Upload folder using huggingface_hub
Browse files- .DS_Store +0 -0
- .ipynb_checkpoints/model-checkpoint.py +334 -0
- llama3.2-1B-base.pth +2 -2
- llama3.2-1B-instruct.pth +2 -2
- llama3.2-3B-base.pth +2 -2
- llama3.2-3B-instruct.pth +2 -2
- model.py +4 -1
.DS_Store
ADDED
|
Binary file (6.15 kB). View file
|
|
|
.ipynb_checkpoints/model-checkpoint.py
ADDED
|
@@ -0,0 +1,334 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) Sebastian Raschka under Apache License 2.0 (see LICENSE.txt).
|
| 2 |
+
# Source for "Build a Large Language Model From Scratch"
|
| 3 |
+
# https://github.com/rasbt/LLMs-from-scratch/blob/main/ch05/07_gpt_to_llama/standalone-llama32.ipynb
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
import torch
|
| 7 |
+
import torch.nn as nn
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
LLAMA32_CONFIG_1B = {
|
| 11 |
+
"vocab_size": 128_256, # Vocabulary size
|
| 12 |
+
"context_length": 8192, # Maximum context length to use (reduced to save memory)
|
| 13 |
+
"orig_context_length": 131_072, # Context length that was used to train the model
|
| 14 |
+
"emb_dim": 2048, # Embedding dimension
|
| 15 |
+
"n_heads": 32, # Number of attention heads
|
| 16 |
+
"n_layers": 16, # Number of layers
|
| 17 |
+
"hidden_dim": 8192, # Size of the intermediate dimension in FeedForward
|
| 18 |
+
"n_kv_groups": 8, # Key-Value groups for grouped-query attention
|
| 19 |
+
"rope_base": 500_000.0, # The base in RoPE's "theta"
|
| 20 |
+
"dtype": torch.bfloat16, # Lower-precision dtype to reduce memory usage
|
| 21 |
+
"rope_freq": { # RoPE frequency scaling
|
| 22 |
+
"factor": 32.0,
|
| 23 |
+
"low_freq_factor": 1.0,
|
| 24 |
+
"high_freq_factor": 4.0,
|
| 25 |
+
"original_context_length": 8192,
|
| 26 |
+
}
|
| 27 |
+
}
|
| 28 |
+
|
| 29 |
+
LLAMA32_CONFIG_3B = {
|
| 30 |
+
"vocab_size": 128_256, # Vocabulary size
|
| 31 |
+
"context_length": 8192, # Maximum context length to use (reduced to save memory)
|
| 32 |
+
"orig_context_length": 131_072, # Context length that was used to train the model
|
| 33 |
+
"emb_dim": 3072, # Embedding dimension
|
| 34 |
+
"n_heads": 24, # Number of attention heads
|
| 35 |
+
"n_layers": 28, # Number of layers
|
| 36 |
+
"hidden_dim": 8192, # Size of the intermediate dimension in FeedForward
|
| 37 |
+
"n_kv_groups": 8, # Key-Value groups for grouped-query attention
|
| 38 |
+
"rope_base": 500_000.0, # The base in RoPE's "theta"
|
| 39 |
+
"dtype": torch.bfloat16, # Lower-precision dtype to reduce memory usage
|
| 40 |
+
"rope_freq": { # RoPE frequency scaling
|
| 41 |
+
"factor": 32.0,
|
| 42 |
+
"low_freq_factor": 1.0,
|
| 43 |
+
"high_freq_factor": 4.0,
|
| 44 |
+
"original_context_length": 8192,
|
| 45 |
+
}
|
| 46 |
+
}
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
class Llama3Model(nn.Module):
|
| 50 |
+
def __init__(self, cfg):
|
| 51 |
+
super().__init__()
|
| 52 |
+
|
| 53 |
+
# Main model parameters
|
| 54 |
+
self.tok_emb = nn.Embedding(cfg["vocab_size"], cfg["emb_dim"], dtype=cfg["dtype"])
|
| 55 |
+
|
| 56 |
+
self.trf_blocks = nn.ModuleList( # ModuleList since Sequential can only accept one input, and we need `x, mask, cos, sin`
|
| 57 |
+
[TransformerBlock(cfg) for _ in range(cfg["n_layers"])]
|
| 58 |
+
)
|
| 59 |
+
|
| 60 |
+
self.final_norm = nn.RMSNorm(cfg["emb_dim"], eps=1e-5, dtype=cfg["dtype"])
|
| 61 |
+
self.out_head = nn.Linear(cfg["emb_dim"], cfg["vocab_size"], bias=False, dtype=cfg["dtype"])
|
| 62 |
+
|
| 63 |
+
# Reusuable utilities
|
| 64 |
+
self.register_buffer(
|
| 65 |
+
"mask", torch.triu(torch.ones(cfg["context_length"], cfg["context_length"]), diagonal=1).bool(),
|
| 66 |
+
persistent=False
|
| 67 |
+
)
|
| 68 |
+
|
| 69 |
+
if cfg["orig_context_length"] != cfg["context_length"]:
|
| 70 |
+
cfg["rope_base"] = rescale_theta(
|
| 71 |
+
cfg["rope_base"],
|
| 72 |
+
cfg["orig_context_length"],
|
| 73 |
+
cfg["context_length"]
|
| 74 |
+
)
|
| 75 |
+
cos, sin = compute_rope_params(
|
| 76 |
+
head_dim=cfg["emb_dim"] // cfg["n_heads"],
|
| 77 |
+
theta_base=cfg["rope_base"],
|
| 78 |
+
context_length=cfg["context_length"],
|
| 79 |
+
freq_config=cfg["rope_freq"]
|
| 80 |
+
)
|
| 81 |
+
self.register_buffer("cos", cos, persistent=False)
|
| 82 |
+
self.register_buffer("sin", sin, persistent=False)
|
| 83 |
+
self.cfg = cfg
|
| 84 |
+
|
| 85 |
+
def forward(self, in_idx):
|
| 86 |
+
# Forward pass
|
| 87 |
+
tok_embeds = self.tok_emb(in_idx)
|
| 88 |
+
x = tok_embeds
|
| 89 |
+
|
| 90 |
+
for block in self.trf_blocks:
|
| 91 |
+
x = block(x, self.mask, self.cos, self.sin)
|
| 92 |
+
x = self.final_norm(x)
|
| 93 |
+
logits = self.out_head(x.to(self.cfg["dtype"]))
|
| 94 |
+
return logits
|
| 95 |
+
|
| 96 |
+
|
| 97 |
+
class TransformerBlock(nn.Module):
|
| 98 |
+
def __init__(self, cfg):
|
| 99 |
+
super().__init__()
|
| 100 |
+
self.att = GroupedQueryAttention(
|
| 101 |
+
d_in=cfg["emb_dim"],
|
| 102 |
+
d_out=cfg["emb_dim"],
|
| 103 |
+
num_heads=cfg["n_heads"],
|
| 104 |
+
num_kv_groups=cfg["n_kv_groups"],
|
| 105 |
+
dtype=cfg["dtype"]
|
| 106 |
+
)
|
| 107 |
+
self.ff = FeedForward(cfg)
|
| 108 |
+
self.norm1 = nn.RMSNorm(cfg["emb_dim"], eps=1e-5, dtype=cfg["dtype"])
|
| 109 |
+
self.norm2 = nn.RMSNorm(cfg["emb_dim"], eps=1e-5, dtype=cfg["dtype"])
|
| 110 |
+
|
| 111 |
+
def forward(self, x, mask, cos, sin):
|
| 112 |
+
# Shortcut connection for attention block
|
| 113 |
+
shortcut = x
|
| 114 |
+
x = self.norm1(x)
|
| 115 |
+
x = self.att(x, mask, cos, sin) # Shape [batch_size, num_tokens, emb_size]
|
| 116 |
+
x = x + shortcut # Add the original input back
|
| 117 |
+
|
| 118 |
+
# Shortcut connection for feed-forward block
|
| 119 |
+
shortcut = x
|
| 120 |
+
x = self.norm2(x)
|
| 121 |
+
x = self.ff(x)
|
| 122 |
+
x = x + shortcut # Add the original input back
|
| 123 |
+
|
| 124 |
+
return x
|
| 125 |
+
|
| 126 |
+
|
| 127 |
+
class FeedForward(nn.Module):
|
| 128 |
+
def __init__(self, cfg):
|
| 129 |
+
super().__init__()
|
| 130 |
+
self.fc1 = nn.Linear(cfg["emb_dim"], cfg["hidden_dim"], dtype=cfg["dtype"], bias=False)
|
| 131 |
+
self.fc2 = nn.Linear(cfg["emb_dim"], cfg["hidden_dim"], dtype=cfg["dtype"], bias=False)
|
| 132 |
+
self.fc3 = nn.Linear(cfg["hidden_dim"], cfg["emb_dim"], dtype=cfg["dtype"], bias=False)
|
| 133 |
+
|
| 134 |
+
def forward(self, x):
|
| 135 |
+
x_fc1 = self.fc1(x)
|
| 136 |
+
x_fc2 = self.fc2(x)
|
| 137 |
+
x = nn.functional.silu(x_fc1) * x_fc2
|
| 138 |
+
return self.fc3(x)
|
| 139 |
+
|
| 140 |
+
|
| 141 |
+
class GroupedQueryAttention(nn.Module):
|
| 142 |
+
def __init__(
|
| 143 |
+
self, d_in, d_out, num_heads,
|
| 144 |
+
num_kv_groups,
|
| 145 |
+
dtype=None
|
| 146 |
+
):
|
| 147 |
+
super().__init__()
|
| 148 |
+
assert d_out % num_heads == 0, "d_out must be divisible by num_heads"
|
| 149 |
+
assert num_heads % num_kv_groups == 0, "num_heads must be divisible by num_kv_groups"
|
| 150 |
+
|
| 151 |
+
self.d_out = d_out
|
| 152 |
+
self.num_heads = num_heads
|
| 153 |
+
self.head_dim = d_out // num_heads
|
| 154 |
+
|
| 155 |
+
self.W_key = nn.Linear(d_in, num_kv_groups * self.head_dim, bias=False, dtype=dtype)
|
| 156 |
+
self.W_value = nn.Linear(d_in, num_kv_groups * self.head_dim, bias=False, dtype=dtype)
|
| 157 |
+
self.num_kv_groups = num_kv_groups
|
| 158 |
+
self.group_size = num_heads // num_kv_groups
|
| 159 |
+
|
| 160 |
+
self.W_query = nn.Linear(d_in, d_out, bias=False, dtype=dtype)
|
| 161 |
+
self.out_proj = nn.Linear(d_out, d_out, bias=False, dtype=dtype)
|
| 162 |
+
|
| 163 |
+
def forward(self, x, mask, cos, sin):
|
| 164 |
+
b, num_tokens, d_in = x.shape
|
| 165 |
+
|
| 166 |
+
queries = self.W_query(x) # Shape: (b, num_tokens, d_out)
|
| 167 |
+
keys = self.W_key(x) # Shape: (b, num_tokens, num_kv_groups * head_dim)
|
| 168 |
+
values = self.W_value(x) # Shape: (b, num_tokens, num_kv_groups * head_dim)
|
| 169 |
+
|
| 170 |
+
# Reshape queries, keys, and values
|
| 171 |
+
queries = queries.view(b, num_tokens, self.num_heads, self.head_dim)
|
| 172 |
+
keys = keys.view(b, num_tokens, self.num_kv_groups, self.head_dim)
|
| 173 |
+
values = values.view(b, num_tokens, self.num_kv_groups, self.head_dim)
|
| 174 |
+
|
| 175 |
+
# Transpose keys, values, and queries
|
| 176 |
+
keys = keys.transpose(1, 2) # Shape: (b, num_heads, num_tokens, head_dim)
|
| 177 |
+
values = values.transpose(1, 2) # Shape: (b, num_heads, num_tokens, head_dim)
|
| 178 |
+
queries = queries.transpose(1, 2) # Shape: (b, num_query_groups, num_tokens, head_dim)
|
| 179 |
+
|
| 180 |
+
# Apply RoPE
|
| 181 |
+
keys = apply_rope(keys, cos, sin)
|
| 182 |
+
queries = apply_rope(queries, cos, sin)
|
| 183 |
+
|
| 184 |
+
# Expand keys and values to match the number of heads
|
| 185 |
+
# Shape: (b, num_heads, num_tokens, head_dim)
|
| 186 |
+
keys = keys.repeat_interleave(self.group_size, dim=1) # Shape: (b, num_heads, num_tokens, head_dim)
|
| 187 |
+
values = values.repeat_interleave(self.group_size, dim=1) # Shape: (b, num_heads, num_tokens, head_dim)
|
| 188 |
+
# For example, before repeat_interleave along dim=1 (query groups):
|
| 189 |
+
# [K1, K2]
|
| 190 |
+
# After repeat_interleave (each query group is repeated group_size times):
|
| 191 |
+
# [K1, K1, K2, K2]
|
| 192 |
+
# If we used regular repeat instead of repeat_interleave, we'd get:
|
| 193 |
+
# [K1, K2, K1, K2]
|
| 194 |
+
|
| 195 |
+
# Compute scaled dot-product attention (aka self-attention) with a causal mask
|
| 196 |
+
# Shape: (b, num_heads, num_tokens, num_tokens)
|
| 197 |
+
attn_scores = queries @ keys.transpose(2, 3) # Dot product for each head
|
| 198 |
+
|
| 199 |
+
# Use the mask to fill attention scores
|
| 200 |
+
attn_scores = attn_scores.masked_fill(mask[:num_tokens, :num_tokens], -torch.inf)
|
| 201 |
+
|
| 202 |
+
attn_weights = torch.softmax(attn_scores / keys.shape[-1]**0.5, dim=-1)
|
| 203 |
+
assert keys.shape[-1] == self.head_dim
|
| 204 |
+
|
| 205 |
+
# Shape: (b, num_tokens, num_heads, head_dim)
|
| 206 |
+
context_vec = (attn_weights @ values).transpose(1, 2)
|
| 207 |
+
|
| 208 |
+
# Combine heads, where self.d_out = self.num_heads * self.head_dim
|
| 209 |
+
context_vec = context_vec.reshape(b, num_tokens, self.d_out)
|
| 210 |
+
context_vec = self.out_proj(context_vec) # optional projection
|
| 211 |
+
|
| 212 |
+
return context_vec
|
| 213 |
+
|
| 214 |
+
|
| 215 |
+
def compute_rope_params(head_dim, theta_base=10_000, context_length=4096, freq_config=None, dtype=torch.float32):
|
| 216 |
+
assert head_dim % 2 == 0, "Embedding dimension must be even"
|
| 217 |
+
|
| 218 |
+
# Compute the inverse frequencies
|
| 219 |
+
inv_freq = 1.0 / (theta_base ** (torch.arange(0, head_dim, 2, dtype=dtype)[: (head_dim // 2)].float() / head_dim))
|
| 220 |
+
|
| 221 |
+
# Frequency adjustments
|
| 222 |
+
if freq_config is not None:
|
| 223 |
+
low_freq_wavelen = freq_config["original_context_length"] / freq_config["low_freq_factor"]
|
| 224 |
+
high_freq_wavelen = freq_config["original_context_length"] / freq_config["high_freq_factor"]
|
| 225 |
+
|
| 226 |
+
wavelen = 2 * torch.pi / inv_freq
|
| 227 |
+
|
| 228 |
+
inv_freq_llama = torch.where(
|
| 229 |
+
wavelen > low_freq_wavelen, inv_freq / freq_config["factor"], inv_freq
|
| 230 |
+
)
|
| 231 |
+
|
| 232 |
+
smooth_factor = (freq_config["original_context_length"] / wavelen - freq_config["low_freq_factor"]) / (
|
| 233 |
+
freq_config["high_freq_factor"] - freq_config["low_freq_factor"]
|
| 234 |
+
)
|
| 235 |
+
|
| 236 |
+
smoothed_inv_freq = (
|
| 237 |
+
(1 - smooth_factor) * (inv_freq / freq_config["factor"]) + smooth_factor * inv_freq
|
| 238 |
+
)
|
| 239 |
+
|
| 240 |
+
is_medium_freq = (wavelen <= low_freq_wavelen) & (wavelen >= high_freq_wavelen)
|
| 241 |
+
inv_freq_llama = torch.where(is_medium_freq, smoothed_inv_freq, inv_freq_llama)
|
| 242 |
+
inv_freq = inv_freq_llama
|
| 243 |
+
|
| 244 |
+
# Generate position indices
|
| 245 |
+
positions = torch.arange(context_length, dtype=dtype)
|
| 246 |
+
|
| 247 |
+
# Compute the angles
|
| 248 |
+
angles = positions[:, None] * inv_freq[None, :] # Shape: (context_length, head_dim // 2)
|
| 249 |
+
|
| 250 |
+
# Expand angles to match the head_dim
|
| 251 |
+
angles = torch.cat([angles, angles], dim=1) # Shape: (context_length, head_dim)
|
| 252 |
+
|
| 253 |
+
# Precompute sine and cosine
|
| 254 |
+
cos = torch.cos(angles)
|
| 255 |
+
sin = torch.sin(angles)
|
| 256 |
+
|
| 257 |
+
return cos, sin
|
| 258 |
+
|
| 259 |
+
|
| 260 |
+
def apply_rope(x, cos, sin):
|
| 261 |
+
# x: (batch_size, num_heads, seq_len, head_dim)
|
| 262 |
+
batch_size, num_heads, seq_len, head_dim = x.shape
|
| 263 |
+
assert head_dim % 2 == 0, "Head dimension must be even"
|
| 264 |
+
|
| 265 |
+
# Split x into first half and second half
|
| 266 |
+
x1 = x[..., : head_dim // 2] # First half
|
| 267 |
+
x2 = x[..., head_dim // 2:] # Second half
|
| 268 |
+
|
| 269 |
+
# Adjust sin and cos shapes
|
| 270 |
+
cos = cos[:seq_len, :].unsqueeze(0).unsqueeze(0) # Shape: (1, 1, seq_len, head_dim)
|
| 271 |
+
sin = sin[:seq_len, :].unsqueeze(0).unsqueeze(0)
|
| 272 |
+
|
| 273 |
+
# Apply the rotary transformation
|
| 274 |
+
rotated = torch.cat((-x2, x1), dim=-1)
|
| 275 |
+
x_rotated = (x * cos) + (rotated * sin)
|
| 276 |
+
|
| 277 |
+
# It's ok to use lower-precision after applying cos and sin rotation
|
| 278 |
+
return x_rotated.to(dtype=x.dtype)
|
| 279 |
+
|
| 280 |
+
|
| 281 |
+
def rescale_theta(theta_old, context_length_old, context_length_new):
|
| 282 |
+
scaling_factor = context_length_new / context_length_old
|
| 283 |
+
theta_new = theta_old * scaling_factor
|
| 284 |
+
return theta_new
|
| 285 |
+
|
| 286 |
+
|
| 287 |
+
def text_to_token_ids(text, tokenizer):
|
| 288 |
+
encoded = tokenizer.encode(text)
|
| 289 |
+
encoded_tensor = torch.tensor(encoded).unsqueeze(0) # add batch dimension
|
| 290 |
+
return encoded_tensor
|
| 291 |
+
|
| 292 |
+
|
| 293 |
+
def token_ids_to_text(token_ids, tokenizer):
|
| 294 |
+
flat = token_ids.squeeze(0) # remove batch dimension
|
| 295 |
+
return tokenizer.decode(flat.tolist())
|
| 296 |
+
|
| 297 |
+
|
| 298 |
+
def generate(model, idx, max_new_tokens, context_size, temperature=0.0, top_k=None, eos_id=None):
|
| 299 |
+
|
| 300 |
+
# For-loop is the same as before: Get logits, and only focus on last time step
|
| 301 |
+
for _ in range(max_new_tokens):
|
| 302 |
+
idx_cond = idx[:, -context_size:]
|
| 303 |
+
with torch.no_grad():
|
| 304 |
+
logits = model(idx_cond)
|
| 305 |
+
logits = logits[:, -1, :]
|
| 306 |
+
|
| 307 |
+
# Filter logits with top_k sampling
|
| 308 |
+
if top_k is not None:
|
| 309 |
+
# Keep only top_k values
|
| 310 |
+
top_logits, _ = torch.topk(logits, top_k)
|
| 311 |
+
min_val = top_logits[:, -1]
|
| 312 |
+
logits = torch.where(logits < min_val, torch.tensor(float('-inf')).to(logits.device), logits)
|
| 313 |
+
|
| 314 |
+
# Apply temperature scaling
|
| 315 |
+
if temperature > 0.0:
|
| 316 |
+
logits = logits / temperature
|
| 317 |
+
|
| 318 |
+
# Apply softmax to get probabilities
|
| 319 |
+
probs = torch.softmax(logits, dim=-1) # (batch_size, context_len)
|
| 320 |
+
|
| 321 |
+
# Sample from the distribution
|
| 322 |
+
idx_next = torch.multinomial(probs, num_samples=1) # (batch_size, 1)
|
| 323 |
+
|
| 324 |
+
# Otherwise same as before: get idx of the vocab entry with the highest logits value
|
| 325 |
+
else:
|
| 326 |
+
idx_next = torch.argmax(logits, dim=-1, keepdim=True) # (batch_size, 1)
|
| 327 |
+
|
| 328 |
+
if idx_next == eos_id: # Stop generating early if end-of-sequence token is encountered and eos_id is specified
|
| 329 |
+
break
|
| 330 |
+
|
| 331 |
+
# Same as before: append sampled index to the running sequence
|
| 332 |
+
idx = torch.cat((idx, idx_next), dim=1) # (batch_size, num_tokens+1)
|
| 333 |
+
|
| 334 |
+
return idx
|
llama3.2-1B-base.pth
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a91cbbc417b663619e49cc1f12faa0329ae9d7cec233c146f648ee230d5d78ca
|
| 3 |
+
size 2997020635
|
llama3.2-1B-instruct.pth
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:6718811b79ea055d51cf6a3c0f18faaaca921b9cd33ecd917a42cc2572756142
|
| 3 |
+
size 2997021239
|
llama3.2-3B-base.pth
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:4510deedd5e99d7bca73397e9041333361d7de68c76da94b2508e0a4894f3395
|
| 3 |
+
size 7213601647
|
llama3.2-3B-instruct.pth
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:bf907cd45420d57832d26972b0d824713f5b3bd9c0c961a4e73368709ca5e609
|
| 3 |
+
size 7213602683
|
model.py
CHANGED
|
@@ -61,7 +61,10 @@ class Llama3Model(nn.Module):
|
|
| 61 |
self.out_head = nn.Linear(cfg["emb_dim"], cfg["vocab_size"], bias=False, dtype=cfg["dtype"])
|
| 62 |
|
| 63 |
# Reusuable utilities
|
| 64 |
-
self.register_buffer(
|
|
|
|
|
|
|
|
|
|
| 65 |
|
| 66 |
if cfg["orig_context_length"] != cfg["context_length"]:
|
| 67 |
cfg["rope_base"] = rescale_theta(
|
|
|
|
| 61 |
self.out_head = nn.Linear(cfg["emb_dim"], cfg["vocab_size"], bias=False, dtype=cfg["dtype"])
|
| 62 |
|
| 63 |
# Reusuable utilities
|
| 64 |
+
self.register_buffer(
|
| 65 |
+
"mask", torch.triu(torch.ones(cfg["context_length"], cfg["context_length"]), diagonal=1).bool(),
|
| 66 |
+
persistent=False
|
| 67 |
+
)
|
| 68 |
|
| 69 |
if cfg["orig_context_length"] != cfg["context_length"]:
|
| 70 |
cfg["rope_base"] = rescale_theta(
|