File size: 10,386 Bytes
19c2556
 
8ecebaf
 
2570290
 
 
 
 
 
 
8ecebaf
2570290
 
e014bbb
 
2570290
19c2556
 
8d76f91
 
2ab02aa
 
 
b9c2cf5
a6100fd
b9c2cf5
ea29a3b
 
b9c2cf5
 
8d76f91
 
 
 
 
 
 
 
2ecb413
8d76f91
f6dfa8c
90e6cd4
8d76f91
 
 
8531f23
 
8d76f91
90e6cd4
8d76f91
 
 
a9f7231
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8d76f91
 
 
 
a9f7231
8d76f91
0882b28
8d76f91
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4989b4d
2ab02aa
 
d6542af
 
 
 
 
2ab02aa
 
 
 
8d76f91
 
e38437b
2ab02aa
 
 
3737ba9
e38437b
8d76f91
e38437b
8d76f91
3737ba9
e38437b
3bce6ad
8d76f91
 
ad9e8b6
 
 
 
169e4da
 
ad9e8b6
059d669
 
ad9e8b6
059d669
 
 
 
 
ad9e8b6
059d669
ad9e8b6
059d669
 
ad9e8b6
8d76f91
2ab02aa
070762d
8d76f91
070762d
 
 
 
7ecf1b2
 
 
 
070762d
 
 
2ab02aa
 
070762d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2ab02aa
 
070762d
 
 
 
 
4e1c7a0
 
2ab02aa
4e1c7a0
 
2ab02aa
4e1c7a0
 
 
 
8d76f91
3737ba9
52e01da
fe70e1e
 
 
 
 
1170503
 
 
 
fe70e1e
1170503
52e01da
3737ba9
8d76f91
 
 
 
3737ba9
8d76f91
3bce6ad
8d76f91
 
3737ba9
8d76f91
4989b4d
8d76f91
e3d011c
 
52e01da
e3d011c
 
 
 
 
 
52e01da
3737ba9
8d76f91
 
 
 
 
 
 
 
 
 
3737ba9
8d76f91
 
04e792e
8d76f91
 
 
 
3bce6ad
9579235
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
---
library_name: transformers
tags:
- torchao
- phi
- phi4
- nlp
- code
- math
- chat
- conversational
license: mit
language:
- multilingual
base_model:
- microsoft/Phi-4-mini-instruct
pipeline_tag: text-generation
---

[Phi4-mini](https://huggingface.co/microsoft/Phi-4-mini-instruct) model quantized with [torchao](https://huggingface.co/docs/transformers/main/en/quantization/torchao) int4 weight only quantization, by PyTorch team.

# Quantization Recipe

First need to install the required packages:
```
pip install git+https://github.com/huggingface/transformers@main
pip install --pre torchao --index-url https://download.pytorch.org/whl/nightly/cu126
pip install torch
pip install accelerate
```

We used following code to get the quantized model:
```
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TorchAoConfig

model_id = "microsoft/Phi-4-mini-instruct"

from torchao.quantization import Int4WeightOnlyConfig
quant_config = Int4WeightOnlyConfig(group_size=128, use_hqq=True)
quantization_config = TorchAoConfig(quant_type=quant_config)
quantized_model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", torch_dtype=torch.bfloat16, quantization_config=quantization_config)
tokenizer = AutoTokenizer.from_pretrained(model_id)

# Push to hub
USER_ID = "YOUR_USER_ID"
MODEL_NAME = model_id.split("/")[-1]
save_to = f"{USER_ID}/{MODEL_NAME}-int4wo-hqq"
quantized_model.push_to_hub(save_to, safe_serialization=False)
tokenizer.push_to_hub(save_to)

# Manual Testing
prompt = "Hey, are you conscious? Can you talk to me?"
messages = [
    {
        "role": "system",
        "content": "",
    },
    {"role": "user", "content": prompt},
]
templated_prompt = tokenizer.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
print("Prompt:", prompt)
print("Templated prompt:", templated_prompt)
inputs = tokenizer(
    templated_prompt,
    return_tensors="pt",
).to("cuda")
generated_ids = quantized_model.generate(**inputs, max_new_tokens=128)
output_text = tokenizer.batch_decode(
    generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
print("Response:", output_text[0][len(prompt):])

# Local Benchmark
import torch.utils.benchmark as benchmark
from torchao.utils import benchmark_model
import torchao

def benchmark_fn(f, *args, **kwargs):
    # Manual warmup
    for _ in range(2):
        f(*args, **kwargs)

    t0 = benchmark.Timer(
        stmt="f(*args, **kwargs)",
        globals={"args": args, "kwargs": kwargs, "f": f},
        num_threads=torch.get_num_threads(),
    )
    return f"{(t0.blocked_autorange().mean):.3f}"

torchao.quantization.utils.recommended_inductor_config_setter()
quantized_model = torch.compile(quantized_model, mode="max-autotune")
print(f"{save_to} model:", benchmark_fn(quantized_model.generate, **inputs, max_new_tokens=128))
```

# Serving with vllm
Need to install vllm nightly to get some recent changes
```
pip install vllm --pre --extra-index-url https://wheels.vllm.ai/nightly
```

```
vllm serve pytorch/Phi-4-mini-instruct-int4wo-hqq --tokenizer microsoft/Phi-4-mini-instruct -O3
```

# Model Quality
We rely on [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness) to evaluate the quality of the quantized model.

Need to install lm-eval from source:
https://github.com/EleutherAI/lm-evaluation-harness#install

## baseline
```
lm_eval --model hf --model_args pretrained=microsoft/Phi-4-mini-instruct --tasks hellaswag --device cuda:0 --batch_size 8
```

## int4wo-hqq
```
lm_eval --model hf --model_args pretrained=pytorch/Phi-4-mini-instruct-int4wo-hqq --tasks hellaswag --device cuda:0 --batch_size 8
```

| Benchmark                        |                |                     |
|----------------------------------|----------------|---------------------|
|                                  | Phi-4 mini-Ins | phi4-mini-int4wo    | 
| **Popular aggregated benchmark** |                |                     |
| mmlu (0-shot)                    | 66.73          |  63.56              |
| mmlu_pro (5-shot)                | 46.43          |  36.74              |
| **Reasoning**                    |                |                     |
| arc_challenge (0-shot)           | 56.91          |  54.86              |
| gpqa_main_zeroshot               | 30.13          |  30.58              |
| HellaSwag                        | 54.57          |  53.54              |
| openbookqa                       | 33.00          |  34.40              |
| piqa (0-shot)	                   | 77.64          |  76.33              |
| social_iqa                       | 49.59          |  47.90              |
| truthfulqa_mc2 (0-shot)          | 48.39          |  46.44              |
| winogrande  (0-shot)             | 71.11          |  71.51              |
| **Multilingual**                 |                |                     |
| mgsm_en_cot_en                   | 60.8           |  59.6               |
| **Math**                         |                |                     |
| gsm8k (5-shot)                   | 81.88          |  74.37              |
| mathqa (0-shot)                  | 42.31          |  42.75              |
| **Overall**                      | **TODO**       | **TODO**            |
 

# Peak Memory Usage

We can use the following code to get a sense of peak memory usage during inference:

## Results

| Benchmark        |                |                                |
|------------------|----------------|--------------------------------|
|                  | Phi-4 mini-Ins | Phi-4-mini-instruct-int4wo-hqq | 
| Peak Memory (GB) | 8.91           | 2.98 (67% reduction)           |


## Benchmark Peak Memory

```
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TorchAoConfig

# use "microsoft/Phi-4-mini-instruct" or "pytorch/Phi-4-mini-instruct-int4wo-hqq"
model_id = "microsoft/Phi-4-mini-instruct"
quantized_model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", torch_dtype=torch.bfloat16)
tokenizer = AutoTokenizer.from_pretrained(model_id)

torch.cuda.reset_peak_memory_stats()

prompt = "Hey, are you conscious? Can you talk to me?"
messages = [
    {
        "role": "system",
        "content": "",
    },
    {"role": "user", "content": prompt},
]
templated_prompt = tokenizer.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
print("Prompt:", prompt)
print("Templated prompt:", templated_prompt)
inputs = tokenizer(
    templated_prompt,
    return_tensors="pt",
).to("cuda")
generated_ids = quantized_model.generate(**inputs, max_new_tokens=128)
output_text = tokenizer.batch_decode(
    generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
print("Response:", output_text[0][len(prompt):])

mem = torch.cuda.max_memory_reserved() / 1e9
print(f"Peak Memory Usage: {mem:.02f} GB")
```

# Model Performance

Our int4wo is only optimized for batch size 1, so we'll see slowdown in larger batch sizes, we expect this to be used in local server deployment for single or a few users
and decode tokens per second will be more important than time to first token.


## Results (A100 machine)
| Benchmark (Latency)              |                |                          |
|----------------------------------|----------------|--------------------------|
|                                  | Phi-4 mini-Ins | phi4-mini-int4wo-hqq     | 
| latency (batch_size=1)           | 2.46s          | 2.2s (12% speedup)       |
| serving (num_prompts=1)          | 0.87 req/s     | 1.05 req/s (20% speedup) |

Note the result of latency (benchmark_latency) is in seconds, and serving (benchmark_serving) is in number of requests per second.
Int4 weight only is optimized for batch size 1 and short input and output token length, please stay tuned for models optimized for larger batch sizes or longer token length.

## benchmark_latency

Need to install vllm nightly to get some recent changes
```
pip install vllm --pre --extra-index-url https://wheels.vllm.ai/nightly
```

Get vllm source code:
```
git clone [email protected]:vllm-project/vllm.git
```

Run the following under `vllm` root folder:

### baseline
```
python benchmarks/benchmark_latency.py --input-len 256 --output-len 256 --model microsoft/Phi-4-mini-instruct --batch-size 1
```

### int4wo-hqq
```
python benchmarks/benchmark_latency.py --input-len 256 --output-len 256 --model pytorch/Phi-4-mini-instruct-int4wo-hqq --batch-size 1
```

## benchmark_serving

We also benchmarked the throughput in a serving environment.

Download sharegpt dataset: `wget https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/ShareGPT_V3_unfiltered_cleaned_split.json`
Other datasets can be found in: https://github.com/vllm-project/vllm/tree/main/benchmarks

Get vllm source code:
```
git clone [email protected]:vllm-project/vllm.git
```

Run the following under `vllm` root folder:

### baseline
Server:
```
vllm serve microsoft/Phi-4-mini-instruct --tokenizer microsoft/Phi-4-mini-instruct -O3
```

Client:
```
python benchmarks/benchmark_serving.py --backend vllm --dataset-name sharegpt --tokenizer microsoft/Phi-4-mini-instruct --dataset-path ./ShareGPT_V3_unfiltered_cleaned_split.json --model microsoft/Phi-4-mini-instruct --num-prompts 1
```

### int4wo-hqq
Server:
```
vllm serve pytorch/Phi-4-mini-instruct-int4wo-hqq --tokenizer microsoft/Phi-4-mini-instruct -O3 --pt-load-map-location cuda:0
```

Client:
```
python benchmarks/benchmark_serving.py --backend vllm --dataset-name sharegpt --tokenizer microsoft/Phi-4-mini-instruct --dataset-path ./ShareGPT_V3_unfiltered_cleaned_split.json --model pytorch/Phi-4-mini-instruct-int4wo-hqq --num-prompts 1
```


# Disclaimer
PyTorch has not performed safety evaluations or red teamed the quantized models. Performance characteristics, outputs, and behaviors may differ from the original models. Users are solely responsible for selecting appropriate use cases, evaluating and mitigating for accuracy, safety, and fairness, ensuring security, and complying with all applicable laws and regulations.

Nothing contained in this Model Card should be interpreted as or deemed a restriction or modification to the licenses the models are released under, including any limitations of liability or disclaimers of warranties provided therein.