Update README.md
Browse files
README.md
CHANGED
@@ -42,7 +42,7 @@ sampling_params = SamplingParams(temperature=0.8, top_p=0.95)
|
|
42 |
|
43 |
if __name__ == '__main__':
|
44 |
# Create an LLM.
|
45 |
-
llm = LLM(model="pytorch/
|
46 |
# Generate texts from the prompts.
|
47 |
# The output is a list of RequestOutput objects
|
48 |
# that contain the prompt, generated text, and other information.
|
@@ -63,7 +63,8 @@ this is expected be resolved in pytorch 2.8.
|
|
63 |
## Serving
|
64 |
Then we can serve with the following command:
|
65 |
```Shell
|
66 |
-
|
|
|
67 |
```
|
68 |
|
69 |
|
@@ -84,7 +85,7 @@ from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
|
84 |
|
85 |
torch.random.manual_seed(0)
|
86 |
|
87 |
-
model_path = "pytorch/
|
88 |
|
89 |
model = AutoModelForCausalLM.from_pretrained(
|
90 |
model_path,
|
@@ -282,9 +283,9 @@ Our int4wo is only optimized for batch size 1, so expect some slowdown with larg
|
|
282 |
## Results (A100 machine)
|
283 |
| Benchmark (Latency) | | |
|
284 |
|----------------------------------|----------------|--------------------------|
|
285 |
-
| |
|
286 |
-
| latency (batch_size=1) |
|
287 |
-
| serving (num_prompts=1) |
|
288 |
|
289 |
Note the result of latency (benchmark_latency) is in seconds, and serving (benchmark_serving) is in number of requests per second.
|
290 |
Int4 weight only is optimized for batch size 1 and short input and output token length, please stay tuned for models optimized for larger batch sizes or longer token length.
|
|
|
42 |
|
43 |
if __name__ == '__main__':
|
44 |
# Create an LLM.
|
45 |
+
llm = LLM(model="pytorch/Qwen3-8B-int4wo-hqq")
|
46 |
# Generate texts from the prompts.
|
47 |
# The output is a list of RequestOutput objects
|
48 |
# that contain the prompt, generated text, and other information.
|
|
|
63 |
## Serving
|
64 |
Then we can serve with the following command:
|
65 |
```Shell
|
66 |
+
export MODEL=pytorch/Qwen3-8B-int4wo-hqq
|
67 |
+
vllm serve $MODEL --tokenizer $MODEL -O3
|
68 |
```
|
69 |
|
70 |
|
|
|
85 |
|
86 |
torch.random.manual_seed(0)
|
87 |
|
88 |
+
model_path = "pytorch/Qwen3-8B-int4wo-hqq"
|
89 |
|
90 |
model = AutoModelForCausalLM.from_pretrained(
|
91 |
model_path,
|
|
|
283 |
## Results (A100 machine)
|
284 |
| Benchmark (Latency) | | |
|
285 |
|----------------------------------|----------------|--------------------------|
|
286 |
+
| | Qwen3-8B | Qwen3-8B-int4wo-hqq |
|
287 |
+
| latency (batch_size=1) | TODOs | TODOs (TODO% speedup) |
|
288 |
+
| serving (num_prompts=1) | TODO req/s | TODO req/s (20% speedup) |
|
289 |
|
290 |
Note the result of latency (benchmark_latency) is in seconds, and serving (benchmark_serving) is in number of requests per second.
|
291 |
Int4 weight only is optimized for batch size 1 and short input and output token length, please stay tuned for models optimized for larger batch sizes or longer token length.
|