Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
|
@@ -155,9 +155,11 @@ This [export script](https://aihub.qualcomm.com/models/controlnet_quantized/qai_
|
|
| 155 |
leverages [Qualcomm® AI Hub](https://aihub.qualcomm.com/) to optimize, validate, and deploy this model
|
| 156 |
on-device. Lets go through each step below in detail:
|
| 157 |
|
| 158 |
-
Step 1: **
|
|
|
|
|
|
|
|
|
|
| 159 |
|
| 160 |
-
Upload compiled models from `qai_hub_models.models.controlnet_quantized` on hub.
|
| 161 |
```python
|
| 162 |
import torch
|
| 163 |
|
|
@@ -165,12 +167,76 @@ import qai_hub as hub
|
|
| 165 |
from qai_hub_models.models.controlnet_quantized import Model
|
| 166 |
|
| 167 |
# Load the model
|
| 168 |
-
model = Model.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 169 |
|
| 170 |
-
model_textencoder_quantized = hub.upload_model(model.text_encoder.get_target_model_path())
|
| 171 |
-
model_unet_quantized = hub.upload_model(model.unet.get_target_model_path())
|
| 172 |
-
model_vaedecoder_quantized = hub.upload_model(model.vae_decoder.get_target_model_path())
|
| 173 |
-
model_controlnet_quantized = hub.upload_model(model.controlnet.get_target_model_path())
|
| 174 |
```
|
| 175 |
|
| 176 |
|
|
|
|
| 155 |
leverages [Qualcomm® AI Hub](https://aihub.qualcomm.com/) to optimize, validate, and deploy this model
|
| 156 |
on-device. Lets go through each step below in detail:
|
| 157 |
|
| 158 |
+
Step 1: **Compile model for on-device deployment**
|
| 159 |
+
|
| 160 |
+
To compile a PyTorch model for on-device deployment, we first trace the model
|
| 161 |
+
in memory using the `jit.trace` and then call the `submit_compile_job` API.
|
| 162 |
|
|
|
|
| 163 |
```python
|
| 164 |
import torch
|
| 165 |
|
|
|
|
| 167 |
from qai_hub_models.models.controlnet_quantized import Model
|
| 168 |
|
| 169 |
# Load the model
|
| 170 |
+
model = Model.from_pretrained()
|
| 171 |
+
text_encoder_model = model.text_encoder
|
| 172 |
+
unet_model = model.unet
|
| 173 |
+
vae_decoder_model = model.vae_decoder
|
| 174 |
+
controlnet_model = model.controlnet
|
| 175 |
+
|
| 176 |
+
# Device
|
| 177 |
+
device = hub.Device("Samsung Galaxy S23")
|
| 178 |
+
|
| 179 |
+
# Trace model
|
| 180 |
+
text_encoder_input_shape = text_encoder_model.get_input_spec()
|
| 181 |
+
text_encoder_sample_inputs = text_encoder_model.sample_inputs()
|
| 182 |
+
|
| 183 |
+
traced_text_encoder_model = torch.jit.trace(text_encoder_model, [torch.tensor(data[0]) for _, data in text_encoder_sample_inputs.items()])
|
| 184 |
+
|
| 185 |
+
# Compile model on a specific device
|
| 186 |
+
text_encoder_compile_job = hub.submit_compile_job(
|
| 187 |
+
model=traced_text_encoder_model ,
|
| 188 |
+
device=device,
|
| 189 |
+
input_specs=text_encoder_model.get_input_spec(),
|
| 190 |
+
)
|
| 191 |
+
|
| 192 |
+
# Get target model to run on-device
|
| 193 |
+
text_encoder_target_model = text_encoder_compile_job.get_target_model()
|
| 194 |
+
# Trace model
|
| 195 |
+
unet_input_shape = unet_model.get_input_spec()
|
| 196 |
+
unet_sample_inputs = unet_model.sample_inputs()
|
| 197 |
+
|
| 198 |
+
traced_unet_model = torch.jit.trace(unet_model, [torch.tensor(data[0]) for _, data in unet_sample_inputs.items()])
|
| 199 |
+
|
| 200 |
+
# Compile model on a specific device
|
| 201 |
+
unet_compile_job = hub.submit_compile_job(
|
| 202 |
+
model=traced_unet_model ,
|
| 203 |
+
device=device,
|
| 204 |
+
input_specs=unet_model.get_input_spec(),
|
| 205 |
+
)
|
| 206 |
+
|
| 207 |
+
# Get target model to run on-device
|
| 208 |
+
unet_target_model = unet_compile_job.get_target_model()
|
| 209 |
+
# Trace model
|
| 210 |
+
vae_decoder_input_shape = vae_decoder_model.get_input_spec()
|
| 211 |
+
vae_decoder_sample_inputs = vae_decoder_model.sample_inputs()
|
| 212 |
+
|
| 213 |
+
traced_vae_decoder_model = torch.jit.trace(vae_decoder_model, [torch.tensor(data[0]) for _, data in vae_decoder_sample_inputs.items()])
|
| 214 |
+
|
| 215 |
+
# Compile model on a specific device
|
| 216 |
+
vae_decoder_compile_job = hub.submit_compile_job(
|
| 217 |
+
model=traced_vae_decoder_model ,
|
| 218 |
+
device=device,
|
| 219 |
+
input_specs=vae_decoder_model.get_input_spec(),
|
| 220 |
+
)
|
| 221 |
+
|
| 222 |
+
# Get target model to run on-device
|
| 223 |
+
vae_decoder_target_model = vae_decoder_compile_job.get_target_model()
|
| 224 |
+
# Trace model
|
| 225 |
+
controlnet_input_shape = controlnet_model.get_input_spec()
|
| 226 |
+
controlnet_sample_inputs = controlnet_model.sample_inputs()
|
| 227 |
+
|
| 228 |
+
traced_controlnet_model = torch.jit.trace(controlnet_model, [torch.tensor(data[0]) for _, data in controlnet_sample_inputs.items()])
|
| 229 |
+
|
| 230 |
+
# Compile model on a specific device
|
| 231 |
+
controlnet_compile_job = hub.submit_compile_job(
|
| 232 |
+
model=traced_controlnet_model ,
|
| 233 |
+
device=device,
|
| 234 |
+
input_specs=controlnet_model.get_input_spec(),
|
| 235 |
+
)
|
| 236 |
+
|
| 237 |
+
# Get target model to run on-device
|
| 238 |
+
controlnet_target_model = controlnet_compile_job.get_target_model()
|
| 239 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 240 |
```
|
| 241 |
|
| 242 |
|