Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
|
@@ -15,7 +15,7 @@ tags:
|
|
| 15 |
# Llama-v2-7B-Chat: Optimized for Mobile Deployment
|
| 16 |
## State-of-the-art large language model useful on a variety of language understanding and generation tasks
|
| 17 |
|
| 18 |
-
Llama 2 is a family of LLMs. The "Chat" at the end indicates that the model is optimized for chatbot-like dialogue. The model is quantized to 4-bit weights and 16-bit activations making it suitable for on-device deployment. For Prompt and output length specified below, the time to first token is Llama-PromptProcessor-Quantized's latency and average time per addition token is Llama-TokenGenerator-KVCache-Quantized's latency.
|
| 19 |
|
| 20 |
This model is an implementation of Llama-v2-7B-Chat found [here](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf).
|
| 21 |
This repository provides scripts to run Llama-v2-7B-Chat on Qualcomm® devices.
|
|
@@ -28,17 +28,18 @@ More details on model performance across various devices, can be found
|
|
| 28 |
- **Model Type:** Text generation
|
| 29 |
- **Model Stats:**
|
| 30 |
- Number of parameters: 7B
|
| 31 |
-
-
|
| 32 |
- Model-1 (Prompt Processor): Llama-PromptProcessor-Quantized
|
| 33 |
- Max context length: 1024
|
|
|
|
| 34 |
- Prompt processor input: 1024 tokens
|
| 35 |
- Prompt processor output: 1024 output tokens + KVCache for token generator
|
| 36 |
- Model-2 (Token Generator): Llama-TokenGenerator-KVCache-Quantized
|
|
|
|
| 37 |
- Token generator input: 1 input token + past KVCache
|
| 38 |
- Token generator output: 1 output token + KVCache for next iteration
|
| 39 |
- Decoding length: 1024 (1 output token + 1023 from KVCache)
|
| 40 |
- Use: Initiate conversation with prompt-processor and then token generator for subsequent iterations.
|
| 41 |
-
- QNN-SDK: 2.19
|
| 42 |
|
| 43 |
## Deploying Llama 2 on-device
|
| 44 |
|
|
@@ -61,14 +62,46 @@ Here, we divide the model into 4 parts in order to
|
|
| 61 |
|
| 62 |
In order to export Llama 2, please ensure
|
| 63 |
1. Host machine has >40GB memory (RAM+swap-space)
|
| 64 |
-
2. If you don't have enough memory, export.py will dump instructions to increase swap space accordingly
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 65 |
|
| 66 |
|
| 67 |
|
| 68 |
| Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|
| 69 |
| ---|---|---|---|---|---|---|---|
|
| 70 |
-
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | QNN Model Library |
|
| 71 |
-
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | QNN Model Library | 1917.811 ms | 0 - 1028 MB | UINT16 | NPU |
|
| 72 |
|
| 73 |
|
| 74 |
|
|
@@ -128,14 +161,14 @@ python -m qai_hub_models.models.llama_v2_7b_chat_quantized.export
|
|
| 128 |
```
|
| 129 |
|
| 130 |
```
|
| 131 |
-
Profile Job summary of
|
| 132 |
--------------------------------------------------
|
| 133 |
Device: Snapdragon X Elite CRD (11)
|
| 134 |
Estimated Inference Time: 118.14 ms
|
| 135 |
Estimated Peak Memory Range: 64.97-64.97 MB
|
| 136 |
Compute Units: NPU (34842) | Total (34842)
|
| 137 |
|
| 138 |
-
Profile Job summary of
|
| 139 |
--------------------------------------------------
|
| 140 |
Device: Snapdragon X Elite CRD (11)
|
| 141 |
Estimated Inference Time: 2302.57 ms
|
|
|
|
| 15 |
# Llama-v2-7B-Chat: Optimized for Mobile Deployment
|
| 16 |
## State-of-the-art large language model useful on a variety of language understanding and generation tasks
|
| 17 |
|
| 18 |
+
Llama 2 is a family of LLMs. The "Chat" at the end indicates that the model is optimized for chatbot-like dialogue. The model is quantized to w4a16(4-bit weights and 16-bit activations) and part of the model is quantized to w8a16(8-bit weights and 16-bit activations) making it suitable for on-device deployment. For Prompt and output length specified below, the time to first token is Llama-PromptProcessor-Quantized's latency and average time per addition token is Llama-TokenGenerator-KVCache-Quantized's latency.
|
| 19 |
|
| 20 |
This model is an implementation of Llama-v2-7B-Chat found [here](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf).
|
| 21 |
This repository provides scripts to run Llama-v2-7B-Chat on Qualcomm® devices.
|
|
|
|
| 28 |
- **Model Type:** Text generation
|
| 29 |
- **Model Stats:**
|
| 30 |
- Number of parameters: 7B
|
| 31 |
+
- Precision: w4a16 + w8a16 (few layers)
|
| 32 |
- Model-1 (Prompt Processor): Llama-PromptProcessor-Quantized
|
| 33 |
- Max context length: 1024
|
| 34 |
+
- Prompt processor model size: 3.6 GB
|
| 35 |
- Prompt processor input: 1024 tokens
|
| 36 |
- Prompt processor output: 1024 output tokens + KVCache for token generator
|
| 37 |
- Model-2 (Token Generator): Llama-TokenGenerator-KVCache-Quantized
|
| 38 |
+
- Token generator model size: 3.6 GB
|
| 39 |
- Token generator input: 1 input token + past KVCache
|
| 40 |
- Token generator output: 1 output token + KVCache for next iteration
|
| 41 |
- Decoding length: 1024 (1 output token + 1023 from KVCache)
|
| 42 |
- Use: Initiate conversation with prompt-processor and then token generator for subsequent iterations.
|
|
|
|
| 43 |
|
| 44 |
## Deploying Llama 2 on-device
|
| 45 |
|
|
|
|
| 62 |
|
| 63 |
In order to export Llama 2, please ensure
|
| 64 |
1. Host machine has >40GB memory (RAM+swap-space)
|
| 65 |
+
2. If you don't have enough memory, export.py will dump instructions to increase swap space accordingly.
|
| 66 |
+
|
| 67 |
+
## Sample output prompts generated on-device
|
| 68 |
+
1. --prompt "what is gravity?" --max-output-tokens 30
|
| 69 |
+
~~~
|
| 70 |
+
-------- Response Summary --------
|
| 71 |
+
Prompt: what is gravity?
|
| 72 |
+
Response: Hello! I'm here to help you answer your question. Gravity is a fundamental force of nature that affects the behavior of objects with mass
|
| 73 |
+
~~~
|
| 74 |
+
|
| 75 |
+
2. --prompt "what is 2+3?" --max-output-tokens 30
|
| 76 |
+
~~~
|
| 77 |
+
-------- Response Summary --------
|
| 78 |
+
Prompt: what is 2+3?
|
| 79 |
+
Response: Of course! I'm happy to help! The answer to 2+3 is 5.
|
| 80 |
+
~~~
|
| 81 |
+
|
| 82 |
+
3. --prompt "could you please write code for fibonacci series in python?" --max-output-tokens 100
|
| 83 |
+
~~~
|
| 84 |
+
-------- Response Summary --------
|
| 85 |
+
Prompt: could you please write code for fibonacci series in python?
|
| 86 |
+
Response: Of course! Here is an example of how you could implement the Fibonacci sequence in Python:
|
| 87 |
+
```
|
| 88 |
+
def fibonacci(n):
|
| 89 |
+
if n <= 1:
|
| 90 |
+
return n
|
| 91 |
+
else:
|
| 92 |
+
return fibonacci(n-1) + fibonacci(n-2)
|
| 93 |
+
```
|
| 94 |
+
You can test the function by calling it with different values of `n`, like this:
|
| 95 |
+
```
|
| 96 |
+
print(fibonacci(5))
|
| 97 |
+
~~~
|
| 98 |
|
| 99 |
|
| 100 |
|
| 101 |
| Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|
| 102 |
| ---|---|---|---|---|---|---|---|
|
| 103 |
+
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | QNN Model Library | 90.268 ms | 64 - 4351 MB | UINT16 | NPU | Llama2-TokenGenerator-KVCache-Quantized
|
| 104 |
+
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | QNN Model Library | 1917.811 ms | 0 - 1028 MB | UINT16 | NPU | Llama2-PromptProcessor-Quantized
|
| 105 |
|
| 106 |
|
| 107 |
|
|
|
|
| 161 |
```
|
| 162 |
|
| 163 |
```
|
| 164 |
+
Profile Job summary of Llama2-TokenGenerator-KVCache-Quantized
|
| 165 |
--------------------------------------------------
|
| 166 |
Device: Snapdragon X Elite CRD (11)
|
| 167 |
Estimated Inference Time: 118.14 ms
|
| 168 |
Estimated Peak Memory Range: 64.97-64.97 MB
|
| 169 |
Compute Units: NPU (34842) | Total (34842)
|
| 170 |
|
| 171 |
+
Profile Job summary of Llama2-PromptProcessor-Quantized
|
| 172 |
--------------------------------------------------
|
| 173 |
Device: Snapdragon X Elite CRD (11)
|
| 174 |
Estimated Inference Time: 2302.57 ms
|