File size: 1,822 Bytes
f86de92 a9bad5c f86de92 a9bad5c 6e32d81 e3e1b35 a9bad5c f86de92 a9bad5c f86de92 a9bad5c f86de92 a9bad5c f86de92 a9bad5c f86de92 a9bad5c f86de92 a9bad5c f86de92 e3e1b35 f86de92 a9bad5c f86de92 a9bad5c f86de92 a9bad5c f86de92 a9bad5c f86de92 a9bad5c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 |
---
base_model: HuggingFaceTB/SmolVLM2-500M-Video-Instruct
library_name: transformers
model_name: smolgemma-waymo-add-perception-different-lr
tags:
- generated_from_trainer
- sft
- trl
licence: license
---
# Model Card for smolgemma-waymo-add-perception-different-lr
This model is a fine-tuned version of [HuggingFaceTB/SmolVLM2-500M-Video-Instruct](https://huggingface.co/HuggingFaceTB/SmolVLM2-500M-Video-Instruct).
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="rainorangelemon2/smolgemma-waymo-add-perception-different-lr", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/rainorangelemon/huggingface/runs/s84nt41m)
This model was trained with SFT.
### Framework versions
- TRL: 0.19.0
- Transformers: 4.52.4
- Pytorch: 2.7.1
- Datasets: 3.6.0
- Tokenizers: 0.21.1
## Citations
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
``` |