Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
|
@@ -31,10 +31,13 @@ More details on model performance across various devices, can be found
|
|
| 31 |
- Model size (SAMDecoder): 19.6 MB
|
| 32 |
|
| 33 |
|
|
|
|
|
|
|
| 34 |
| Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|
| 35 |
| ---|---|---|---|---|---|---|---|
|
| 36 |
-
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 48.
|
| 37 |
-
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite |
|
|
|
|
| 38 |
|
| 39 |
|
| 40 |
## Installation
|
|
@@ -92,9 +95,28 @@ device. This script does the following:
|
|
| 92 |
python -m qai_hub_models.models.sam.export
|
| 93 |
```
|
| 94 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 95 |
## How does this work?
|
| 96 |
|
| 97 |
-
This [export script](https://
|
| 98 |
leverages [Qualcomm® AI Hub](https://aihub.qualcomm.com/) to optimize, validate, and deploy this model
|
| 99 |
on-device. Lets go through each step below in detail:
|
| 100 |
|
|
@@ -171,6 +193,7 @@ spot check the output with expected output.
|
|
| 171 |
AI Hub. [Sign up for access](https://myaccount.qualcomm.com/signup).
|
| 172 |
|
| 173 |
|
|
|
|
| 174 |
## Run demo on a cloud-hosted device
|
| 175 |
|
| 176 |
You can also run the demo on-device.
|
|
@@ -207,7 +230,7 @@ Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
|
|
| 207 |
## License
|
| 208 |
- The license for the original implementation of Segment-Anything-Model can be found
|
| 209 |
[here](https://github.com/facebookresearch/segment-anything/blob/main/LICENSE).
|
| 210 |
-
- The license for the compiled assets for on-device deployment can be found [here](
|
| 211 |
|
| 212 |
## References
|
| 213 |
* [Segment Anything](https://arxiv.org/abs/2304.02643)
|
|
|
|
| 31 |
- Model size (SAMDecoder): 19.6 MB
|
| 32 |
|
| 33 |
|
| 34 |
+
|
| 35 |
+
|
| 36 |
| Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|
| 37 |
| ---|---|---|---|---|---|---|---|
|
| 38 |
+
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 48.23 ms | 4 - 7 MB | FP16 | NPU | [SAMDecoder.tflite](https://huggingface.co/qualcomm/Segment-Anything-Model/blob/main/SAMDecoder.tflite)
|
| 39 |
+
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 12009.97 ms | 2597 - 2601 MB | FP32 | CPU | [SAMEncoder.tflite](https://huggingface.co/qualcomm/Segment-Anything-Model/blob/main/SAMEncoder.tflite)
|
| 40 |
+
|
| 41 |
|
| 42 |
|
| 43 |
## Installation
|
|
|
|
| 95 |
python -m qai_hub_models.models.sam.export
|
| 96 |
```
|
| 97 |
|
| 98 |
+
```
|
| 99 |
+
Profile Job summary of SAMDecoder
|
| 100 |
+
--------------------------------------------------
|
| 101 |
+
Device: QCS8550 (Proxy) (12)
|
| 102 |
+
Estimated Inference Time: 48.06 ms
|
| 103 |
+
Estimated Peak Memory Range: 3.82-11.95 MB
|
| 104 |
+
Compute Units: NPU (340) | Total (340)
|
| 105 |
+
|
| 106 |
+
Profile Job summary of SAMEncoder
|
| 107 |
+
--------------------------------------------------
|
| 108 |
+
Device: QCS8550 (Proxy) (12)
|
| 109 |
+
Estimated Inference Time: 11285.66 ms
|
| 110 |
+
Estimated Peak Memory Range: 2519.75-2523.24 MB
|
| 111 |
+
Compute Units: GPU (37),CPU (771) | Total (808)
|
| 112 |
+
|
| 113 |
+
|
| 114 |
+
```
|
| 115 |
+
|
| 116 |
+
|
| 117 |
## How does this work?
|
| 118 |
|
| 119 |
+
This [export script](https://aihub.qualcomm.com/models/sam/qai_hub_models/models/Segment-Anything-Model/export.py)
|
| 120 |
leverages [Qualcomm® AI Hub](https://aihub.qualcomm.com/) to optimize, validate, and deploy this model
|
| 121 |
on-device. Lets go through each step below in detail:
|
| 122 |
|
|
|
|
| 193 |
AI Hub. [Sign up for access](https://myaccount.qualcomm.com/signup).
|
| 194 |
|
| 195 |
|
| 196 |
+
|
| 197 |
## Run demo on a cloud-hosted device
|
| 198 |
|
| 199 |
You can also run the demo on-device.
|
|
|
|
| 230 |
## License
|
| 231 |
- The license for the original implementation of Segment-Anything-Model can be found
|
| 232 |
[here](https://github.com/facebookresearch/segment-anything/blob/main/LICENSE).
|
| 233 |
+
- The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf)
|
| 234 |
|
| 235 |
## References
|
| 236 |
* [Segment Anything](https://arxiv.org/abs/2304.02643)
|