Update README.md (#4)
Browse files- Update README.md (628b89a76d3199661bc5cf3d4ae19ed436d37c01)
Co-authored-by: Scott Roy <[email protected]>
README.md
CHANGED
|
@@ -30,24 +30,33 @@ We used following code to get the quantized model:
|
|
| 30 |
|
| 31 |
```
|
| 32 |
from transformers import (
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
)
|
| 38 |
from torchao.quantization.quant_api import (
|
|
|
|
| 39 |
Int8DynamicActivationIntxWeightConfig,
|
|
|
|
| 40 |
)
|
| 41 |
-
from torchao.quantization.granularity import PerGroup
|
| 42 |
import torch
|
| 43 |
|
| 44 |
model_id = "microsoft/Phi-4-mini-instruct"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
linear_config = Int8DynamicActivationIntxWeightConfig(
|
| 46 |
weight_dtype=torch.int4,
|
| 47 |
weight_granularity=PerGroup(32),
|
|
|
|
| 48 |
)
|
| 49 |
-
|
| 50 |
-
|
|
|
|
| 51 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 52 |
|
| 53 |
# Push to hub
|
|
@@ -91,7 +100,7 @@ torch.save(state_dict, "phi4-mini-8dq4w.pt")
|
|
| 91 |
The response from the manual testing is:
|
| 92 |
|
| 93 |
```
|
| 94 |
-
Hello! As an AI, I don't have consciousness in the way humans do, but I
|
| 95 |
```
|
| 96 |
|
| 97 |
# Model Quality
|
|
@@ -100,7 +109,7 @@ We rely on [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-h
|
|
| 100 |
|
| 101 |
## baseline
|
| 102 |
```
|
| 103 |
-
lm_eval --model hf --model_args pretrained=microsoft/Phi-4-mini-instruct --tasks hellaswag --device cuda:0 --batch_size
|
| 104 |
```
|
| 105 |
|
| 106 |
## 8dq4w
|
|
@@ -111,7 +120,7 @@ from lm_eval.utils import (
|
|
| 111 |
make_table,
|
| 112 |
)
|
| 113 |
|
| 114 |
-
lm_eval_model = lm_eval.models.huggingface.HFLM(pretrained=quantized_model, batch_size=
|
| 115 |
results = evaluator.simple_evaluate(
|
| 116 |
lm_eval_model, tasks=["hellaswag"], device="cuda:0", batch_size="auto"
|
| 117 |
)
|
|
@@ -123,7 +132,7 @@ print(make_table(results))
|
|
| 123 |
| | Phi-4 mini-Ins | phi4-mini-8dq4w |
|
| 124 |
| **Popular aggregated benchmark** | | |
|
| 125 |
| **Reasoning** | | |
|
| 126 |
-
| HellaSwag | 54.57 | 53.
|
| 127 |
| **Multilingual** | | |
|
| 128 |
| **Math** | | |
|
| 129 |
| **Overall** | **TODO** | **TODO** |
|
|
|
|
| 30 |
|
| 31 |
```
|
| 32 |
from transformers import (
|
| 33 |
+
AutoModelForCausalLM,
|
| 34 |
+
AutoProcessor,
|
| 35 |
+
AutoTokenizer,
|
| 36 |
+
TorchAoConfig,
|
| 37 |
)
|
| 38 |
from torchao.quantization.quant_api import (
|
| 39 |
+
IntxWeightOnlyConfig,
|
| 40 |
Int8DynamicActivationIntxWeightConfig,
|
| 41 |
+
AOPerModuleConfig
|
| 42 |
)
|
| 43 |
+
from torchao.quantization.granularity import PerGroup, PerAxis
|
| 44 |
import torch
|
| 45 |
|
| 46 |
model_id = "microsoft/Phi-4-mini-instruct"
|
| 47 |
+
|
| 48 |
+
embedding_config = IntxWeightOnlyConfig(
|
| 49 |
+
weight_dtype=torch.int8,
|
| 50 |
+
granularity=PerAxis(0),
|
| 51 |
+
)
|
| 52 |
linear_config = Int8DynamicActivationIntxWeightConfig(
|
| 53 |
weight_dtype=torch.int4,
|
| 54 |
weight_granularity=PerGroup(32),
|
| 55 |
+
weight_scale_dtype=torch.bfloat16,
|
| 56 |
)
|
| 57 |
+
quant_config = AOPerModuleConfig({"_default": linear_config, "model.embed_tokens": embedding_config})
|
| 58 |
+
quantization_config = TorchAoConfig(quant_type=quant_config, include_embedding=True)
|
| 59 |
+
quantized_model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float32, device_map="auto", quantization_config=quantization_config)
|
| 60 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 61 |
|
| 62 |
# Push to hub
|
|
|
|
| 100 |
The response from the manual testing is:
|
| 101 |
|
| 102 |
```
|
| 103 |
+
Hello! As an AI, I don't have consciousness in the way humans do, but I am fully operational and here to assist you. How can I help you today?
|
| 104 |
```
|
| 105 |
|
| 106 |
# Model Quality
|
|
|
|
| 109 |
|
| 110 |
## baseline
|
| 111 |
```
|
| 112 |
+
lm_eval --model hf --model_args pretrained=microsoft/Phi-4-mini-instruct --tasks hellaswag --device cuda:0 --batch_size 64
|
| 113 |
```
|
| 114 |
|
| 115 |
## 8dq4w
|
|
|
|
| 120 |
make_table,
|
| 121 |
)
|
| 122 |
|
| 123 |
+
lm_eval_model = lm_eval.models.huggingface.HFLM(pretrained=quantized_model, batch_size=64)
|
| 124 |
results = evaluator.simple_evaluate(
|
| 125 |
lm_eval_model, tasks=["hellaswag"], device="cuda:0", batch_size="auto"
|
| 126 |
)
|
|
|
|
| 132 |
| | Phi-4 mini-Ins | phi4-mini-8dq4w |
|
| 133 |
| **Popular aggregated benchmark** | | |
|
| 134 |
| **Reasoning** | | |
|
| 135 |
+
| HellaSwag | 54.57 | 53.24 |
|
| 136 |
| **Multilingual** | | |
|
| 137 |
| **Math** | | |
|
| 138 |
| **Overall** | **TODO** | **TODO** |
|