File size: 7,966 Bytes
19c2556
 
8ecebaf
 
2570290
 
 
 
 
 
 
8ecebaf
2570290
 
e014bbb
 
2570290
19c2556
 
8d76f91
 
b9c2cf5
 
31f1a7e
b9c2cf5
99442e3
b9c2cf5
 
31f1a7e
 
 
 
8d76f91
 
 
 
 
 
 
 
 
 
2ecb413
8d76f91
f6dfa8c
90e6cd4
8d76f91
 
 
8531f23
 
8d76f91
90e6cd4
8d76f91
 
 
a9f7231
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8d76f91
 
 
 
a9f7231
8d76f91
0882b28
8d76f91
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4989b4d
8d76f91
 
e38437b
3737ba9
e38437b
8d76f91
e38437b
8d76f91
3737ba9
e38437b
3bce6ad
8d76f91
 
ad9e8b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8d76f91
 
 
 
4e1c7a0
 
 
 
 
 
 
 
 
 
 
 
8d76f91
3737ba9
e38437b
52e01da
 
e38437b
8d76f91
3737ba9
e38437b
8d76f91
 
3737ba9
52e01da
0e7b2e9
52e01da
3737ba9
8d76f91
 
 
 
3737ba9
8d76f91
3bce6ad
8d76f91
 
3737ba9
8d76f91
4989b4d
8d76f91
52e01da
 
 
3737ba9
8d76f91
 
 
 
 
 
 
 
 
 
3737ba9
8d76f91
 
3bce6ad
8d76f91
 
 
 
3bce6ad
8d76f91
 
 
 
 
3bce6ad
8ecebaf
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
---
library_name: transformers
tags:
- torchao
- phi
- phi4
- nlp
- code
- math
- chat
- conversational
license: mit
language:
- multilingual
base_model:
- microsoft/Phi-4-mini-instruct
pipeline_tag: text-generation
---

[Phi4-mini](https://huggingface.co/microsoft/Phi-4-mini-instruct) model quantized with [torchao](https://huggingface.co/docs/transformers/main/en/quantization/torchao) int4 weight only quantization, by PyTorch team.

# Installation
```
pip install git+https://github.com/huggingface/transformers
pip install --pre torchao --index-url https://download.pytorch.org/whl/nightly/cu126
pip install vllm --pre --extra-index-url https://wheels.vllm.ai/nightly
```

Also need to install lm-eval from source:
https://github.com/EleutherAI/lm-evaluation-harness#install


# Quantization Recipe
We used following code to get the quantized model:

```
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TorchAoConfig

model_id = "microsoft/Phi-4-mini-instruct"

from torchao.quantization import Int4WeightOnlyConfig
quant_config = Int4WeightOnlyConfig(group_size=128, use_hqq=True)
quantization_config = TorchAoConfig(quant_type=quant_config)
quantized_model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", torch_dtype=torch.bfloat16, quantization_config=quantization_config)
tokenizer = AutoTokenizer.from_pretrained(model_id)

# Push to hub
USER_ID = "YOUR_USER_ID"
MODEL_NAME = model_id.split("/")[-1]
save_to = f"{USER_ID}/{MODEL_NAME}-int4wo-hqq"
quantized_model.push_to_hub(save_to, safe_serialization=False)
tokenizer.push_to_hub(save_to)

# Manual Testing
prompt = "Hey, are you conscious? Can you talk to me?"
messages = [
    {
        "role": "system",
        "content": "",
    },
    {"role": "user", "content": prompt},
]
templated_prompt = tokenizer.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
print("Prompt:", prompt)
print("Templated prompt:", templated_prompt)
inputs = tokenizer(
    templated_prompt,
    return_tensors="pt",
).to("cuda")
generated_ids = quantized_model.generate(**inputs, max_new_tokens=128)
output_text = tokenizer.batch_decode(
    generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
print("Response:", output_text[0][len(prompt):])

# Local Benchmark
import torch.utils.benchmark as benchmark
from torchao.utils import benchmark_model
import torchao

def benchmark_fn(f, *args, **kwargs):
    # Manual warmup
    for _ in range(2):
        f(*args, **kwargs)

    t0 = benchmark.Timer(
        stmt="f(*args, **kwargs)",
        globals={"args": args, "kwargs": kwargs, "f": f},
        num_threads=torch.get_num_threads(),
    )
    return f"{(t0.blocked_autorange().mean):.3f}"

torchao.quantization.utils.recommended_inductor_config_setter()
quantized_model = torch.compile(quantized_model, mode="max-autotune")
print(f"{save_to} model:", benchmark_fn(quantized_model.generate, **inputs, max_new_tokens=128))
```
# Model Quality
We rely on [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness) to evaluate the quality of the quantized model.

## baseline
```
lm_eval --model hf --model_args pretrained=microsoft/Phi-4-mini-instruct --tasks hellaswag --device cuda:0 --batch_size 8
```

## int4wo-hqq
```
lm_eval --model hf --model_args pretrained=pytorch/Phi-4-mini-instruct-int4wo-hqq --tasks hellaswag --device cuda:0 --batch_size 8
```

| Benchmark                        |                |                     |
|----------------------------------|----------------|---------------------|
|                                  | Phi-4 mini-Ins | phi4-mini-int4wo    | 
| **Popular aggregated benchmark** |                |                     |
| mmlu (0-shot)                    |                |  63.56              |
| mmlu_pro (5-shot)                |                |  36.74              |
| **Reasoning**                    |                |                     |
| arc_challenge (0-shot)           |                |  54.86              |
| gpqa_main_zeroshot               |                |  30.58              |
| HellaSwag                        | 54.57          |  53.54              |
| openbookqa                       |                |  34.40              |
| piqa (0-shot)	                   |                |  76.33              |
| social_iqa                       |                |  47.90              |
| truthfulqa_mc2 (0-shot)          |                |  46.44              |
| winogrande  (0-shot)             |                |  71.51              |
| **Multilingual**                 |                |                     |
| mgsm_en_cot_en                   |                |  59.6               |
| **Math**                         |                |                     |
| gsm8k (5-shot)                   |                |  74.37              |
| mathqa (0-shot)                  |                |  42.75              |
| **Overall**                      | **TODO**       | **TODO**            |
 
# Model Performance

Our int4wo is only optimized for batch size 1, so we'll only benchmark the batch size 1 performance with vllm.

## Results (A100 machine)
| Benchmark                        |                |                          |
|----------------------------------|----------------|--------------------------|
|                                  | Phi-4 mini-Ins | phi4-mini-int4wo-hqq     | 
| latency (batch_size=1)           | 2.46s          | 2.2s (12% speedup)      |
| latency (batch_size=128)         | 6.55s          | 17s (60% slowdown)      |
| serving (num_prompts=1)          | 0.87 req/s     | 1.05 req/s (20% speedup) |
| serving (num_prompts=1000)       | 24.15 req/s    | 5.64 req/s (77% slowdown)|

Note the result of latency (benchmark_latency) is in seconds, and serving (benchmark_serving) is in number of requests per second.
Int4 weight only is optimized for batch size 1 and short input and output token length, please stay tuned for models optimized for larger batch sizes or longer token length.

## Download vllm source code and install vllm
```
git clone [email protected]:vllm-project/vllm.git
VLLM_USE_PRECOMPILED=1 pip install .
```

## Download dataset
Download sharegpt dataset: `wget https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/ShareGPT_V3_unfiltered_cleaned_split.json`

Other datasets can be found in: https://github.com/vllm-project/vllm/tree/main/benchmarks
## benchmark_latency

Run the following under `vllm` source code root folder:

### baseline
```
python benchmarks/benchmark_latency.py --input-len 256 --output-len 256 --model microsoft/Phi-4-mini-instruct --batch-size 1
```

### int4wo-hqq
```
python benchmarks/benchmark_latency.py --input-len 256 --output-len 256 --model pytorch/Phi-4-mini-instruct-int4wo-hqq --batch-size 1
```

## benchmark_serving

We also benchmarked the throughput in a serving environment.


Run the following under `vllm` source code root folder:

### baseline
Server:
```
vllm serve microsoft/Phi-4-mini-instruct --tokenizer microsoft/Phi-4-mini-instruct -O3
```

Client:
```
python benchmarks/benchmark_serving.py --backend vllm --dataset-name sharegpt --tokenizer microsoft/Phi-4-mini-instruct --dataset-path ./ShareGPT_V3_unfiltered_cleaned_split.json --model microsoft/Phi-4-mini-instruct --num-prompts 1
```

### int4wo-hqq
Server:
```
vllm serve pytorch/Phi-4-mini-instruct-int4wo-hqq --tokenizer microsoft/Phi-4-mini-instruct -O3
```

Client:
```
python benchmarks/benchmark_serving.py --backend vllm --dataset-name sharegpt --tokenizer microsoft/Phi-4-mini-instruct --dataset-path ./ShareGPT_V3_unfiltered_cleaned_split.json --model pytorch/Phi-4-mini-instruct-int4wo-hqq --num-prompts 1
```

# Serving with vllm
We can use the same command we used in serving benchmarks to serve the model with vllm
```
vllm serve pytorch/Phi-4-mini-instruct-int4wo-hqq --tokenizer microsoft/Phi-4-mini-instruct -O3
```