File size: 6,747 Bytes
11ca438 f38ad3d 939c0b0 f38ad3d 939c0b0 627b9e9 939c0b0 11ca438 a7bb628 49ef0db fa9082a 384e9fa fa9082a 800c265 a7bb628 960296e 39b90e8 a7bb628 265080b a7bb628 39b90e8 a7bb628 a204b4f a7bb628 a204b4f 49ef0db a7bb628 49ef0db a7bb628 49ef0db a7bb628 be21cdb a7bb628 be21cdb a7bb628 bf1e484 a7bb628 8b3ab58 49ef0db 8b3ab58 49ef0db 8b3ab58 49ef0db 8b3ab58 49ef0db 8b3ab58 a7bb628 69fb0e9 ae4c6ae 69fb0e9 ae4c6ae d682ce6 a7bb628 d682ce6 36880bf d682ce6 a7bb628 d682ce6 a7bb628 bf1e484 a7bb628 d682ce6 a7bb628 36880bf d682ce6 a7bb628 d682ce6 a7bb628 bf1e484 a7bb628 f38ad3d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 |
---
library_name: transformers
tags:
- torchao
- phi
- phi4
- nlp
- code
- math
- chat
- conversational
license: mit
language:
- multilingual
base_model:
- microsoft/Phi-4-mini-instruct
pipeline_tag: text-generation
---
[Phi4-mini](https://huggingface.co/microsoft/Phi-4-mini-instruct) model quantized with [torchao](https://huggingface.co/docs/transformers/main/en/quantization/torchao) float8 dynamic activation and float8 weight quantization (per row granularity), by PyTorch team.
# Quantization Recipe
First need to install the required packages:
```
pip install git+https://github.com/huggingface/transformers
pip install --pre torchao --index-url https://download.pytorch.org/whl/nightly/cu126
```
We used following code to get the quantized model:
```
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TorchAoConfig
model_id = "microsoft/Phi-4-mini-instruct"
from torchao.quantization import Float8DynamicActivationFloat8WeightConfig, PerRow
quant_config = Float8DynamicActivationFloat8WeightConfig(granularity=PerRow())
quantization_config = TorchAoConfig(quant_type=quant_config)
quantized_model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", torch_dtype=torch.bfloat16, quantization_config=quantization_config)
tokenizer = AutoTokenizer.from_pretrained(model_id)
# Push to hub
USER_ID = "YOUR_USER_ID"
MODEL_NAME = model_id.split("/")[-1]
save_to = f"{USER_ID}/{MODEL_NAME}-float8dq"
quantized_model.push_to_hub(save_to, safe_serialization=False)
tokenizer.push_to_hub(save_to)
# Manual Testing
prompt = "Hey, are you conscious? Can you talk to me?"
messages = [
{
"role": "system",
"content": "",
},
{"role": "user", "content": prompt},
]
templated_prompt = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True,
)
print("Prompt:", prompt)
print("Templated prompt:", templated_prompt)
inputs = tokenizer(
templated_prompt,
return_tensors="pt",
).to("cuda")
generated_ids = quantized_model.generate(**inputs, max_new_tokens=128)
output_text = tokenizer.batch_decode(
generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
print("Response:", output_text[0][len(prompt):])
```
# Serving with vllm
We can use the same command we used in serving benchmarks to serve the model with vllm
```
vllm serve pytorch/Phi-4-mini-instruct-float8dq --tokenizer microsoft/Phi-4-mini-instruct -O3
```
# Model Quality
We rely on [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness) to evaluate the quality of the quantized model.
## baseline
```
lm_eval --model hf --model_args pretrained=microsoft/Phi-4-mini-instruct --tasks hellaswag --device cuda:0 --batch_size 8
```
## float8dq
```
lm_eval --model hf --model_args pretrained=pytorch/Phi-4-mini-instruct-float8dq --tasks hellaswag --device cuda:0 --batch_size 8
```
| Benchmark | | |
|----------------------------------|----------------|---------------------|
| | Phi-4 mini-Ins | phi4-mini-int4wo |
| **Popular aggregated benchmark** | | |
| mmlu (0-shot) | | x |
| mmlu_pro (5-shot) | | x |
| **Reasoning** | | |
| arc_challenge (0-shot) | 56.91 | x |
| gpqa_main_zeroshot | 30.13 | x |
| HellaSwag | 54.57 | 54.55 |
| openbookqa | 33.00 | x |
| piqa (0-shot) | 77.64 | x |
| social_iqa | 49.59 | x |
| truthfulqa_mc2 (0-shot) | 48.39 | x |
| winogrande (0-shot) | 71.11 | x |
| **Multilingual** | | |
| mgsm_en_cot_en | 60.8 | 60.0 |
| **Math** | | |
| gsm8k (5-shot) | 81.88 | 80.89 |
| mathqa (0-shot) | 42.31 | 42.51 |
| **Overall** | **TODO** | **TODO** |
# Model Performance
## Results (H100 machine)
| Benchmark | | |
|----------------------------------|----------------|--------------------------|
| | Phi-4 mini-Ins | phi4-mini-float8dq |
| latency (batch_size=1) | 1.64s | 1.41s (16% speedup) |
| latency (batch_size=128) | 3.1s | 2.72s (14% speedup) |
| serving (num_prompts=1) | 1.35 req/s | 1.57 req/s (16% speedup) |
| serving (num_prompts=1000) | 66.68 req/s | 80.53 req/s (21% speedup)|
Note the result of latency (benchmark_latency) is in seconds, and serving (benchmark_serving) is in number of requests per second.
## Download dataset
Download sharegpt dataset: `wget https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/ShareGPT_V3_unfiltered_cleaned_split.json`
Other datasets can be found in: https://github.com/vllm-project/vllm/tree/main/benchmarks
## benchmark_latency
Run the following under `vllm` source code root folder:
### baseline
```
python benchmarks/benchmark_latency.py --input-len 256 --output-len 256 --model microsoft/Phi-4-mini-instruct --batch-size 1
```
### float8dq
```
python benchmarks/benchmark_latency.py --input-len 256 --output-len 256 --model pytorch/Phi-4-mini-instruct-float8dq --batch-size 1
```
## benchmark_serving
We also benchmarked the throughput in a serving environment.
Run the following under `vllm` source code root folder:
### baseline
Server:
```
vllm serve microsoft/Phi-4-mini-instruct --tokenizer microsoft/Phi-4-mini-instruct -O3
```
Client:
```
python benchmarks/benchmark_serving.py --backend vllm --dataset-name sharegpt --tokenizer microsoft/Phi-4-mini-instruct --dataset-path ./ShareGPT_V3_unfiltered_cleaned_split.json --model microsoft/Phi-4-mini-instruct --num-prompts 1
```
### float8dq
Server:
```
vllm serve pytorch/Phi-4-mini-instruct-float8dq --tokenizer microsoft/Phi-4-mini-instruct -O3
```
Client:
```
python benchmarks/benchmark_serving.py --backend vllm --dataset-name sharegpt --tokenizer microsoft/Phi-4-mini-instruct --dataset-path ./ShareGPT_V3_unfiltered_cleaned_split.json --model jerryzh168/phi4-mini-float8dq --num-prompts 1
``` |