File size: 19,618 Bytes
dd3cc3d
 
955e204
dd3cc3d
 
 
104c5dc
dd3cc3d
 
 
5c6231b
dd3cc3d
21d9242
e66d133
dd3cc3d
ca674bd
21d9242
dd3cc3d
8e7a739
ca674bd
 
e0e561f
 
 
 
 
dd3cc3d
 
 
955e204
dd3cc3d
21d9242
dd3cc3d
 
955e204
8d5e7cf
 
dd3cc3d
955e204
e28c605
aee9e31
26b1041
aee9e31
26b1041
aee9e31
26b1041
 
aee9e31
26b1041
aee9e31
26b1041
aee9e31
26b1041
aee9e31
26b1041
aee9e31
26b1041
aee9e31
26b1041
aee9e31
26b1041
 
aee9e31
26b1041
 
aee9e31
26b1041
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e0e561f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dd3cc3d
e0e561f
 
dd3cc3d
e0e561f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dd3cc3d
e28c605
dd3cc3d
32248a6
 
e28c605
 
 
dd3cc3d
 
1f9a36b
dd3cc3d
 
e28c605
 
dd3cc3d
e0e561f
dd3cc3d
 
e0e561f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
---
library_name: pytorch
license: other
tags:
- real_time
- android
pipeline_tag: object-detection

---

![](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/models/yolov8_det/web-assets/model_demo.png)

# YOLOv8-Detection: Optimized for Mobile Deployment
## Real-time object detection optimized for mobile and edge by Ultralytics


Ultralytics YOLOv8 is a machine learning model that predicts bounding boxes and classes of objects in an image.

This model is an implementation of YOLOv8-Detection found [here](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/models/yolo/detect).


This repository provides scripts to run YOLOv8-Detection on Qualcomm® devices.
More details on model performance across various devices, can be found
[here](https://aihub.qualcomm.com/models/yolov8_det).

**WARNING**: The model assets are not readily available for download due to licensing restrictions.

### Model Details

- **Model Type:** Model_use_case.object_detection
- **Model Stats:**
  - Model checkpoint: YOLOv8-N
  - Input resolution: 640x640
  - Number of parameters: 3.18M
  - Model size (float): 12.2 MB
  - Model size (w8a8): 3.25 MB
  - Model size (w8a16): 3.60 MB

| Model | Precision | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Primary Compute Unit | Target Model
|---|---|---|---|---|---|---|---|---|
| YOLOv8-Detection | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | TFLITE | 14.24 ms | 0 - 66 MB | NPU | -- |
| YOLOv8-Detection | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN_DLC | 13.359 ms | 4 - 96 MB | NPU | -- |
| YOLOv8-Detection | float | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | TFLITE | 6.584 ms | 0 - 40 MB | NPU | -- |
| YOLOv8-Detection | float | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | QNN_DLC | 8.016 ms | 5 - 42 MB | NPU | -- |
| YOLOv8-Detection | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | TFLITE | 4.13 ms | 0 - 38 MB | NPU | -- |
| YOLOv8-Detection | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN_DLC | 3.458 ms | 0 - 70 MB | NPU | -- |
| YOLOv8-Detection | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | ONNX | 5.481 ms | 0 - 100 MB | NPU | -- |
| YOLOv8-Detection | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | TFLITE | 5.589 ms | 0 - 65 MB | NPU | -- |
| YOLOv8-Detection | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN_DLC | 5.092 ms | 0 - 95 MB | NPU | -- |
| YOLOv8-Detection | float | SA7255P ADP | Qualcomm® SA7255P | TFLITE | 14.24 ms | 0 - 66 MB | NPU | -- |
| YOLOv8-Detection | float | SA7255P ADP | Qualcomm® SA7255P | QNN_DLC | 13.359 ms | 4 - 96 MB | NPU | -- |
| YOLOv8-Detection | float | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | TFLITE | 4.115 ms | 0 - 40 MB | NPU | -- |
| YOLOv8-Detection | float | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN_DLC | 3.464 ms | 0 - 81 MB | NPU | -- |
| YOLOv8-Detection | float | SA8295P ADP | Qualcomm® SA8295P | TFLITE | 7.643 ms | 0 - 34 MB | NPU | -- |
| YOLOv8-Detection | float | SA8295P ADP | Qualcomm® SA8295P | QNN_DLC | 7.243 ms | 2 - 33 MB | NPU | -- |
| YOLOv8-Detection | float | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | TFLITE | 4.123 ms | 0 - 38 MB | NPU | -- |
| YOLOv8-Detection | float | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN_DLC | 3.461 ms | 0 - 71 MB | NPU | -- |
| YOLOv8-Detection | float | SA8775P ADP | Qualcomm® SA8775P | TFLITE | 5.589 ms | 0 - 65 MB | NPU | -- |
| YOLOv8-Detection | float | SA8775P ADP | Qualcomm® SA8775P | QNN_DLC | 5.092 ms | 0 - 95 MB | NPU | -- |
| YOLOv8-Detection | float | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | TFLITE | 4.13 ms | 0 - 39 MB | NPU | -- |
| YOLOv8-Detection | float | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | QNN_DLC | 3.459 ms | 5 - 86 MB | NPU | -- |
| YOLOv8-Detection | float | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | ONNX | 5.563 ms | 0 - 117 MB | NPU | -- |
| YOLOv8-Detection | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | TFLITE | 3.038 ms | 0 - 85 MB | NPU | -- |
| YOLOv8-Detection | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_DLC | 2.542 ms | 5 - 232 MB | NPU | -- |
| YOLOv8-Detection | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | ONNX | 3.977 ms | 0 - 170 MB | NPU | -- |
| YOLOv8-Detection | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | TFLITE | 2.948 ms | 0 - 73 MB | NPU | -- |
| YOLOv8-Detection | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | QNN_DLC | 2.371 ms | 5 - 135 MB | NPU | -- |
| YOLOv8-Detection | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | ONNX | 2.964 ms | 1 - 89 MB | NPU | -- |
| YOLOv8-Detection | float | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN_DLC | 3.898 ms | 114 - 114 MB | NPU | -- |
| YOLOv8-Detection | float | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 5.453 ms | 5 - 5 MB | NPU | -- |
| YOLOv8-Detection | w8a16 | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN_DLC | 6.602 ms | 1 - 30 MB | NPU | -- |
| YOLOv8-Detection | w8a16 | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | QNN_DLC | 3.982 ms | 2 - 41 MB | NPU | -- |
| YOLOv8-Detection | w8a16 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN_DLC | 3.276 ms | 2 - 14 MB | NPU | -- |
| YOLOv8-Detection | w8a16 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | ONNX | 48.464 ms | 14 - 170 MB | NPU | -- |
| YOLOv8-Detection | w8a16 | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN_DLC | 3.821 ms | 2 - 31 MB | NPU | -- |
| YOLOv8-Detection | w8a16 | RB3 Gen 2 (Proxy) | Qualcomm® QCS6490 (Proxy) | QNN_DLC | 13.469 ms | 0 - 36 MB | NPU | -- |
| YOLOv8-Detection | w8a16 | RB3 Gen 2 (Proxy) | Qualcomm® QCS6490 (Proxy) | ONNX | 172.32 ms | 61 - 76 MB | CPU | -- |
| YOLOv8-Detection | w8a16 | RB5 (Proxy) | Qualcomm® QCS8250 (Proxy) | ONNX | 151.387 ms | 60 - 66 MB | CPU | -- |
| YOLOv8-Detection | w8a16 | SA7255P ADP | Qualcomm® SA7255P | QNN_DLC | 6.602 ms | 1 - 30 MB | NPU | -- |
| YOLOv8-Detection | w8a16 | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN_DLC | 3.278 ms | 2 - 13 MB | NPU | -- |
| YOLOv8-Detection | w8a16 | SA8295P ADP | Qualcomm® SA8295P | QNN_DLC | 4.47 ms | 0 - 32 MB | NPU | -- |
| YOLOv8-Detection | w8a16 | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN_DLC | 3.273 ms | 2 - 14 MB | NPU | -- |
| YOLOv8-Detection | w8a16 | SA8775P ADP | Qualcomm® SA8775P | QNN_DLC | 3.821 ms | 2 - 31 MB | NPU | -- |
| YOLOv8-Detection | w8a16 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | QNN_DLC | 3.275 ms | 2 - 14 MB | NPU | -- |
| YOLOv8-Detection | w8a16 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | ONNX | 48.607 ms | 14 - 159 MB | NPU | -- |
| YOLOv8-Detection | w8a16 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_DLC | 2.174 ms | 3 - 39 MB | NPU | -- |
| YOLOv8-Detection | w8a16 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | ONNX | 38.66 ms | 2 - 1433 MB | NPU | -- |
| YOLOv8-Detection | w8a16 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | QNN_DLC | 1.87 ms | 2 - 45 MB | NPU | -- |
| YOLOv8-Detection | w8a16 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | ONNX | 41.953 ms | 2 - 515 MB | NPU | -- |
| YOLOv8-Detection | w8a16 | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN_DLC | 3.636 ms | 8 - 8 MB | NPU | -- |
| YOLOv8-Detection | w8a16 | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 48.518 ms | 24 - 24 MB | NPU | -- |
| YOLOv8-Detection | w8a8 | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | TFLITE | 3.333 ms | 0 - 23 MB | NPU | -- |
| YOLOv8-Detection | w8a8 | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN_DLC | 3.142 ms | 1 - 25 MB | NPU | -- |
| YOLOv8-Detection | w8a8 | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | TFLITE | 1.662 ms | 0 - 37 MB | NPU | -- |
| YOLOv8-Detection | w8a8 | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | QNN_DLC | 1.675 ms | 1 - 36 MB | NPU | -- |
| YOLOv8-Detection | w8a8 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | TFLITE | 1.493 ms | 0 - 15 MB | NPU | -- |
| YOLOv8-Detection | w8a8 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN_DLC | 1.44 ms | 1 - 17 MB | NPU | -- |
| YOLOv8-Detection | w8a8 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | ONNX | 5.298 ms | 0 - 32 MB | NPU | -- |
| YOLOv8-Detection | w8a8 | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | TFLITE | 1.894 ms | 0 - 24 MB | NPU | -- |
| YOLOv8-Detection | w8a8 | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN_DLC | 1.815 ms | 1 - 25 MB | NPU | -- |
| YOLOv8-Detection | w8a8 | RB3 Gen 2 (Proxy) | Qualcomm® QCS6490 (Proxy) | TFLITE | 3.805 ms | 0 - 31 MB | NPU | -- |
| YOLOv8-Detection | w8a8 | RB3 Gen 2 (Proxy) | Qualcomm® QCS6490 (Proxy) | QNN_DLC | 4.815 ms | 1 - 32 MB | NPU | -- |
| YOLOv8-Detection | w8a8 | RB3 Gen 2 (Proxy) | Qualcomm® QCS6490 (Proxy) | ONNX | 44.018 ms | 22 - 38 MB | CPU | -- |
| YOLOv8-Detection | w8a8 | RB5 (Proxy) | Qualcomm® QCS8250 (Proxy) | TFLITE | 49.231 ms | 2 - 11 MB | NPU | -- |
| YOLOv8-Detection | w8a8 | RB5 (Proxy) | Qualcomm® QCS8250 (Proxy) | ONNX | 39.153 ms | 16 - 20 MB | CPU | -- |
| YOLOv8-Detection | w8a8 | SA7255P ADP | Qualcomm® SA7255P | TFLITE | 3.333 ms | 0 - 23 MB | NPU | -- |
| YOLOv8-Detection | w8a8 | SA7255P ADP | Qualcomm® SA7255P | QNN_DLC | 3.142 ms | 1 - 25 MB | NPU | -- |
| YOLOv8-Detection | w8a8 | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | TFLITE | 1.5 ms | 0 - 15 MB | NPU | -- |
| YOLOv8-Detection | w8a8 | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN_DLC | 1.415 ms | 1 - 17 MB | NPU | -- |
| YOLOv8-Detection | w8a8 | SA8295P ADP | Qualcomm® SA8295P | TFLITE | 2.358 ms | 0 - 30 MB | NPU | -- |
| YOLOv8-Detection | w8a8 | SA8295P ADP | Qualcomm® SA8295P | QNN_DLC | 2.167 ms | 1 - 33 MB | NPU | -- |
| YOLOv8-Detection | w8a8 | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | TFLITE | 1.496 ms | 0 - 15 MB | NPU | -- |
| YOLOv8-Detection | w8a8 | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN_DLC | 1.421 ms | 1 - 16 MB | NPU | -- |
| YOLOv8-Detection | w8a8 | SA8775P ADP | Qualcomm® SA8775P | TFLITE | 1.894 ms | 0 - 24 MB | NPU | -- |
| YOLOv8-Detection | w8a8 | SA8775P ADP | Qualcomm® SA8775P | QNN_DLC | 1.815 ms | 1 - 25 MB | NPU | -- |
| YOLOv8-Detection | w8a8 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | TFLITE | 1.497 ms | 0 - 5 MB | NPU | -- |
| YOLOv8-Detection | w8a8 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | QNN_DLC | 1.419 ms | 0 - 16 MB | NPU | -- |
| YOLOv8-Detection | w8a8 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | ONNX | 5.212 ms | 0 - 33 MB | NPU | -- |
| YOLOv8-Detection | w8a8 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | TFLITE | 0.99 ms | 0 - 36 MB | NPU | -- |
| YOLOv8-Detection | w8a8 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_DLC | 0.959 ms | 1 - 36 MB | NPU | -- |
| YOLOv8-Detection | w8a8 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | ONNX | 3.781 ms | 1 - 89 MB | NPU | -- |
| YOLOv8-Detection | w8a8 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | TFLITE | 0.91 ms | 0 - 31 MB | NPU | -- |
| YOLOv8-Detection | w8a8 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | QNN_DLC | 0.844 ms | 1 - 37 MB | NPU | -- |
| YOLOv8-Detection | w8a8 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | ONNX | 3.013 ms | 0 - 76 MB | NPU | -- |
| YOLOv8-Detection | w8a8 | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN_DLC | 1.651 ms | 4 - 4 MB | NPU | -- |
| YOLOv8-Detection | w8a8 | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 5.422 ms | 3 - 3 MB | NPU | -- |
| YOLOv8-Detection | w8a8_mixed_int16 | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN_DLC | 4.455 ms | 2 - 27 MB | NPU | -- |
| YOLOv8-Detection | w8a8_mixed_int16 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN_DLC | 2.132 ms | 2 - 11 MB | NPU | -- |
| YOLOv8-Detection | w8a8_mixed_int16 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | ONNX | 47.189 ms | 27 - 160 MB | NPU | -- |
| YOLOv8-Detection | w8a8_mixed_int16 | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN_DLC | 2.661 ms | 2 - 27 MB | NPU | -- |
| YOLOv8-Detection | w8a8_mixed_int16 | RB3 Gen 2 (Proxy) | Qualcomm® QCS6490 (Proxy) | ONNX | 130.503 ms | 56 - 72 MB | CPU | -- |
| YOLOv8-Detection | w8a8_mixed_int16 | RB5 (Proxy) | Qualcomm® QCS8250 (Proxy) | ONNX | 123.606 ms | 52 - 59 MB | CPU | -- |
| YOLOv8-Detection | w8a8_mixed_int16 | SA7255P ADP | Qualcomm® SA7255P | QNN_DLC | 4.455 ms | 2 - 27 MB | NPU | -- |
| YOLOv8-Detection | w8a8_mixed_int16 | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN_DLC | 2.149 ms | 2 - 11 MB | NPU | -- |
| YOLOv8-Detection | w8a8_mixed_int16 | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN_DLC | 2.148 ms | 2 - 11 MB | NPU | -- |
| YOLOv8-Detection | w8a8_mixed_int16 | SA8775P ADP | Qualcomm® SA8775P | QNN_DLC | 2.661 ms | 2 - 27 MB | NPU | -- |
| YOLOv8-Detection | w8a8_mixed_int16 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | QNN_DLC | 2.148 ms | 2 - 12 MB | NPU | -- |
| YOLOv8-Detection | w8a8_mixed_int16 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | ONNX | 48.269 ms | 13 - 161 MB | NPU | -- |
| YOLOv8-Detection | w8a8_mixed_int16 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_DLC | 1.445 ms | 2 - 37 MB | NPU | -- |
| YOLOv8-Detection | w8a8_mixed_int16 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | ONNX | 38.324 ms | 2 - 1750 MB | NPU | -- |
| YOLOv8-Detection | w8a8_mixed_int16 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | QNN_DLC | 1.248 ms | 2 - 31 MB | NPU | -- |
| YOLOv8-Detection | w8a8_mixed_int16 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | ONNX | 39.884 ms | 6 - 521 MB | NPU | -- |
| YOLOv8-Detection | w8a8_mixed_int16 | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN_DLC | 2.449 ms | 2 - 2 MB | NPU | -- |
| YOLOv8-Detection | w8a8_mixed_int16 | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 49.345 ms | 25 - 25 MB | NPU | -- |




## Installation


Install the package via pip:
```bash
pip install "qai-hub-models[yolov8-det]"
```


## Configure Qualcomm® AI Hub to run this model on a cloud-hosted device

Sign-in to [Qualcomm® AI Hub](https://app.aihub.qualcomm.com/) with your
Qualcomm® ID. Once signed in navigate to `Account -> Settings -> API Token`.

With this API token, you can configure your client to run models on the cloud
hosted devices.
```bash
qai-hub configure --api_token API_TOKEN
```
Navigate to [docs](https://app.aihub.qualcomm.com/docs/) for more information.



## Demo off target

The package contains a simple end-to-end demo that downloads pre-trained
weights and runs this model on a sample input.

```bash
python -m qai_hub_models.models.yolov8_det.demo
```

The above demo runs a reference implementation of pre-processing, model
inference, and post processing.

**NOTE**: If you want running in a Jupyter Notebook or Google Colab like
environment, please add the following to your cell (instead of the above).
```
%run -m qai_hub_models.models.yolov8_det.demo
```


### Run model on a cloud-hosted device

In addition to the demo, you can also run the model on a cloud-hosted Qualcomm®
device. This script does the following:
* Performance check on-device on a cloud-hosted device
* Downloads compiled assets that can be deployed on-device for Android.
* Accuracy check between PyTorch and on-device outputs.

```bash
python -m qai_hub_models.models.yolov8_det.export
```



## How does this work?

This [export script](https://aihub.qualcomm.com/models/yolov8_det/qai_hub_models/models/YOLOv8-Detection/export.py)
leverages [Qualcomm® AI Hub](https://aihub.qualcomm.com/) to optimize, validate, and deploy this model
on-device. Lets go through each step below in detail:

Step 1: **Compile model for on-device deployment**

To compile a PyTorch model for on-device deployment, we first trace the model
in memory using the `jit.trace` and then call the `submit_compile_job` API.

```python
import torch

import qai_hub as hub
from qai_hub_models.models.yolov8_det import Model

# Load the model
torch_model = Model.from_pretrained()

# Device
device = hub.Device("Samsung Galaxy S24")

# Trace model
input_shape = torch_model.get_input_spec()
sample_inputs = torch_model.sample_inputs()

pt_model = torch.jit.trace(torch_model, [torch.tensor(data[0]) for _, data in sample_inputs.items()])

# Compile model on a specific device
compile_job = hub.submit_compile_job(
    model=pt_model,
    device=device,
    input_specs=torch_model.get_input_spec(),
)

# Get target model to run on-device
target_model = compile_job.get_target_model()

```


Step 2: **Performance profiling on cloud-hosted device**

After compiling models from step 1. Models can be profiled model on-device using the
`target_model`. Note that this scripts runs the model on a device automatically
provisioned in the cloud.  Once the job is submitted, you can navigate to a
provided job URL to view a variety of on-device performance metrics.
```python
profile_job = hub.submit_profile_job(
    model=target_model,
    device=device,
)
        
```

Step 3: **Verify on-device accuracy**

To verify the accuracy of the model on-device, you can run on-device inference
on sample input data on the same cloud hosted device.
```python
input_data = torch_model.sample_inputs()
inference_job = hub.submit_inference_job(
    model=target_model,
    device=device,
    inputs=input_data,
)
    on_device_output = inference_job.download_output_data()

```
With the output of the model, you can compute like PSNR, relative errors or
spot check the output with expected output.

**Note**: This on-device profiling and inference requires access to Qualcomm®
AI Hub. [Sign up for access](https://myaccount.qualcomm.com/signup).



## Run demo on a cloud-hosted device

You can also run the demo on-device.

```bash
python -m qai_hub_models.models.yolov8_det.demo --eval-mode on-device
```

**NOTE**: If you want running in a Jupyter Notebook or Google Colab like
environment, please add the following to your cell (instead of the above).
```
%run -m qai_hub_models.models.yolov8_det.demo -- --eval-mode on-device
```


## Deploying compiled model to Android


The models can be deployed using multiple runtimes:
- TensorFlow Lite (`.tflite` export): [This
  tutorial](https://www.tensorflow.org/lite/android/quickstart) provides a
  guide to deploy the .tflite model in an Android application.


- QNN (`.so` export ): This [sample
  app](https://docs.qualcomm.com/bundle/publicresource/topics/80-63442-50/sample_app.html)
provides instructions on how to use the `.so` shared library  in an Android application.


## View on Qualcomm® AI Hub
Get more details on YOLOv8-Detection's performance across various devices [here](https://aihub.qualcomm.com/models/yolov8_det).
Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)


## License
* The license for the original implementation of YOLOv8-Detection can be found
  [here](https://github.com/ultralytics/ultralytics/blob/main/LICENSE).
* The license for the compiled assets for on-device deployment can be found [here](https://github.com/ultralytics/ultralytics/blob/main/LICENSE)



## References
* [Ultralytics YOLOv8 Docs: Object Detection](https://docs.ultralytics.com/tasks/detect/)
* [Source Model Implementation](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/models/yolo/detect)



## Community
* Join [our AI Hub Slack community](https://aihub.qualcomm.com/community/slack) to collaborate, post questions and learn more about on-device AI.
* For questions or feedback please [reach out to us](mailto:[email protected]).