radoslavralev commited on
Commit
03ae21c
·
verified ·
1 Parent(s): 427fdcc

Add new SentenceTransformer model

Browse files
1_Pooling/config.json CHANGED
@@ -1,7 +1,7 @@
1
  {
2
  "word_embedding_dimension": 768,
3
- "pooling_mode_cls_token": true,
4
- "pooling_mode_mean_tokens": false,
5
  "pooling_mode_max_tokens": false,
6
  "pooling_mode_mean_sqrt_len_tokens": false,
7
  "pooling_mode_weightedmean_tokens": false,
 
1
  {
2
  "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
  "pooling_mode_max_tokens": false,
6
  "pooling_mode_mean_sqrt_len_tokens": false,
7
  "pooling_mode_weightedmean_tokens": false,
README.md CHANGED
@@ -14,7 +14,7 @@ tags:
14
  - generated_from_trainer
15
  - dataset_size:1451941
16
  - loss:MultipleNegativesRankingLoss
17
- base_model: Alibaba-NLP/gte-modernbert-base
18
  widget:
19
  - source_sentence: Gocharya ji authored Krishna Cahrit Manas in the poetic form describing
20
  about the full life of Lord Krishna ( from birth to Nirvana ) .
@@ -76,34 +76,34 @@ model-index:
76
  type: train
77
  metrics:
78
  - type: cosine_accuracy@1
79
- value: 0.5578696687594717
80
  name: Cosine Accuracy@1
81
  - type: cosine_precision@1
82
- value: 0.5578696687594717
83
  name: Cosine Precision@1
84
  - type: cosine_recall@1
85
- value: 0.53589188426978
86
  name: Cosine Recall@1
87
  - type: cosine_ndcg@10
88
- value: 0.7523955452910316
89
  name: Cosine Ndcg@10
90
  - type: cosine_mrr@1
91
- value: 0.5578696687594717
92
  name: Cosine Mrr@1
93
  - type: cosine_map@100
94
- value: 0.6976030263836698
95
  name: Cosine Map@100
96
  ---
97
 
98
  # Redis fine-tuned BiEncoder model for semantic caching on LangCache
99
 
100
- This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Alibaba-NLP/gte-modernbert-base](https://huggingface.co/Alibaba-NLP/gte-modernbert-base) on the [LangCache Sentence Pairs (all)](https://huggingface.co/datasets/redis/langcache-sentencepairs-v1) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for sentence pair similarity.
101
 
102
  ## Model Details
103
 
104
  ### Model Description
105
  - **Model Type:** Sentence Transformer
106
- - **Base model:** [Alibaba-NLP/gte-modernbert-base](https://huggingface.co/Alibaba-NLP/gte-modernbert-base) <!-- at revision e7f32e3c00f91d699e8c43b53106206bcc72bb22 -->
107
  - **Maximum Sequence Length:** 100 tokens
108
  - **Output Dimensionality:** 768 dimensions
109
  - **Similarity Function:** Cosine Similarity
@@ -123,7 +123,7 @@ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [A
123
  ```
124
  SentenceTransformer(
125
  (0): Transformer({'max_seq_length': 100, 'do_lower_case': False, 'architecture': 'ModernBertModel'})
126
- (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
127
  )
128
  ```
129
 
@@ -156,9 +156,9 @@ print(embeddings.shape)
156
  # Get the similarity scores for the embeddings
157
  similarities = model.similarity(embeddings, embeddings)
158
  print(similarities)
159
- # tensor([[0.9961, 0.9922, 0.9961],
160
- # [0.9922, 1.0000, 0.9922],
161
- # [0.9961, 0.9922, 1.0078]], dtype=torch.bfloat16)
162
  ```
163
 
164
  <!--
@@ -196,12 +196,12 @@ You can finetune this model on your own dataset.
196
 
197
  | Metric | Value |
198
  |:-------------------|:-----------|
199
- | cosine_accuracy@1 | 0.5579 |
200
- | cosine_precision@1 | 0.5579 |
201
- | cosine_recall@1 | 0.5359 |
202
- | **cosine_ndcg@10** | **0.7524** |
203
- | cosine_mrr@1 | 0.5579 |
204
- | cosine_map@100 | 0.6976 |
205
 
206
  <!--
207
  ## Bias, Risks and Limitations
@@ -274,7 +274,7 @@ You can finetune this model on your own dataset.
274
  ### Training Logs
275
  | Epoch | Step | train_cosine_ndcg@10 |
276
  |:-----:|:----:|:--------------------:|
277
- | -1 | -1 | 0.7524 |
278
 
279
 
280
  ### Framework Versions
 
14
  - generated_from_trainer
15
  - dataset_size:1451941
16
  - loss:MultipleNegativesRankingLoss
17
+ base_model: answerdotai/ModernBERT-base
18
  widget:
19
  - source_sentence: Gocharya ji authored Krishna Cahrit Manas in the poetic form describing
20
  about the full life of Lord Krishna ( from birth to Nirvana ) .
 
76
  type: train
77
  metrics:
78
  - type: cosine_accuracy@1
79
+ value: 0.37778739987010174
80
  name: Cosine Accuracy@1
81
  - type: cosine_precision@1
82
+ value: 0.37778739987010174
83
  name: Cosine Precision@1
84
  - type: cosine_recall@1
85
+ value: 0.36103963757730806
86
  name: Cosine Recall@1
87
  - type: cosine_ndcg@10
88
+ value: 0.5622280163193171
89
  name: Cosine Ndcg@10
90
  - type: cosine_mrr@1
91
+ value: 0.37778739987010174
92
  name: Cosine Mrr@1
93
  - type: cosine_map@100
94
+ value: 0.5081953861443469
95
  name: Cosine Map@100
96
  ---
97
 
98
  # Redis fine-tuned BiEncoder model for semantic caching on LangCache
99
 
100
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [answerdotai/ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base) on the [LangCache Sentence Pairs (all)](https://huggingface.co/datasets/redis/langcache-sentencepairs-v1) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for sentence pair similarity.
101
 
102
  ## Model Details
103
 
104
  ### Model Description
105
  - **Model Type:** Sentence Transformer
106
+ - **Base model:** [answerdotai/ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base) <!-- at revision 8949b909ec900327062f0ebf497f51aef5e6f0c8 -->
107
  - **Maximum Sequence Length:** 100 tokens
108
  - **Output Dimensionality:** 768 dimensions
109
  - **Similarity Function:** Cosine Similarity
 
123
  ```
124
  SentenceTransformer(
125
  (0): Transformer({'max_seq_length': 100, 'do_lower_case': False, 'architecture': 'ModernBertModel'})
126
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
127
  )
128
  ```
129
 
 
156
  # Get the similarity scores for the embeddings
157
  similarities = model.similarity(embeddings, embeddings)
158
  print(similarities)
159
+ # tensor([[0.9961, 0.9922, 0.9922],
160
+ # [0.9922, 1.0000, 0.9961],
161
+ # [0.9922, 0.9961, 1.0000]], dtype=torch.bfloat16)
162
  ```
163
 
164
  <!--
 
196
 
197
  | Metric | Value |
198
  |:-------------------|:-----------|
199
+ | cosine_accuracy@1 | 0.3778 |
200
+ | cosine_precision@1 | 0.3778 |
201
+ | cosine_recall@1 | 0.361 |
202
+ | **cosine_ndcg@10** | **0.5622** |
203
+ | cosine_mrr@1 | 0.3778 |
204
+ | cosine_map@100 | 0.5082 |
205
 
206
  <!--
207
  ## Bias, Risks and Limitations
 
274
  ### Training Logs
275
  | Epoch | Step | train_cosine_ndcg@10 |
276
  |:-----:|:----:|:--------------------:|
277
+ | -1 | -1 | 0.5622 |
278
 
279
 
280
  ### Framework Versions
config_sentence_transformers.json CHANGED
@@ -1,4 +1,5 @@
1
  {
 
2
  "__version__": {
3
  "sentence_transformers": "5.1.0",
4
  "transformers": "4.56.0",
@@ -9,6 +10,5 @@
9
  "document": ""
10
  },
11
  "default_prompt_name": null,
12
- "similarity_fn_name": "cosine",
13
- "model_type": "SentenceTransformer"
14
  }
 
1
  {
2
+ "model_type": "SentenceTransformer",
3
  "__version__": {
4
  "sentence_transformers": "5.1.0",
5
  "transformers": "4.56.0",
 
10
  "document": ""
11
  },
12
  "default_prompt_name": null,
13
+ "similarity_fn_name": "cosine"
 
14
  }
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:b3afa42cdb95ced7c718fe75726bfca0e1498534ec7971397384ec7c0d5546ed
3
  size 298041696
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:49130ca9bb82456b8d7d77dc9819d74b11864b9d854ef1eff2ed157e37bc1afe
3
  size 298041696
tokenizer_config.json CHANGED
@@ -938,7 +938,7 @@
938
  "input_ids",
939
  "attention_mask"
940
  ],
941
- "model_max_length": 1000000000000000019884624838656,
942
  "pad_token": "[PAD]",
943
  "sep_token": "[SEP]",
944
  "tokenizer_class": "PreTrainedTokenizerFast",
 
938
  "input_ids",
939
  "attention_mask"
940
  ],
941
+ "model_max_length": 8192,
942
  "pad_token": "[PAD]",
943
  "sep_token": "[SEP]",
944
  "tokenizer_class": "PreTrainedTokenizerFast",