reaperdoesntknow commited on
Commit
434c1e1
·
verified ·
1 Parent(s): e2b919a

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +71 -1
README.md CHANGED
@@ -14,4 +14,74 @@ tags:
14
  - symbioticai
15
  - llm
16
  - Symbols
17
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14
  - symbioticai
15
  - llm
16
  - Symbols
17
+ ---
18
+
19
+ # SymbioticLM-14B
20
+
21
+
22
+ **Model Type**: Hybrid Symbolic–Transformer with Persistent Memory
23
+ **Base Model**: Qwen-14B
24
+ **Framework**: PyTorch + HuggingFace Transformers
25
+ **Purpose**: Full-scale cognitive reasoning model with self-organizing memory and generative symbolic evolution
26
+
27
+ ---
28
+
29
+ ## Overview
30
+
31
+ SymbioticLM-14B is a state-of-the-art 17.8 billion parameter symbolic–transformer hybrid model that tightly couples high-capacity neural representation with structured symbolic cognition. Designed to match or exceed performance of top-tier LLMs in symbolic domains, it supports persistent memory, entropic recall, multi-stage symbolic routing, and self-organizing knowledge structures.
32
+
33
+ This model is ideal for advanced reasoning agents, research assistants, and symbolic math/code generation systems.
34
+
35
+ ---
36
+
37
+ ## Architecture Highlights
38
+
39
+ - **Backbone**: Qwen-14B transformer with rotary embeddings + FlashAttention
40
+ - **Symbolic Dim**: 8192
41
+ - **Symbolic Modules**:
42
+ - ThoughtDynamicsLNN (multi-head LSTM attention)
43
+ - LiquidThoughtProcessor
44
+ - CrystallineProcessor (DNAConv GNN)
45
+ - HelicalDNAProcessor (linear helical encoding)
46
+ - **Memory**: 4096 symbolic states in FP32, retrieved using entropy + contextual similarity
47
+ - **Dream Mode**: Background symbolic simulation for open-ended cognition
48
+ - **Router**: Intent classifier + entropy gating for processor path selection
49
+
50
+ ---
51
+
52
+ ## Files Included
53
+
54
+ | File | Description |
55
+ |--------------------------|----------------------------------------------------------|
56
+ | `model.bin` | Transformer weights (LFS) |
57
+ | `model.safetensors` | Memory-safe weights, optimized for loading |
58
+ | `memory.pt` | 4096-symbolic vector bank |
59
+ | `config.json` | Model and architectural metadata |
60
+ | `generation_config.json` | Top-p, temperature, decoding settings |
61
+ | `tokenizer.json` | Full tokenizer with symbolic tag support |
62
+ | `added_tokens.json` | Tags like `<D_LIM>`, `<PROOF>`, `<BY_MEASURE>`, etc. |
63
+ | `special_tokens_map.json`| Special token mapping for tokenizer |
64
+
65
+ ---
66
+
67
+ ## Intended Uses
68
+
69
+ - Multi-step conversational agents with true memory
70
+ - Long-form symbolic theorem generation and proof planning
71
+ - Scientific dialogue, symbolic simulations, math/code synthesis
72
+ - Reasoning in fuzzy, discontinuous, or non-smooth problem domains
73
+
74
+ ---
75
+
76
+ ## Limitations
77
+
78
+ - Memory requires curation and seeding for maximum utility
79
+ - Symbolic cognition is not instruction-tuned for general QA
80
+ - FlashAttention and symbolic modules increase VRAM usage during generation
81
+
82
+ ---
83
+
84
+ ## Citations
85
+
86
+
87
+ Please cite "SymbioticLM" when using symbolic memory components in research or applications.