File size: 9,274 Bytes
11ca438
 
f38ad3d
 
939c0b0
 
 
 
 
 
 
f38ad3d
939c0b0
 
627b9e9
 
939c0b0
11ca438
 
a7bb628
 
49ef0db
 
 
 
 
fa9082a
d85376f
fa9082a
 
800c265
a7bb628
 
 
 
 
 
 
 
 
 
 
960296e
39b90e8
a7bb628
 
 
265080b
 
a7bb628
39b90e8
a7bb628
 
 
a204b4f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a7bb628
 
 
 
a204b4f
49ef0db
a7bb628
49ef0db
 
 
 
a7bb628
49ef0db
a7bb628
 
531cbdd
 
 
a7bb628
be21cdb
a7bb628
 
 
 
be21cdb
a7bb628
bf1e484
a7bb628
 
8b3ab58
 
96c9f92
8b3ab58
a5c9018
 
8b3ab58
ab391d2
639f7ac
8b3ab58
96c9f92
 
 
 
 
8b3ab58
49ef0db
8b3ab58
49ef0db
 
8b3ab58
 
f950d65
 
 
 
 
 
 
 
 
c8fa94e
f950d65
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a7bb628
 
69fb0e9
 
 
 
c8fa94e
 
69fb0e9
 
 
ae4c6ae
 
d682ce6
a7bb628
 
 
d682ce6
36880bf
3223698
 
 
 
 
36880bf
 
d682ce6
a7bb628
 
 
 
d682ce6
a7bb628
bf1e484
a7bb628
 
d682ce6
a7bb628
 
 
36880bf
 
d682ce6
a7bb628
 
 
 
 
 
 
 
 
 
d682ce6
a7bb628
 
bf1e484
a7bb628
 
 
 
f38ad3d
a643216
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
---
library_name: transformers
tags:
- torchao
- phi
- phi4
- nlp
- code
- math
- chat
- conversational
license: mit
language:
- multilingual
base_model:
- microsoft/Phi-4-mini-instruct
pipeline_tag: text-generation
---

[Phi4-mini](https://huggingface.co/microsoft/Phi-4-mini-instruct) model quantized with [torchao](https://huggingface.co/docs/transformers/main/en/quantization/torchao) float8 dynamic activation and float8 weight quantization (per row granularity), by PyTorch team.


# Quantization Recipe

First need to install the required packages:

```
pip install git+https://github.com/huggingface/transformers@main
pip install --pre torchao --index-url https://download.pytorch.org/whl/nightly/cu126
```

We used following code to get the quantized model:

```
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TorchAoConfig

model_id = "microsoft/Phi-4-mini-instruct"

from torchao.quantization import Float8DynamicActivationFloat8WeightConfig, PerRow
quant_config = Float8DynamicActivationFloat8WeightConfig(granularity=PerRow())
quantization_config = TorchAoConfig(quant_type=quant_config)
quantized_model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", torch_dtype=torch.bfloat16, quantization_config=quantization_config)
tokenizer = AutoTokenizer.from_pretrained(model_id)

# Push to hub
USER_ID = "YOUR_USER_ID"
MODEL_NAME = model_id.split("/")[-1]
save_to = f"{USER_ID}/{MODEL_NAME}-float8dq"
quantized_model.push_to_hub(save_to, safe_serialization=False)
tokenizer.push_to_hub(save_to)

# Manual Testing
prompt = "Hey, are you conscious? Can you talk to me?"
messages = [
    {
        "role": "system",
        "content": "",
    },
    {"role": "user", "content": prompt},
]
templated_prompt = tokenizer.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
print("Prompt:", prompt)
print("Templated prompt:", templated_prompt)
inputs = tokenizer(
    templated_prompt,
    return_tensors="pt",
).to("cuda")
generated_ids = quantized_model.generate(**inputs, max_new_tokens=128)
output_text = tokenizer.batch_decode(
    generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
print("Response:", output_text[0][len(prompt):])
```

# Serving with vllm
We can use the same command we used in serving benchmarks to serve the model with vllm
```
vllm serve pytorch/Phi-4-mini-instruct-float8dq --tokenizer microsoft/Phi-4-mini-instruct -O3
```

# Model Quality
We rely on [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness) to evaluate the quality of the quantized model.
Need to install lm-eval from source:
https://github.com/EleutherAI/lm-evaluation-harness#install


## baseline
```
lm_eval --model hf --model_args pretrained=microsoft/Phi-4-mini-instruct --tasks hellaswag --device cuda:0 --batch_size 8
```

## float8dq
```
lm_eval --model hf --model_args pretrained=pytorch/Phi-4-mini-instruct-float8dq --tasks hellaswag --device cuda:0 --batch_size 8
```

| Benchmark                        |                |                     |
|----------------------------------|----------------|---------------------|
|                                  | Phi-4 mini-Ins | phi4-mini-float8dq  | 
| **Popular aggregated benchmark** |                |                     |
| mmlu (0-shot)                    | 66.73          |  Pending            |
| mmlu_pro (5-shot)                | 46.43          |  Pending            |
| **Reasoning**                    |                |                     |
| arc_challenge (0-shot)           | 56.91          |  56.66              |
| gpqa_main_zeroshot               | 30.13          |  29.46              |
| HellaSwag                        | 54.57          |  54.55              |
| openbookqa                       | 33.00          |  33.60              |
| piqa (0-shot)	                   | 77.64          |  77.48              |
| social_iqa                       | 49.59          |  49.28              |
| truthfulqa_mc2 (0-shot)          | 48.39          |  48.09              |
| winogrande  (0-shot)             | 71.11          |  72.77              |
| **Multilingual**                 |                |                     |
| mgsm_en_cot_en                   | 60.8           |  60.0               |
| **Math**                         |                |                     |
| gsm8k (5-shot)                   | 81.88          |  80.89              |
| mathqa (0-shot)                  | 42.31          |  42.51              |
| **Overall**                      | **TODO**       | **TODO**            |

# Peak Memory Usage

We can use the following code to get a sense of peak memory usage during inference:

## Results

| Benchmark        |                |                                |
|------------------|----------------|--------------------------------|
|                  | Phi-4 mini-Ins | Phi-4-mini-instruct-float8dq   | 
| Peak Memory (GB) | 8.91           | 5.70 (36% reduction)           |


## Benchmark Peak Memory

```
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TorchAoConfig

# use "microsoft/Phi-4-mini-instruct" or "pytorch/Phi-4-mini-instruct-float8dq"
model_id = "microsoft/Phi-4-mini-instruct"
quantized_model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", torch_dtype=torch.bfloat16)
tokenizer = AutoTokenizer.from_pretrained(model_id)

torch.cuda.reset_peak_memory_stats()

prompt = "Hey, are you conscious? Can you talk to me?"
messages = [
    {
        "role": "system",
        "content": "",
    },
    {"role": "user", "content": prompt},
]
templated_prompt = tokenizer.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
print("Prompt:", prompt)
print("Templated prompt:", templated_prompt)
inputs = tokenizer(
    templated_prompt,
    return_tensors="pt",
).to("cuda")
generated_ids = quantized_model.generate(**inputs, max_new_tokens=128)
output_text = tokenizer.batch_decode(
    generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
print("Response:", output_text[0][len(prompt):])

mem = torch.cuda.max_memory_reserved() / 1e9
print(f"Peak Memory Usage: {mem:.02f} GB")
```

# Model Performance

## Results (H100 machine)
| Benchmark                        |                |                          |
|----------------------------------|----------------|--------------------------|
|                                  | Phi-4 mini-Ins | phi4-mini-float8dq       | 
| latency (batch_size=1)           | 1.64s          | 1.41s (16% speedup)      |
| latency (batch_size=128)         | 3.1s           | 2.72s (14% speedup)      |
| serving (num_prompts=1)          | 1.35 req/s     | 1.57 req/s (16% speedup) |
| serving (num_prompts=1000)       | 66.68 req/s    | 80.53 req/s (21% speedup)|

Note the result of latency (benchmark_latency) is in seconds, and serving (benchmark_serving) is in number of requests per second.

## Download dataset
Download sharegpt dataset: `wget https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/ShareGPT_V3_unfiltered_cleaned_split.json`

Other datasets can be found in: https://github.com/vllm-project/vllm/tree/main/benchmarks
## benchmark_latency

Need to install vllm nightly to get some recent changes
```
pip install vllm --pre --extra-index-url https://wheels.vllm.ai/nightly
```

Run the following under `vllm` source code root folder:

### baseline
```
python benchmarks/benchmark_latency.py --input-len 256 --output-len 256 --model microsoft/Phi-4-mini-instruct --batch-size 1
```

### float8dq
```
python benchmarks/benchmark_latency.py --input-len 256 --output-len 256 --model pytorch/Phi-4-mini-instruct-float8dq --batch-size 1
```

## benchmark_serving

We also benchmarked the throughput in a serving environment.

Run the following under `vllm` source code root folder:

### baseline
Server:
```
vllm serve microsoft/Phi-4-mini-instruct --tokenizer microsoft/Phi-4-mini-instruct -O3
```

Client:
```
python benchmarks/benchmark_serving.py --backend vllm --dataset-name sharegpt --tokenizer microsoft/Phi-4-mini-instruct --dataset-path ./ShareGPT_V3_unfiltered_cleaned_split.json --model microsoft/Phi-4-mini-instruct --num-prompts 1
```

### float8dq
Server:
```
vllm serve pytorch/Phi-4-mini-instruct-float8dq --tokenizer microsoft/Phi-4-mini-instruct -O3
```

Client:
```
python benchmarks/benchmark_serving.py --backend vllm --dataset-name sharegpt --tokenizer microsoft/Phi-4-mini-instruct --dataset-path ./ShareGPT_V3_unfiltered_cleaned_split.json --model jerryzh168/phi4-mini-float8dq --num-prompts 1
```

# Disclaimer
PyTorch has not performed safety evaluations or red teamed the quantized models. Performance characteristics, outputs, and behaviors may differ from the original models. Users are solely responsible for selecting appropriate use cases, evaluating and mitigating for accuracy, safety, and fairness, ensuring security, and complying with all applicable laws and regulations.

Nothing contained in this Model Card should be interpreted as or deemed a restriction or modification to the licenses the models are released under, including any limitations of liability or disclaimers of warranties provided therein.