- `gradient_accumulation_steps`: 1
|
| 323 |
-
- `eval_accumulation_steps`: None
|
| 324 |
-
- `torch_empty_cache_steps`: None
|
| 325 |
-
- `learning_rate`: 0.0001
|
| 326 |
-
- `weight_decay`: 0.0
|
| 327 |
-
- `adam_beta1`: 0.9
|
| 328 |
-
- `adam_beta2`: 0.98
|
| 329 |
-
- `adam_epsilon`: 1e-06
|
| 330 |
-
- `max_grad_norm`: 1.0
|
| 331 |
-
- `num_train_epochs`: 3.0
|
| 332 |
-
- `max_steps`: 200000
|
| 333 |
-
- `lr_scheduler_type`: linear
|
| 334 |
-
- `lr_scheduler_kwargs`: {}
|
| 335 |
-
- `warmup_ratio`: 0.0
|
| 336 |
-
- `warmup_steps`: 1000
|
| 337 |
-
- `log_level`: passive
|
| 338 |
-
- `log_level_replica`: warning
|
| 339 |
-
- `log_on_each_node`: True
|
| 340 |
-
- `logging_nan_inf_filter`: True
|
| 341 |
-
- `save_safetensors`: True
|
| 342 |
-
- `save_on_each_node`: False
|
| 343 |
-
- `save_only_model`: False
|
| 344 |
-
- `restore_callback_states_from_checkpoint`: False
|
| 345 |
-
- `no_cuda`: False
|
| 346 |
-
- `use_cpu`: False
|
| 347 |
-
- `use_mps_device`: False
|
| 348 |
-
- `seed`: 42
|
| 349 |
-
- `data_seed`: None
|
| 350 |
-
- `jit_mode_eval`: False
|
| 351 |
-
- `use_ipex`: False
|
| 352 |
-
- `bf16`: False
|
| 353 |
-
- `fp16`: False
|
| 354 |
-
- `fp16_opt_level`: O1
|
| 355 |
-
- `half_precision_backend`: auto
|
| 356 |
-
- `bf16_full_eval`: False
|
| 357 |
-
- `fp16_full_eval`: False
|
| 358 |
-
- `tf32`: None
|
| 359 |
-
- `local_rank`: 0
|
| 360 |
-
- `ddp_backend`: None
|
| 361 |
-
- `tpu_num_cores`: None
|
| 362 |
-
- `tpu_metrics_debug`: False
|
| 363 |
-
- `debug`: []
|
| 364 |
-
- `dataloader_drop_last`: False
|
| 365 |
-
- `dataloader_num_workers`: 0
|
| 366 |
-
- `dataloader_prefetch_factor`: None
|
| 367 |
-
- `past_index`: -1
|
| 368 |
-
- `disable_tqdm`: False
|
| 369 |
-
- `remove_unused_columns`: True
|
| 370 |
-
- `label_names`: None
|
| 371 |
-
- `load_best_model_at_end`: True
|
| 372 |
-
- `ignore_data_skip`: False
|
| 373 |
-
- `fsdp`: []
|
| 374 |
-
- `fsdp_min_num_params`: 0
|
| 375 |
-
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
| 376 |
-
- `fsdp_transformer_layer_cls_to_wrap`: None
|
| 377 |
-
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
| 378 |
-
- `parallelism_config`: None
|
| 379 |
-
- `deepspeed`: None
|
| 380 |
-
- `label_smoothing_factor`: 0.0
|
| 381 |
-
- `optim`: adamw_torch
|
| 382 |
-
- `optim_args`: None
|
| 383 |
-
- `adafactor`: False
|
| 384 |
-
- `group_by_length`: False
|
| 385 |
-
- `length_column_name`: length
|
| 386 |
-
- `ddp_find_unused_parameters`: False
|
| 387 |
-
- `ddp_bucket_cap_mb`: None
|
| 388 |
-
- `ddp_broadcast_buffers`: False
|
| 389 |
-
- `dataloader_pin_memory`: True
|
| 390 |
-
- `dataloader_persistent_workers`: False
|
| 391 |
-
- `skip_memory_metrics`: True
|
| 392 |
-
- `use_legacy_prediction_loop`: False
|
| 393 |
-
- `push_to_hub`: True
|
| 394 |
-
- `resume_from_checkpoint`: None
|
| 395 |
-
- `hub_model_id`: redis/langcache-embed-v3
|
| 396 |
-
- `hub_strategy`: every_save
|
| 397 |
-
- `hub_private_repo`: None
|
| 398 |
-
- `hub_always_push`: False
|
| 399 |
-
- `hub_revision`: None
|
| 400 |
-
- `gradient_checkpointing`: False
|
| 401 |
-
- `gradient_checkpointing_kwargs`: None
|
| 402 |
-
- `include_inputs_for_metrics`: False
|
| 403 |
-
- `include_for_metrics`: []
|
| 404 |
-
- `eval_do_concat_batches`: True
|
| 405 |
-
- `fp16_backend`: auto
|
| 406 |
-
- `push_to_hub_model_id`: None
|
| 407 |
-
- `push_to_hub_organization`: None
|
| 408 |
-
- `mp_parameters`:
|
| 409 |
-
- `auto_find_batch_size`: False
|
| 410 |
-
- `full_determinism`: False
|
| 411 |
-
- `torchdynamo`: None
|
| 412 |
-
- `ray_scope`: last
|
| 413 |
-
- `ddp_timeout`: 1800
|
| 414 |
-
- `torch_compile`: False
|
| 415 |
-
- `torch_compile_backend`: None
|
| 416 |
-
- `torch_compile_mode`: None
|
| 417 |
-
- `include_tokens_per_second`: False
|
| 418 |
-
- `include_num_input_tokens_seen`: False
|
| 419 |
-
- `neftune_noise_alpha`: None
|
| 420 |
-
- `optim_target_modules`: None
|
| 421 |
-
- `batch_eval_metrics`: False
|
| 422 |
-
- `eval_on_start`: False
|
| 423 |
-
- `use_liger_kernel`: False
|
| 424 |
-
- `liger_kernel_config`: None
|
| 425 |
-
- `eval_use_gather_object`: False
|
| 426 |
-
- `average_tokens_across_devices`: False
|
| 427 |
-
- `prompts`: None
|
| 428 |
-
- `batch_sampler`: no_duplicates
|
| 429 |
-
- `multi_dataset_batch_sampler`: proportional
|
| 430 |
-
- `router_mapping`: {}
|
| 431 |
-
- `learning_rate_mapping`: {}
|
| 432 |
-
|
| 433 |
-
</details>
|
| 434 |
-
|
| 435 |
### Training Logs
|
| 436 |
-
|
|
|
|
|
|
|
| 437 |
|
| 438 |
-
| Epoch | Step | Training Loss | Validation Loss | test_cosine_ap |
|
| 439 |
-
|:----------:|:--------:|:-------------:|:---------------:|:--------------:|
|
| 440 |
-
| -1 | -1 | - | - | 0.6476 |
|
| 441 |
-
| 0.2067 | 1000 | 0.0165 | 0.1033 | 0.6705 |
|
| 442 |
-
| 0.4133 | 2000 | 0.0067 | 0.0977 | 0.6597 |
|
| 443 |
-
| 0.6200 | 3000 | 0.0061 | 0.0955 | 0.6670 |
|
| 444 |
-
| **0.8266** | **4000** | **0.0063** | **0.0945** | **0.6678** |
|
| 445 |
-
| 1.0333 | 5000 | 0.0059 | 0.0950 | 0.6786 |
|
| 446 |
-
| 1.2399 | 6000 | 0.0054 | 0.0880 | 0.6779 |
|
| 447 |
-
| 1.4466 | 7000 | 0.0054 | 0.0876 | 0.6791 |
|
| 448 |
-
| 1.6532 | 8000 | 0.0054 | 0.0833 | 0.6652 |
|
| 449 |
-
| 1.8599 | 9000 | 0.0051 | 0.0821 | 0.6760 |
|
| 450 |
-
| 2.0665 | 10000 | 0.0048 | 0.0818 | 0.6767 |
|
| 451 |
-
| 2.2732 | 11000 | 0.0044 | 0.0796 | 0.6732 |
|
| 452 |
-
| 2.4799 | 12000 | 0.0048 | 0.0790 | 0.6717 |
|
| 453 |
-
| 2.6865 | 13000 | 0.0043 | 0.0804 | 0.6748 |
|
| 454 |
-
| 2.8932 | 14000 | 0.0048 | 0.0790 | 0.6745 |
|
| 455 |
-
| 3.0998 | 15000 | 0.0033 | 0.0775 | 0.6693 |
|
| 456 |
-
| 3.3065 | 16000 | 0.0044 | 0.0769 | 0.6767 |
|
| 457 |
-
| 3.5131 | 17000 | 0.005 | 0.0770 | 0.6768 |
|
| 458 |
-
| 3.7198 | 18000 | 0.0044 | 0.0760 | 0.6761 |
|
| 459 |
-
| 3.9264 | 19000 | 0.0039 | 0.0741 | 0.6799 |
|
| 460 |
-
| 4.1331 | 20000 | 0.0044 | 0.0750 | 0.6888 |
|
| 461 |
-
| 4.3397 | 21000 | 0.0041 | 0.0751 | 0.7019 |
|
| 462 |
-
| 4.5464 | 22000 | 0.0044 | 0.0707 | 0.7009 |
|
| 463 |
-
| 4.7530 | 23000 | 0.0039 | 0.0726 | 0.7041 |
|
| 464 |
-
| 4.9597 | 24000 | 0.0042 | 0.0712 | 0.6971 |
|
| 465 |
-
| 5.1664 | 25000 | 0.0038 | 0.0718 | 0.6978 |
|
| 466 |
-
| 5.3730 | 26000 | 0.004 | 0.0703 | 0.7035 |
|
| 467 |
-
| 5.5797 | 27000 | 0.004 | 0.0706 | 0.6976 |
|
| 468 |
-
| 5.7863 | 28000 | 0.0042 | 0.0699 | 0.6964 |
|
| 469 |
-
| 5.9930 | 29000 | 0.0044 | 0.0699 | 0.6911 |
|
| 470 |
-
| 6.1996 | 30000 | 0.0035 | 0.0702 | 0.6791 |
|
| 471 |
-
| 6.4063 | 31000 | 0.0035 | 0.0690 | 0.6955 |
|
| 472 |
-
| 6.6129 | 32000 | 0.0037 | 0.0693 | 0.6917 |
|
| 473 |
-
| 6.8196 | 33000 | 0.0035 | 0.0691 | 0.6972 |
|
| 474 |
-
| 7.0262 | 34000 | 0.004 | 0.0695 | 0.7083 |
|
| 475 |
-
| 7.2329 | 35000 | 0.0037 | 0.0690 | 0.6994 |
|
| 476 |
-
| 7.4396 | 36000 | 0.0036 | 0.0670 | 0.7060 |
|
| 477 |
-
| 7.6462 | 37000 | 0.0042 | 0.0682 | 0.6963 |
|
| 478 |
-
| 7.8529 | 38000 | 0.0037 | 0.0678 | 0.7049 |
|
| 479 |
-
| 8.0595 | 39000 | 0.0039 | 0.0682 | 0.7014 |
|
| 480 |
-
| 8.2662 | 40000 | 0.0039 | 0.0684 | 0.6969 |
|
| 481 |
-
| 8.4728 | 41000 | 0.0041 | 0.0677 | 0.7007 |
|
| 482 |
-
| 8.6795 | 42000 | 0.0038 | 0.0671 | 0.7126 |
|
| 483 |
-
| 8.8861 | 43000 | 0.0035 | 0.0684 | 0.7150 |
|
| 484 |
-
| 9.0928 | 44000 | 0.0035 | 0.0671 | 0.7043 |
|
| 485 |
-
| 9.2994 | 45000 | 0.0038 | 0.0681 | 0.7021 |
|
| 486 |
-
| 9.5061 | 46000 | 0.0038 | 0.0687 | 0.7129 |
|
| 487 |
-
| 9.7128 | 47000 | 0.0038 | 0.0684 | 0.7215 |
|
| 488 |
-
| 9.9194 | 48000 | 0.0039 | 0.0668 | 0.7179 |
|
| 489 |
-
| 10.1261 | 49000 | 0.0031 | 0.0661 | 0.7129 |
|
| 490 |
-
| 10.3327 | 50000 | 0.0033 | 0.0664 | 0.7119 |
|
| 491 |
-
| 10.5394 | 51000 | 0.0034 | 0.0668 | 0.7162 |
|
| 492 |
-
| 10.7460 | 52000 | 0.0038 | 0.0666 | 0.7181 |
|
| 493 |
-
| 10.9527 | 53000 | 0.0034 | 0.0674 | 0.7046 |
|
| 494 |
-
| 11.1593 | 54000 | 0.0034 | 0.0657 | 0.7100 |
|
| 495 |
-
| 11.3660 | 55000 | 0.0035 | 0.0656 | 0.7163 |
|
| 496 |
-
| 11.5726 | 56000 | 0.0034 | 0.0656 | 0.7003 |
|
| 497 |
-
| 11.7793 | 57000 | 0.0036 | 0.0643 | 0.7009 |
|
| 498 |
-
| 11.9859 | 58000 | 0.0038 | 0.0649 | 0.7166 |
|
| 499 |
-
| 12.1926 | 59000 | 0.0039 | 0.0659 | 0.7168 |
|
| 500 |
-
| 12.3993 | 60000 | 0.0039 | 0.0647 | 0.7080 |
|
| 501 |
-
| 12.6059 | 61000 | 0.0032 | 0.0649 | 0.7114 |
|
| 502 |
-
| 12.8126 | 62000 | 0.0034 | 0.0646 | 0.7165 |
|
| 503 |
-
| 13.0192 | 63000 | 0.0034 | 0.0654 | 0.7197 |
|
| 504 |
-
| 13.2259 | 64000 | 0.0035 | 0.0657 | 0.7179 |
|
| 505 |
-
| 13.4325 | 65000 | 0.0031 | 0.0652 | 0.7107 |
|
| 506 |
-
| 13.6392 | 66000 | 0.0032 | 0.0649 | 0.7089 |
|
| 507 |
-
| 13.8458 | 67000 | 0.0034 | 0.0655 | 0.7089 |
|
| 508 |
-
| 14.0525 | 68000 | 0.0031 | 0.0668 | 0.7163 |
|
| 509 |
-
| 14.2591 | 69000 | 0.0035 | 0.0644 | 0.7213 |
|
| 510 |
-
| 14.4658 | 70000 | 0.0035 | 0.0634 | 0.7057 |
|
| 511 |
-
| 14.6725 | 71000 | 0.0035 | 0.0635 | 0.7049 |
|
| 512 |
-
| 14.8791 | 72000 | 0.0033 | 0.0627 | 0.7094 |
|
| 513 |
-
| 15.0858 | 73000 | 0.0037 | 0.0620 | 0.7140 |
|
| 514 |
-
| 15.2924 | 74000 | 0.0035 | 0.0628 | 0.7237 |
|
| 515 |
-
| 15.4991 | 75000 | 0.003 | 0.0625 | 0.7127 |
|
| 516 |
-
| 15.7057 | 76000 | 0.0036 | 0.0635 | 0.7127 |
|
| 517 |
-
| 15.9124 | 77000 | 0.0037 | 0.0621 | 0.7104 |
|
| 518 |
-
| 16.1190 | 78000 | 0.0033 | 0.0624 | 0.7132 |
|
| 519 |
-
| 16.3257 | 79000 | 0.0035 | 0.0632 | 0.7132 |
|
| 520 |
-
| 16.5323 | 80000 | 0.003 | 0.0626 | 0.7193 |
|
| 521 |
-
| 16.7390 | 81000 | 0.0033 | 0.0628 | 0.7179 |
|
| 522 |
-
| 16.9456 | 82000 | 0.0036 | 0.0630 | 0.7210 |
|
| 523 |
-
| 17.1523 | 83000 | 0.0033 | 0.0628 | 0.7222 |
|
| 524 |
-
| 17.3590 | 84000 | 0.0034 | 0.0629 | 0.7226 |
|
| 525 |
-
| 17.5656 | 85000 | 0.0029 | 0.0621 | 0.7207 |
|
| 526 |
-
| 17.7723 | 86000 | 0.0032 | 0.0618 | 0.7182 |
|
| 527 |
-
| 17.9789 | 87000 | 0.0034 | 0.0620 | 0.7177 |
|
| 528 |
-
| 18.1856 | 88000 | 0.0034 | 0.0625 | 0.7148 |
|
| 529 |
-
| 18.3922 | 89000 | 0.0032 | 0.0624 | 0.7131 |
|
| 530 |
-
| 18.5989 | 90000 | 0.0032 | 0.0622 | 0.7126 |
|
| 531 |
-
| 18.8055 | 91000 | 0.0031 | 0.0617 | 0.7185 |
|
| 532 |
-
| 19.0122 | 92000 | 0.0032 | 0.0620 | 0.7231 |
|
| 533 |
-
| 19.2188 | 93000 | 0.0028 | 0.0623 | 0.7202 |
|
| 534 |
-
| 19.4255 | 94000 | 0.003 | 0.0625 | 0.7194 |
|
| 535 |
-
| 19.6322 | 95000 | 0.003 | 0.0619 | 0.7139 |
|
| 536 |
-
| 19.8388 | 96000 | 0.0031 | 0.0621 | 0.7151 |
|
| 537 |
-
| 20.0455 | 97000 | 0.0031 | 0.0617 | 0.7188 |
|
| 538 |
-
| 20.2521 | 98000 | 0.0031 | 0.0619 | 0.7161 |
|
| 539 |
-
| 20.4588 | 99000 | 0.0027 | 0.0612 | 0.7164 |
|
| 540 |
-
| 20.6654 | 100000 | 0.0033 | 0.0616 | 0.7173 |
|
| 541 |
-
| 20.8721 | 101000 | 0.0033 | 0.0614 | 0.7182 |
|
| 542 |
-
| 21.0787 | 102000 | 0.003 | 0.0611 | 0.7194 |
|
| 543 |
-
| 21.2854 | 103000 | 0.0031 | 0.0614 | 0.7191 |
|
| 544 |
-
| 21.4920 | 104000 | 0.0031 | 0.0615 | 0.7187 |
|
| 545 |
-
| 21.6987 | 105000 | 0.0035 | 0.0609 | 0.7143 |
|
| 546 |
-
| 21.9054 | 106000 | 0.0033 | 0.0614 | 0.7180 |
|
| 547 |
-
| 22.1120 | 107000 | 0.0029 | 0.0608 | 0.7215 |
|
| 548 |
-
| 22.3187 | 108000 | 0.0032 | 0.0609 | 0.7250 |
|
| 549 |
-
| 22.5253 | 109000 | 0.0029 | 0.0611 | 0.7248 |
|
| 550 |
-
| 22.7320 | 110000 | 0.003 | 0.0612 | 0.7224 |
|
| 551 |
-
| 22.9386 | 111000 | 0.0029 | 0.0612 | 0.7180 |
|
| 552 |
-
| 23.1453 | 112000 | 0.0032 | 0.0610 | 0.7169 |
|
| 553 |
-
| 23.3519 | 113000 | 0.0032 | 0.0609 | 0.7174 |
|
| 554 |
-
| 23.5586 | 114000 | 0.0028 | 0.0613 | 0.7204 |
|
| 555 |
-
| 23.7652 | 115000 | 0.0033 | 0.0613 | 0.7222 |
|
| 556 |
-
| 23.9719 | 116000 | 0.0033 | 0.0613 | 0.7240 |
|
| 557 |
-
| 24.1785 | 117000 | 0.003 | 0.0610 | 0.7244 |
|
| 558 |
-
| 24.3852 | 118000 | 0.0027 | 0.0613 | 0.7239 |
|
| 559 |
-
| 24.5919 | 119000 | 0.0028 | 0.0615 | 0.7248 |
|
| 560 |
-
| 24.7985 | 120000 | 0.003 | 0.0608 | 0.7259 |
|
| 561 |
-
| 25.0052 | 121000 | 0.0033 | 0.0605 | 0.7270 |
|
| 562 |
-
| 25.2118 | 122000 | 0.0035 | 0.0604 | 0.7240 |
|
| 563 |
-
| 25.4185 | 123000 | 0.003 | 0.0607 | 0.7245 |
|
| 564 |
-
| 25.6251 | 124000 | 0.003 | 0.0608 | 0.7238 |
|
| 565 |
-
| 25.8318 | 125000 | 0.0032 | 0.0605 | 0.7208 |
|
| 566 |
-
| 26.0384 | 126000 | 0.0029 | 0.0605 | 0.7208 |
|
| 567 |
-
| 26.2451 | 127000 | 0.0034 | 0.0603 | 0.7212 |
|
| 568 |
-
| 26.4517 | 128000 | 0.003 | 0.0605 | 0.7222 |
|
| 569 |
-
| 26.6584 | 129000 | 0.003 | 0.0604 | 0.7236 |
|
| 570 |
-
| 26.8651 | 130000 | 0.003 | 0.0608 | 0.7271 |
|
| 571 |
-
| 27.0717 | 131000 | 0.0028 | 0.0608 | 0.7242 |
|
| 572 |
-
| 27.2784 | 132000 | 0.0028 | 0.0612 | 0.7239 |
|
| 573 |
-
| 27.4850 | 133000 | 0.0025 | 0.0609 | 0.7270 |
|
| 574 |
-
| 27.6917 | 134000 | 0.0026 | 0.0607 | 0.7277 |
|
| 575 |
-
| 27.8983 | 135000 | 0.003 | 0.0608 | 0.7263 |
|
| 576 |
-
| 28.1050 | 136000 | 0.003 | 0.0609 | 0.7250 |
|
| 577 |
-
| 28.3116 | 137000 | 0.0029 | 0.0607 | 0.7262 |
|
| 578 |
-
| 28.5183 | 138000 | 0.0029 | 0.0609 | 0.7269 |
|
| 579 |
-
| 28.7249 | 139000 | 0.0029 | 0.0607 | 0.7250 |
|
| 580 |
-
| 28.9316 | 140000 | 0.0025 | 0.0608 | 0.7254 |
|
| 581 |
-
| 29.1383 | 141000 | 0.0031 | 0.0609 | 0.7262 |
|
| 582 |
-
| 29.3449 | 142000 | 0.0027 | 0.0606 | 0.7247 |
|
| 583 |
-
| 29.5516 | 143000 | 0.003 | 0.0607 | 0.7244 |
|
| 584 |
-
| 29.7582 | 144000 | 0.0028 | 0.0606 | 0.7240 |
|
| 585 |
-
| 29.9649 | 145000 | 0.0028 | 0.0605 | 0.7228 |
|
| 586 |
-
| 30.1715 | 146000 | 0.0032 | 0.0604 | 0.7251 |
|
| 587 |
-
| 30.3782 | 147000 | 0.0033 | 0.0603 | 0.7240 |
|
| 588 |
-
| 30.5848 | 148000 | 0.0029 | 0.0604 | 0.7242 |
|
| 589 |
-
| 30.7915 | 149000 | 0.0032 | 0.0603 | 0.7241 |
|
| 590 |
-
| 30.9981 | 150000 | 0.0028 | 0.0602 | 0.7246 |
|
| 591 |
-
| 31.2048 | 151000 | 0.0029 | 0.0602 | 0.7261 |
|
| 592 |
-
| 31.4114 | 152000 | 0.003 | 0.0602 | 0.7258 |
|
| 593 |
-
| 31.6181 | 153000 | 0.0031 | 0.0603 | 0.7253 |
|
| 594 |
-
| 31.8248 | 154000 | 0.003 | 0.0602 | 0.7250 |
|
| 595 |
-
| 32.0314 | 155000 | 0.0033 | 0.0602 | 0.7248 |
|
| 596 |
-
| 32.2381 | 156000 | 0.0031 | 0.0601 | 0.7248 |
|
| 597 |
-
| 32.4447 | 157000 | 0.0027 | 0.0602 | 0.7240 |
|
| 598 |
-
| 32.6514 | 158000 | 0.0026 | 0.0602 | 0.7243 |
|
| 599 |
-
| 32.8580 | 159000 | 0.0028 | 0.0602 | 0.7249 |
|
| 600 |
-
| 33.0647 | 160000 | 0.0033 | 0.0602 | 0.7251 |
|
| 601 |
-
| 33.2713 | 161000 | 0.0031 | 0.0602 | 0.7252 |
|
| 602 |
-
| 33.4780 | 162000 | 0.0027 | 0.0600 | 0.7247 |
|
| 603 |
-
| 33.6846 | 163000 | 0.0031 | 0.0601 | 0.7247 |
|
| 604 |
-
| 33.8913 | 164000 | 0.0032 | 0.0601 | 0.7251 |
|
| 605 |
-
| 34.0980 | 165000 | 0.0026 | 0.0602 | 0.7252 |
|
| 606 |
-
| 34.3046 | 166000 | 0.0034 | 0.0602 | 0.7252 |
|
| 607 |
-
| 34.5113 | 167000 | 0.0028 | 0.0602 | 0.7250 |
|
| 608 |
-
| 34.7179 | 168000 | 0.0029 | 0.0601 | 0.7249 |
|
| 609 |
-
| 34.9246 | 169000 | 0.0028 | 0.0602 | 0.7253 |
|
| 610 |
-
| 35.1312 | 170000 | 0.0026 | 0.0601 | 0.7249 |
|
| 611 |
-
| 35.3379 | 171000 | 0.0027 | 0.0601 | 0.7247 |
|
| 612 |
-
| 35.5445 | 172000 | 0.0031 | 0.0601 | 0.7245 |
|
| 613 |
-
| 35.7512 | 173000 | 0.003 | 0.0600 | 0.7245 |
|
| 614 |
-
| 35.9578 | 174000 | 0.003 | 0.0601 | 0.7250 |
|
| 615 |
-
| 36.1645 | 175000 | 0.0027 | 0.0600 | 0.7246 |
|
| 616 |
-
| 36.3712 | 176000 | 0.0028 | 0.0601 | 0.7248 |
|
| 617 |
-
| 36.5778 | 177000 | 0.0027 | 0.0601 | 0.7250 |
|
| 618 |
-
| 36.7845 | 178000 | 0.0028 | 0.0601 | 0.7252 |
|
| 619 |
-
| 36.9911 | 179000 | 0.0029 | 0.0601 | 0.7252 |
|
| 620 |
-
| 37.1978 | 180000 | 0.0029 | 0.0602 | 0.7251 |
|
| 621 |
-
| 37.4044 | 181000 | 0.0025 | 0.0601 | 0.7250 |
|
| 622 |
-
| 37.6111 | 182000 | 0.003 | 0.0601 | 0.7250 |
|
| 623 |
-
| 37.8177 | 183000 | 0.0028 | 0.0601 | 0.7251 |
|
| 624 |
-
| 38.0244 | 184000 | 0.0028 | 0.0601 | 0.7252 |
|
| 625 |
-
| 38.2310 | 185000 | 0.0034 | 0.0600 | 0.7251 |
|
| 626 |
-
| 38.4377 | 186000 | 0.0028 | 0.0601 | 0.7251 |
|
| 627 |
-
| 38.6443 | 187000 | 0.0035 | 0.0601 | 0.7250 |
|
| 628 |
-
| 38.8510 | 188000 | 0.003 | 0.0600 | 0.7250 |
|
| 629 |
-
| 39.0577 | 189000 | 0.0028 | 0.0601 | 0.7252 |
|
| 630 |
-
| 39.2643 | 190000 | 0.0027 | 0.0600 | 0.7250 |
|
| 631 |
-
| 39.4710 | 191000 | 0.0026 | 0.0601 | 0.7250 |
|
| 632 |
-
| 39.6776 | 192000 | 0.0028 | 0.0600 | 0.7251 |
|
| 633 |
-
| 39.8843 | 193000 | 0.0027 | 0.0600 | 0.7251 |
|
| 634 |
-
| 40.0909 | 194000 | 0.0031 | 0.0601 | 0.7252 |
|
| 635 |
-
| 40.2976 | 195000 | 0.0031 | 0.0600 | 0.7252 |
|
| 636 |
-
| 40.5042 | 196000 | 0.0029 | 0.0601 | 0.7251 |
|
| 637 |
-
| 40.7109 | 197000 | 0.0032 | 0.0600 | 0.7251 |
|
| 638 |
-
| 40.9175 | 198000 | 0.0028 | 0.0600 | 0.7251 |
|
| 639 |
-
| 41.1242 | 199000 | 0.0029 | 0.0600 | 0.7252 |
|
| 640 |
-
| 41.3309 | 200000 | 0.003 | 0.0600 | 0.7251 |
|
| 641 |
-
|
| 642 |
-
* The bold row denotes the saved checkpoint.
|
| 643 |
-
</details>
|
| 644 |
|
| 645 |
### Framework Versions
|
| 646 |
- Python: 3.12.3
|
|
|
|
| 13 |
- reranking
|
| 14 |
- generated_from_trainer
|
| 15 |
- dataset_size:483820
|
| 16 |
+
- loss:CachedMultipleNegativesSymmetricRankingLoss
|
| 17 |
base_model: Alibaba-NLP/gte-modernbert-base
|
| 18 |
widget:
|
| 19 |
- source_sentence: 'See Precambrian time scale # Proposed Geologic timeline for another
|
|
|
|
| 87 |
type: test
|
| 88 |
metrics:
|
| 89 |
- type: cosine_accuracy
|
| 90 |
+
value: 0.7037777526966672
|
| 91 |
name: Cosine Accuracy
|
| 92 |
- type: cosine_accuracy_threshold
|
| 93 |
+
value: 0.8524033427238464
|
| 94 |
name: Cosine Accuracy Threshold
|
| 95 |
- type: cosine_f1
|
| 96 |
+
value: 0.7122170715871171
|
| 97 |
name: Cosine F1
|
| 98 |
- type: cosine_f1_threshold
|
| 99 |
+
value: 0.8118724822998047
|
| 100 |
name: Cosine F1 Threshold
|
| 101 |
- type: cosine_precision
|
| 102 |
+
value: 0.5989283084033827
|
| 103 |
name: Cosine Precision
|
| 104 |
- type: cosine_recall
|
| 105 |
+
value: 0.8783612662942272
|
| 106 |
name: Cosine Recall
|
| 107 |
- type: cosine_ap
|
| 108 |
+
value: 0.6476617871668658
|
| 109 |
name: Cosine Ap
|
| 110 |
- type: cosine_mcc
|
| 111 |
+
value: 0.44182914870985407
|
| 112 |
name: Cosine Mcc
|
| 113 |
---
|
| 114 |
|
|
|
|
| 173 |
# Get the similarity scores for the embeddings
|
| 174 |
similarities = model.similarity(embeddings, embeddings)
|
| 175 |
print(similarities)
|
| 176 |
+
# tensor([[0.9922, 0.9922, 0.5352],
|
| 177 |
+
# [0.9922, 0.9961, 0.5391],
|
| 178 |
+
# [0.5352, 0.5391, 1.0000]], dtype=torch.bfloat16)
|
| 179 |
```
|
| 180 |
|
| 181 |
<!--
|
|
|
|
| 213 |
|
| 214 |
| Metric | Value |
|
| 215 |
|:--------------------------|:-----------|
|
| 216 |
+
| cosine_accuracy | 0.7038 |
|
| 217 |
+
| cosine_accuracy_threshold | 0.8524 |
|
| 218 |
+
| cosine_f1 | 0.7122 |
|
| 219 |
+
| cosine_f1_threshold | 0.8119 |
|
| 220 |
+
| cosine_precision | 0.5989 |
|
| 221 |
+
| cosine_recall | 0.8784 |
|
| 222 |
+
| **cosine_ap** | **0.6477** |
|
| 223 |
+
| cosine_mcc | 0.4418 |
|
| 224 |
|
| 225 |
<!--
|
| 226 |
## Bias, Risks and Limitations
|
|
|
|
| 254 |
| <code>The newer Punts are still very much in existence today and race in the same fleets as the older boats .</code> | <code>The newer punts are still very much in existence today and run in the same fleets as the older boats .</code> | <code>1</code> |
|
| 255 |
| <code>After losing his second election , he resigned as opposition leader and was replaced by Geoff Pearsall .</code> | <code>Max Bingham resigned as opposition leader after losing his second election , and was replaced by Geoff Pearsall .</code> | <code>1</code> |
|
| 256 |
| <code>The 12F was officially homologated on August 21 , 1929 and exhibited at the Paris Salon in 1930 .</code> | <code>The 12F was officially homologated on 21 August 1929 and displayed at the 1930 Paris Salon .</code> | <code>1</code> |
|
| 257 |
+
* Loss: [<code>CachedMultipleNegativesSymmetricRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedmultiplenegativessymmetricrankingloss) with these parameters:
|
| 258 |
```json
|
| 259 |
{
|
| 260 |
"scale": 20.0,
|
| 261 |
"similarity_fct": "cos_sim",
|
| 262 |
+
"mini_batch_size": 64,
|
| 263 |
"gather_across_devices": false
|
| 264 |
}
|
| 265 |
```
|
|
|
|
| 282 |
| <code>The newer Punts are still very much in existence today and race in the same fleets as the older boats .</code> | <code>The newer punts are still very much in existence today and run in the same fleets as the older boats .</code> | <code>1</code> |
|
| 283 |
| <code>After losing his second election , he resigned as opposition leader and was replaced by Geoff Pearsall .</code> | <code>Max Bingham resigned as opposition leader after losing his second election , and was replaced by Geoff Pearsall .</code> | <code>1</code> |
|
| 284 |
| <code>The 12F was officially homologated on August 21 , 1929 and exhibited at the Paris Salon in 1930 .</code> | <code>The 12F was officially homologated on 21 August 1929 and displayed at the 1930 Paris Salon .</code> | <code>1</code> |
|
| 285 |
+
* Loss: [<code>CachedMultipleNegativesSymmetricRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedmultiplenegativessymmetricrankingloss) with these parameters:
|
| 286 |
```json
|
| 287 |
{
|
| 288 |
"scale": 20.0,
|
| 289 |
"similarity_fct": "cos_sim",
|
| 290 |
+
"mini_batch_size": 64,
|
| 291 |
"gather_across_devices": false
|
| 292 |
}
|
| 293 |
```
|
| 294 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 295 |
### Training Logs
|
| 296 |
+
| Epoch | Step | test_cosine_ap |
|
| 297 |
+
|:-----:|:----:|:--------------:|
|
| 298 |
+
| -1 | -1 | 0.6477 |
|
| 299 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 300 |
|
| 301 |
### Framework Versions
|
| 302 |
- Python: 3.12.3
|
model.safetensors
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
size 298041696
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:95d02211c4cca89113f9f3e93ed91f5176bf50170faa2cb835f7bfea15bb9dd2
|
| 3 |
size 298041696
|