Upload with huggingface_hub
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +4 -0
- .gitignore +14 -0
- AllinonSAM/LICENSE +21 -0
- AllinonSAM/README.md +0 -0
- AllinonSAM/__pycache__/axialnet.cpython-38.pyc +0 -0
- AllinonSAM/__pycache__/baselines.cpython-38.pyc +0 -0
- AllinonSAM/__pycache__/combined_model.cpython-38.pyc +0 -0
- AllinonSAM/__pycache__/data_utils.cpython-312.pyc +0 -0
- AllinonSAM/__pycache__/data_utils.cpython-38.pyc +0 -0
- AllinonSAM/__pycache__/model.cpython-312.pyc +0 -0
- AllinonSAM/__pycache__/model.cpython-38.pyc +0 -0
- AllinonSAM/__pycache__/test.cpython-312.pyc +0 -0
- AllinonSAM/__pycache__/test.cpython-38.pyc +0 -0
- AllinonSAM/__pycache__/train.cpython-312.pyc +0 -0
- AllinonSAM/__pycache__/train.cpython-38.pyc +0 -0
- AllinonSAM/__pycache__/utils.cpython-312.pyc +0 -0
- AllinonSAM/__pycache__/utils.cpython-38.pyc +0 -0
- AllinonSAM/__pycache__/vit_seg_configs.cpython-38.pyc +0 -0
- AllinonSAM/__pycache__/vit_seg_modeling.cpython-38.pyc +0 -0
- AllinonSAM/__pycache__/vit_seg_modeling_resnet_skip.cpython-38.pyc +0 -0
- AllinonSAM/axialnet.py +730 -0
- AllinonSAM/baselines.py +630 -0
- AllinonSAM/biastuning/DIAS/labels/epoch_0_batch_0_img_0.png +0 -0
- AllinonSAM/biastuning/DIAS/labels/epoch_0_batch_0_img_1.png +0 -0
- AllinonSAM/biastuning/DIAS/labels/epoch_0_batch_1_img_0.png +0 -0
- AllinonSAM/biastuning/DIAS/labels/epoch_0_batch_1_img_1.png +0 -0
- AllinonSAM/biastuning/DIAS/labels/epoch_100_batch_0_img_0.png +0 -0
- AllinonSAM/biastuning/DIAS/labels/epoch_100_batch_0_img_1.png +0 -0
- AllinonSAM/biastuning/DIAS/labels/epoch_100_batch_1_img_0.png +0 -0
- AllinonSAM/biastuning/DIAS/labels/epoch_100_batch_1_img_1.png +0 -0
- AllinonSAM/biastuning/DIAS/labels/epoch_10_batch_0_img_0.png +0 -0
- AllinonSAM/biastuning/DIAS/labels/epoch_10_batch_0_img_1.png +0 -0
- AllinonSAM/biastuning/DIAS/labels/epoch_10_batch_1_img_0.png +0 -0
- AllinonSAM/biastuning/DIAS/labels/epoch_10_batch_1_img_1.png +0 -0
- AllinonSAM/biastuning/DIAS/labels/epoch_110_batch_0_img_0.png +0 -0
- AllinonSAM/biastuning/DIAS/labels/epoch_110_batch_0_img_1.png +0 -0
- AllinonSAM/biastuning/DIAS/labels/epoch_110_batch_1_img_0.png +0 -0
- AllinonSAM/biastuning/DIAS/labels/epoch_110_batch_1_img_1.png +0 -0
- AllinonSAM/biastuning/DIAS/labels/epoch_120_batch_0_img_0.png +0 -0
- AllinonSAM/biastuning/DIAS/labels/epoch_120_batch_0_img_1.png +0 -0
- AllinonSAM/biastuning/DIAS/labels/epoch_120_batch_1_img_0.png +0 -0
- AllinonSAM/biastuning/DIAS/labels/epoch_120_batch_1_img_1.png +0 -0
- AllinonSAM/biastuning/DIAS/labels/epoch_130_batch_0_img_0.png +0 -0
- AllinonSAM/biastuning/DIAS/labels/epoch_130_batch_0_img_1.png +0 -0
- AllinonSAM/biastuning/DIAS/labels/epoch_130_batch_1_img_0.png +0 -0
- AllinonSAM/biastuning/DIAS/labels/epoch_130_batch_1_img_1.png +0 -0
- AllinonSAM/biastuning/DIAS/labels/epoch_140_batch_0_img_0.png +0 -0
- AllinonSAM/biastuning/DIAS/labels/epoch_140_batch_0_img_1.png +0 -0
- AllinonSAM/biastuning/DIAS/labels/epoch_140_batch_1_img_0.png +0 -0
- AllinonSAM/biastuning/DIAS/labels/epoch_140_batch_1_img_1.png +0 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,7 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
AllinonSAM/eval/lits/output_demo.nii filter=lfs diff=lfs merge=lfs -text
|
| 37 |
+
AllinonSAM/wandb/run-20241018_210810-zrrx3qz9/run-zrrx3qz9.wandb filter=lfs diff=lfs merge=lfs -text
|
| 38 |
+
AllinonSAM/wandb/run-20241018_162125-i4stmvih/run-i4stmvih.wandb filter=lfs diff=lfs merge=lfs -text
|
| 39 |
+
AllinonSAM/wandb/run-20240915_215641-1usjns7w/run-1usjns7w.wandb filter=lfs diff=lfs merge=lfs -text
|
.gitignore
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
*.pyc
|
| 2 |
+
*.cpython-38.pyc
|
| 3 |
+
*.pth
|
| 4 |
+
*.gz
|
| 5 |
+
*.zip
|
| 6 |
+
*.png
|
| 7 |
+
*.jpg
|
| 8 |
+
*.JPG
|
| 9 |
+
*.tif
|
| 10 |
+
*.bmp
|
| 11 |
+
*.out
|
| 12 |
+
*.txt
|
| 13 |
+
AllinonSAM/wandb/
|
| 14 |
+
__pycache__
|
AllinonSAM/LICENSE
ADDED
|
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
MIT License
|
| 2 |
+
|
| 3 |
+
Copyright (c) 2024 Ahmed Heakl
|
| 4 |
+
|
| 5 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
| 6 |
+
of this software and associated documentation files (the "Software"), to deal
|
| 7 |
+
in the Software without restriction, including without limitation the rights
|
| 8 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
| 9 |
+
copies of the Software, and to permit persons to whom the Software is
|
| 10 |
+
furnished to do so, subject to the following conditions:
|
| 11 |
+
|
| 12 |
+
The above copyright notice and this permission notice shall be included in all
|
| 13 |
+
copies or substantial portions of the Software.
|
| 14 |
+
|
| 15 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
| 16 |
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
| 17 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
| 18 |
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
| 19 |
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
| 20 |
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
| 21 |
+
SOFTWARE.
|
AllinonSAM/README.md
ADDED
|
File without changes
|
AllinonSAM/__pycache__/axialnet.cpython-38.pyc
ADDED
|
Binary file (17.3 kB). View file
|
|
|
AllinonSAM/__pycache__/baselines.cpython-38.pyc
ADDED
|
Binary file (16.8 kB). View file
|
|
|
AllinonSAM/__pycache__/combined_model.cpython-38.pyc
ADDED
|
Binary file (937 Bytes). View file
|
|
|
AllinonSAM/__pycache__/data_utils.cpython-312.pyc
ADDED
|
Binary file (81.1 kB). View file
|
|
|
AllinonSAM/__pycache__/data_utils.cpython-38.pyc
ADDED
|
Binary file (40.9 kB). View file
|
|
|
AllinonSAM/__pycache__/model.cpython-312.pyc
ADDED
|
Binary file (15.6 kB). View file
|
|
|
AllinonSAM/__pycache__/model.cpython-38.pyc
ADDED
|
Binary file (8.11 kB). View file
|
|
|
AllinonSAM/__pycache__/test.cpython-312.pyc
ADDED
|
Binary file (3.98 kB). View file
|
|
|
AllinonSAM/__pycache__/test.cpython-38.pyc
ADDED
|
Binary file (1.89 kB). View file
|
|
|
AllinonSAM/__pycache__/train.cpython-312.pyc
ADDED
|
Binary file (13 kB). View file
|
|
|
AllinonSAM/__pycache__/train.cpython-38.pyc
ADDED
|
Binary file (8.91 kB). View file
|
|
|
AllinonSAM/__pycache__/utils.cpython-312.pyc
ADDED
|
Binary file (6.85 kB). View file
|
|
|
AllinonSAM/__pycache__/utils.cpython-38.pyc
ADDED
|
Binary file (12.3 kB). View file
|
|
|
AllinonSAM/__pycache__/vit_seg_configs.cpython-38.pyc
ADDED
|
Binary file (3.34 kB). View file
|
|
|
AllinonSAM/__pycache__/vit_seg_modeling.cpython-38.pyc
ADDED
|
Binary file (14.5 kB). View file
|
|
|
AllinonSAM/__pycache__/vit_seg_modeling_resnet_skip.cpython-38.pyc
ADDED
|
Binary file (5.88 kB). View file
|
|
|
AllinonSAM/axialnet.py
ADDED
|
@@ -0,0 +1,730 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import pdb
|
| 2 |
+
import math
|
| 3 |
+
import torch
|
| 4 |
+
import torch.nn as nn
|
| 5 |
+
import torch.nn.functional as F
|
| 6 |
+
from utils import *
|
| 7 |
+
import pdb
|
| 8 |
+
import matplotlib.pyplot as plt
|
| 9 |
+
|
| 10 |
+
import random
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
def conv1x1(in_planes, out_planes, stride=1):
|
| 15 |
+
"""1x1 convolution"""
|
| 16 |
+
return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
class AxialAttention(nn.Module):
|
| 20 |
+
def __init__(self, in_planes, out_planes, groups=8, kernel_size=56,
|
| 21 |
+
stride=1, bias=False, width=False):
|
| 22 |
+
assert (in_planes % groups == 0) and (out_planes % groups == 0)
|
| 23 |
+
super(AxialAttention, self).__init__()
|
| 24 |
+
self.in_planes = in_planes
|
| 25 |
+
self.out_planes = out_planes
|
| 26 |
+
self.groups = groups
|
| 27 |
+
self.group_planes = out_planes // groups
|
| 28 |
+
self.kernel_size = kernel_size
|
| 29 |
+
self.stride = stride
|
| 30 |
+
self.bias = bias
|
| 31 |
+
self.width = width
|
| 32 |
+
|
| 33 |
+
# Multi-head self attention
|
| 34 |
+
self.qkv_transform = qkv_transform(in_planes, out_planes * 2, kernel_size=1, stride=1,
|
| 35 |
+
padding=0, bias=False)
|
| 36 |
+
self.bn_qkv = nn.BatchNorm1d(out_planes * 2)
|
| 37 |
+
self.bn_similarity = nn.BatchNorm2d(groups * 3)
|
| 38 |
+
|
| 39 |
+
self.bn_output = nn.BatchNorm1d(out_planes * 2)
|
| 40 |
+
|
| 41 |
+
# Position embedding
|
| 42 |
+
self.relative = nn.Parameter(torch.randn(self.group_planes * 2, kernel_size * 2 - 1), requires_grad=True)
|
| 43 |
+
query_index = torch.arange(kernel_size).unsqueeze(0)
|
| 44 |
+
key_index = torch.arange(kernel_size).unsqueeze(1)
|
| 45 |
+
relative_index = key_index - query_index + kernel_size - 1
|
| 46 |
+
self.register_buffer('flatten_index', relative_index.view(-1))
|
| 47 |
+
if stride > 1:
|
| 48 |
+
self.pooling = nn.AvgPool2d(stride, stride=stride)
|
| 49 |
+
|
| 50 |
+
self.reset_parameters()
|
| 51 |
+
|
| 52 |
+
def forward(self, x):
|
| 53 |
+
# pdb.set_trace()
|
| 54 |
+
if self.width:
|
| 55 |
+
x = x.permute(0, 2, 1, 3)
|
| 56 |
+
else:
|
| 57 |
+
x = x.permute(0, 3, 1, 2) # N, W, C, H
|
| 58 |
+
N, W, C, H = x.shape
|
| 59 |
+
x = x.contiguous().view(N * W, C, H)
|
| 60 |
+
|
| 61 |
+
# Transformations
|
| 62 |
+
qkv = self.bn_qkv(self.qkv_transform(x))
|
| 63 |
+
q, k, v = torch.split(qkv.reshape(N * W, self.groups, self.group_planes * 2, H), [self.group_planes // 2, self.group_planes // 2, self.group_planes], dim=2)
|
| 64 |
+
|
| 65 |
+
# Calculate position embedding
|
| 66 |
+
all_embeddings = torch.index_select(self.relative, 1, self.flatten_index).view(self.group_planes * 2, self.kernel_size, self.kernel_size)
|
| 67 |
+
q_embedding, k_embedding, v_embedding = torch.split(all_embeddings, [self.group_planes // 2, self.group_planes // 2, self.group_planes], dim=0)
|
| 68 |
+
|
| 69 |
+
qr = torch.einsum('bgci,cij->bgij', q, q_embedding)
|
| 70 |
+
kr = torch.einsum('bgci,cij->bgij', k, k_embedding).transpose(2, 3)
|
| 71 |
+
|
| 72 |
+
qk = torch.einsum('bgci, bgcj->bgij', q, k)
|
| 73 |
+
|
| 74 |
+
stacked_similarity = torch.cat([qk, qr, kr], dim=1)
|
| 75 |
+
stacked_similarity = self.bn_similarity(stacked_similarity).view(N * W, 3, self.groups, H, H).sum(dim=1)
|
| 76 |
+
#stacked_similarity = self.bn_qr(qr) + self.bn_kr(kr) + self.bn_qk(qk)
|
| 77 |
+
# (N, groups, H, H, W)
|
| 78 |
+
similarity = F.softmax(stacked_similarity, dim=3)
|
| 79 |
+
sv = torch.einsum('bgij,bgcj->bgci', similarity, v)
|
| 80 |
+
sve = torch.einsum('bgij,cij->bgci', similarity, v_embedding)
|
| 81 |
+
stacked_output = torch.cat([sv, sve], dim=-1).view(N * W, self.out_planes * 2, H)
|
| 82 |
+
output = self.bn_output(stacked_output).view(N, W, self.out_planes, 2, H).sum(dim=-2)
|
| 83 |
+
|
| 84 |
+
if self.width:
|
| 85 |
+
output = output.permute(0, 2, 1, 3)
|
| 86 |
+
else:
|
| 87 |
+
output = output.permute(0, 2, 3, 1)
|
| 88 |
+
|
| 89 |
+
if self.stride > 1:
|
| 90 |
+
output = self.pooling(output)
|
| 91 |
+
|
| 92 |
+
return output
|
| 93 |
+
|
| 94 |
+
def reset_parameters(self):
|
| 95 |
+
self.qkv_transform.weight.data.normal_(0, math.sqrt(1. / self.in_planes))
|
| 96 |
+
#nn.init.uniform_(self.relative, -0.1, 0.1)
|
| 97 |
+
nn.init.normal_(self.relative, 0., math.sqrt(1. / self.group_planes))
|
| 98 |
+
|
| 99 |
+
class AxialAttention_dynamic(nn.Module):
|
| 100 |
+
def __init__(self, in_planes, out_planes, groups=8, kernel_size=56,
|
| 101 |
+
stride=1, bias=False, width=False):
|
| 102 |
+
assert (in_planes % groups == 0) and (out_planes % groups == 0)
|
| 103 |
+
super(AxialAttention_dynamic, self).__init__()
|
| 104 |
+
self.in_planes = in_planes
|
| 105 |
+
self.out_planes = out_planes
|
| 106 |
+
self.groups = groups
|
| 107 |
+
self.group_planes = out_planes // groups
|
| 108 |
+
self.kernel_size = kernel_size
|
| 109 |
+
self.stride = stride
|
| 110 |
+
self.bias = bias
|
| 111 |
+
self.width = width
|
| 112 |
+
|
| 113 |
+
# Multi-head self attention
|
| 114 |
+
self.qkv_transform = qkv_transform(in_planes, out_planes * 2, kernel_size=1, stride=1,
|
| 115 |
+
padding=0, bias=False)
|
| 116 |
+
self.bn_qkv = nn.BatchNorm1d(out_planes * 2)
|
| 117 |
+
self.bn_similarity = nn.BatchNorm2d(groups * 3)
|
| 118 |
+
self.bn_output = nn.BatchNorm1d(out_planes * 2)
|
| 119 |
+
|
| 120 |
+
# Priority on encoding
|
| 121 |
+
|
| 122 |
+
## Initial values
|
| 123 |
+
|
| 124 |
+
self.f_qr = nn.Parameter(torch.tensor(0.1), requires_grad=False)
|
| 125 |
+
self.f_kr = nn.Parameter(torch.tensor(0.1), requires_grad=False)
|
| 126 |
+
self.f_sve = nn.Parameter(torch.tensor(0.1), requires_grad=False)
|
| 127 |
+
self.f_sv = nn.Parameter(torch.tensor(1.0), requires_grad=False)
|
| 128 |
+
|
| 129 |
+
|
| 130 |
+
# Position embedding
|
| 131 |
+
self.relative = nn.Parameter(torch.randn(self.group_planes * 2, kernel_size * 2 - 1), requires_grad=True)
|
| 132 |
+
query_index = torch.arange(kernel_size).unsqueeze(0)
|
| 133 |
+
key_index = torch.arange(kernel_size).unsqueeze(1)
|
| 134 |
+
relative_index = key_index - query_index + kernel_size - 1
|
| 135 |
+
self.register_buffer('flatten_index', relative_index.view(-1))
|
| 136 |
+
if stride > 1:
|
| 137 |
+
self.pooling = nn.AvgPool2d(stride, stride=stride)
|
| 138 |
+
|
| 139 |
+
self.reset_parameters()
|
| 140 |
+
# self.print_para()
|
| 141 |
+
|
| 142 |
+
def forward(self, x):
|
| 143 |
+
if self.width:
|
| 144 |
+
x = x.permute(0, 2, 1, 3)
|
| 145 |
+
else:
|
| 146 |
+
x = x.permute(0, 3, 1, 2) # N, W, C, H
|
| 147 |
+
N, W, C, H = x.shape
|
| 148 |
+
x = x.contiguous().view(N * W, C, H)
|
| 149 |
+
|
| 150 |
+
# Transformations
|
| 151 |
+
qkv = self.bn_qkv(self.qkv_transform(x))
|
| 152 |
+
q, k, v = torch.split(qkv.reshape(N * W, self.groups, self.group_planes * 2, H), [self.group_planes // 2, self.group_planes // 2, self.group_planes], dim=2)
|
| 153 |
+
|
| 154 |
+
# Calculate position embedding
|
| 155 |
+
all_embeddings = torch.index_select(self.relative, 1, self.flatten_index).view(self.group_planes * 2, self.kernel_size, self.kernel_size)
|
| 156 |
+
q_embedding, k_embedding, v_embedding = torch.split(all_embeddings, [self.group_planes // 2, self.group_planes // 2, self.group_planes], dim=0)
|
| 157 |
+
qr = torch.einsum('bgci,cij->bgij', q, q_embedding)
|
| 158 |
+
kr = torch.einsum('bgci,cij->bgij', k, k_embedding).transpose(2, 3)
|
| 159 |
+
qk = torch.einsum('bgci, bgcj->bgij', q, k)
|
| 160 |
+
|
| 161 |
+
|
| 162 |
+
# multiply by factors
|
| 163 |
+
qr = torch.mul(qr, self.f_qr)
|
| 164 |
+
kr = torch.mul(kr, self.f_kr)
|
| 165 |
+
|
| 166 |
+
stacked_similarity = torch.cat([qk, qr, kr], dim=1)
|
| 167 |
+
stacked_similarity = self.bn_similarity(stacked_similarity).view(N * W, 3, self.groups, H, H).sum(dim=1)
|
| 168 |
+
#stacked_similarity = self.bn_qr(qr) + self.bn_kr(kr) + self.bn_qk(qk)
|
| 169 |
+
# (N, groups, H, H, W)
|
| 170 |
+
similarity = F.softmax(stacked_similarity, dim=3)
|
| 171 |
+
sv = torch.einsum('bgij,bgcj->bgci', similarity, v)
|
| 172 |
+
sve = torch.einsum('bgij,cij->bgci', similarity, v_embedding)
|
| 173 |
+
|
| 174 |
+
# multiply by factors
|
| 175 |
+
sv = torch.mul(sv, self.f_sv)
|
| 176 |
+
sve = torch.mul(sve, self.f_sve)
|
| 177 |
+
|
| 178 |
+
stacked_output = torch.cat([sv, sve], dim=-1).view(N * W, self.out_planes * 2, H)
|
| 179 |
+
output = self.bn_output(stacked_output).view(N, W, self.out_planes, 2, H).sum(dim=-2)
|
| 180 |
+
|
| 181 |
+
if self.width:
|
| 182 |
+
output = output.permute(0, 2, 1, 3)
|
| 183 |
+
else:
|
| 184 |
+
output = output.permute(0, 2, 3, 1)
|
| 185 |
+
|
| 186 |
+
if self.stride > 1:
|
| 187 |
+
output = self.pooling(output)
|
| 188 |
+
|
| 189 |
+
return output
|
| 190 |
+
def reset_parameters(self):
|
| 191 |
+
self.qkv_transform.weight.data.normal_(0, math.sqrt(1. / self.in_planes))
|
| 192 |
+
#nn.init.uniform_(self.relative, -0.1, 0.1)
|
| 193 |
+
nn.init.normal_(self.relative, 0., math.sqrt(1. / self.group_planes))
|
| 194 |
+
|
| 195 |
+
class AxialAttention_wopos(nn.Module):
|
| 196 |
+
def __init__(self, in_planes, out_planes, groups=8, kernel_size=56,
|
| 197 |
+
stride=1, bias=False, width=False):
|
| 198 |
+
assert (in_planes % groups == 0) and (out_planes % groups == 0)
|
| 199 |
+
super(AxialAttention_wopos, self).__init__()
|
| 200 |
+
self.in_planes = in_planes
|
| 201 |
+
self.out_planes = out_planes
|
| 202 |
+
self.groups = groups
|
| 203 |
+
self.group_planes = out_planes // groups
|
| 204 |
+
self.kernel_size = kernel_size
|
| 205 |
+
self.stride = stride
|
| 206 |
+
self.bias = bias
|
| 207 |
+
self.width = width
|
| 208 |
+
|
| 209 |
+
# Multi-head self attention
|
| 210 |
+
self.qkv_transform = qkv_transform(in_planes, out_planes * 2, kernel_size=1, stride=1,
|
| 211 |
+
padding=0, bias=False)
|
| 212 |
+
self.bn_qkv = nn.BatchNorm1d(out_planes * 2)
|
| 213 |
+
self.bn_similarity = nn.BatchNorm2d(groups )
|
| 214 |
+
|
| 215 |
+
self.bn_output = nn.BatchNorm1d(out_planes * 1)
|
| 216 |
+
|
| 217 |
+
if stride > 1:
|
| 218 |
+
self.pooling = nn.AvgPool2d(stride, stride=stride)
|
| 219 |
+
|
| 220 |
+
self.reset_parameters()
|
| 221 |
+
|
| 222 |
+
def forward(self, x):
|
| 223 |
+
if self.width:
|
| 224 |
+
x = x.permute(0, 2, 1, 3)
|
| 225 |
+
else:
|
| 226 |
+
x = x.permute(0, 3, 1, 2) # N, W, C, H
|
| 227 |
+
N, W, C, H = x.shape
|
| 228 |
+
x = x.contiguous().view(N * W, C, H)
|
| 229 |
+
|
| 230 |
+
# Transformations
|
| 231 |
+
qkv = self.bn_qkv(self.qkv_transform(x))
|
| 232 |
+
q, k, v = torch.split(qkv.reshape(N * W, self.groups, self.group_planes * 2, H), [self.group_planes // 2, self.group_planes // 2, self.group_planes], dim=2)
|
| 233 |
+
|
| 234 |
+
qk = torch.einsum('bgci, bgcj->bgij', q, k)
|
| 235 |
+
|
| 236 |
+
stacked_similarity = self.bn_similarity(qk).reshape(N * W, 1, self.groups, H, H).sum(dim=1).contiguous()
|
| 237 |
+
|
| 238 |
+
similarity = F.softmax(stacked_similarity, dim=3)
|
| 239 |
+
sv = torch.einsum('bgij,bgcj->bgci', similarity, v)
|
| 240 |
+
|
| 241 |
+
sv = sv.reshape(N*W,self.out_planes * 1, H).contiguous()
|
| 242 |
+
output = self.bn_output(sv).reshape(N, W, self.out_planes, 1, H).sum(dim=-2).contiguous()
|
| 243 |
+
|
| 244 |
+
|
| 245 |
+
if self.width:
|
| 246 |
+
output = output.permute(0, 2, 1, 3)
|
| 247 |
+
else:
|
| 248 |
+
output = output.permute(0, 2, 3, 1)
|
| 249 |
+
|
| 250 |
+
if self.stride > 1:
|
| 251 |
+
output = self.pooling(output)
|
| 252 |
+
|
| 253 |
+
return output
|
| 254 |
+
|
| 255 |
+
def reset_parameters(self):
|
| 256 |
+
self.qkv_transform.weight.data.normal_(0, math.sqrt(1. / self.in_planes))
|
| 257 |
+
#nn.init.uniform_(self.relative, -0.1, 0.1)
|
| 258 |
+
# nn.init.normal_(self.relative, 0., math.sqrt(1. / self.group_planes))
|
| 259 |
+
|
| 260 |
+
#end of attn definition
|
| 261 |
+
|
| 262 |
+
class AxialBlock(nn.Module):
|
| 263 |
+
expansion = 2
|
| 264 |
+
|
| 265 |
+
def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1,
|
| 266 |
+
base_width=64, dilation=1, norm_layer=None, kernel_size=56):
|
| 267 |
+
super(AxialBlock, self).__init__()
|
| 268 |
+
if norm_layer is None:
|
| 269 |
+
norm_layer = nn.BatchNorm2d
|
| 270 |
+
width = int(planes * (base_width / 64.))
|
| 271 |
+
# Both self.conv2 and self.downsample layers downsample the input when stride != 1
|
| 272 |
+
self.conv_down = conv1x1(inplanes, width)
|
| 273 |
+
self.bn1 = norm_layer(width)
|
| 274 |
+
self.hight_block = AxialAttention(width, width, groups=groups, kernel_size=kernel_size)
|
| 275 |
+
self.width_block = AxialAttention(width, width, groups=groups, kernel_size=kernel_size, stride=stride, width=True)
|
| 276 |
+
self.conv_up = conv1x1(width, planes * self.expansion)
|
| 277 |
+
self.bn2 = norm_layer(planes * self.expansion)
|
| 278 |
+
self.relu = nn.ReLU(inplace=True)
|
| 279 |
+
self.downsample = downsample
|
| 280 |
+
self.stride = stride
|
| 281 |
+
|
| 282 |
+
def forward(self, x):
|
| 283 |
+
identity = x
|
| 284 |
+
|
| 285 |
+
out = self.conv_down(x)
|
| 286 |
+
out = self.bn1(out)
|
| 287 |
+
out = self.relu(out)
|
| 288 |
+
# print(out.shape)
|
| 289 |
+
out = self.hight_block(out)
|
| 290 |
+
out = self.width_block(out)
|
| 291 |
+
out = self.relu(out)
|
| 292 |
+
|
| 293 |
+
out = self.conv_up(out)
|
| 294 |
+
out = self.bn2(out)
|
| 295 |
+
|
| 296 |
+
if self.downsample is not None:
|
| 297 |
+
identity = self.downsample(x)
|
| 298 |
+
|
| 299 |
+
out += identity
|
| 300 |
+
out = self.relu(out)
|
| 301 |
+
|
| 302 |
+
return out
|
| 303 |
+
|
| 304 |
+
class AxialBlock_dynamic(nn.Module):
|
| 305 |
+
expansion = 2
|
| 306 |
+
|
| 307 |
+
def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1,
|
| 308 |
+
base_width=64, dilation=1, norm_layer=None, kernel_size=56):
|
| 309 |
+
super(AxialBlock_dynamic, self).__init__()
|
| 310 |
+
if norm_layer is None:
|
| 311 |
+
norm_layer = nn.BatchNorm2d
|
| 312 |
+
width = int(planes * (base_width / 64.))
|
| 313 |
+
# Both self.conv2 and self.downsample layers downsample the input when stride != 1
|
| 314 |
+
self.conv_down = conv1x1(inplanes, width)
|
| 315 |
+
self.bn1 = norm_layer(width)
|
| 316 |
+
self.hight_block = AxialAttention_dynamic(width, width, groups=groups, kernel_size=kernel_size)
|
| 317 |
+
self.width_block = AxialAttention_dynamic(width, width, groups=groups, kernel_size=kernel_size, stride=stride, width=True)
|
| 318 |
+
self.conv_up = conv1x1(width, planes * self.expansion)
|
| 319 |
+
self.bn2 = norm_layer(planes * self.expansion)
|
| 320 |
+
self.relu = nn.ReLU(inplace=True)
|
| 321 |
+
self.downsample = downsample
|
| 322 |
+
self.stride = stride
|
| 323 |
+
|
| 324 |
+
def forward(self, x):
|
| 325 |
+
identity = x
|
| 326 |
+
|
| 327 |
+
out = self.conv_down(x)
|
| 328 |
+
out = self.bn1(out)
|
| 329 |
+
out = self.relu(out)
|
| 330 |
+
|
| 331 |
+
out = self.hight_block(out)
|
| 332 |
+
out = self.width_block(out)
|
| 333 |
+
out = self.relu(out)
|
| 334 |
+
|
| 335 |
+
out = self.conv_up(out)
|
| 336 |
+
out = self.bn2(out)
|
| 337 |
+
|
| 338 |
+
if self.downsample is not None:
|
| 339 |
+
identity = self.downsample(x)
|
| 340 |
+
|
| 341 |
+
out += identity
|
| 342 |
+
out = self.relu(out)
|
| 343 |
+
|
| 344 |
+
return out
|
| 345 |
+
|
| 346 |
+
class AxialBlock_wopos(nn.Module):
|
| 347 |
+
expansion = 2
|
| 348 |
+
|
| 349 |
+
def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1,
|
| 350 |
+
base_width=64, dilation=1, norm_layer=None, kernel_size=56):
|
| 351 |
+
super(AxialBlock_wopos, self).__init__()
|
| 352 |
+
if norm_layer is None:
|
| 353 |
+
norm_layer = nn.BatchNorm2d
|
| 354 |
+
# print(kernel_size)
|
| 355 |
+
width = int(planes * (base_width / 64.))
|
| 356 |
+
# Both self.conv2 and self.downsample layers downsample the input when stride != 1
|
| 357 |
+
self.conv_down = conv1x1(inplanes, width)
|
| 358 |
+
self.conv1 = nn.Conv2d(width, width, kernel_size = 1)
|
| 359 |
+
self.bn1 = norm_layer(width)
|
| 360 |
+
self.hight_block = AxialAttention_wopos(width, width, groups=groups, kernel_size=kernel_size)
|
| 361 |
+
self.width_block = AxialAttention_wopos(width, width, groups=groups, kernel_size=kernel_size, stride=stride, width=True)
|
| 362 |
+
self.conv_up = conv1x1(width, planes * self.expansion)
|
| 363 |
+
self.bn2 = norm_layer(planes * self.expansion)
|
| 364 |
+
self.relu = nn.ReLU(inplace=True)
|
| 365 |
+
self.downsample = downsample
|
| 366 |
+
self.stride = stride
|
| 367 |
+
|
| 368 |
+
def forward(self, x):
|
| 369 |
+
identity = x
|
| 370 |
+
|
| 371 |
+
# pdb.set_trace()
|
| 372 |
+
|
| 373 |
+
out = self.conv_down(x)
|
| 374 |
+
out = self.bn1(out)
|
| 375 |
+
out = self.relu(out)
|
| 376 |
+
# print(out.shape)
|
| 377 |
+
out = self.hight_block(out)
|
| 378 |
+
out = self.width_block(out)
|
| 379 |
+
|
| 380 |
+
out = self.relu(out)
|
| 381 |
+
|
| 382 |
+
out = self.conv_up(out)
|
| 383 |
+
out = self.bn2(out)
|
| 384 |
+
|
| 385 |
+
if self.downsample is not None:
|
| 386 |
+
identity = self.downsample(x)
|
| 387 |
+
|
| 388 |
+
out += identity
|
| 389 |
+
out = self.relu(out)
|
| 390 |
+
|
| 391 |
+
return out
|
| 392 |
+
|
| 393 |
+
|
| 394 |
+
#end of block definition
|
| 395 |
+
|
| 396 |
+
|
| 397 |
+
class ResAxialAttentionUNet(nn.Module):
|
| 398 |
+
|
| 399 |
+
def __init__(self, block, layers, num_classes=2, zero_init_residual=True,
|
| 400 |
+
groups=8, width_per_group=64, replace_stride_with_dilation=None,
|
| 401 |
+
norm_layer=None, s=0.125, img_size = 128,imgchan = 3):
|
| 402 |
+
super(ResAxialAttentionUNet, self).__init__()
|
| 403 |
+
if norm_layer is None:
|
| 404 |
+
norm_layer = nn.BatchNorm2d
|
| 405 |
+
self._norm_layer = norm_layer
|
| 406 |
+
|
| 407 |
+
self.inplanes = int(64 * s)
|
| 408 |
+
self.dilation = 1
|
| 409 |
+
if replace_stride_with_dilation is None:
|
| 410 |
+
replace_stride_with_dilation = [False, False, False]
|
| 411 |
+
if len(replace_stride_with_dilation) != 3:
|
| 412 |
+
raise ValueError("replace_stride_with_dilation should be None "
|
| 413 |
+
"or a 3-element tuple, got {}".format(replace_stride_with_dilation))
|
| 414 |
+
self.groups = groups
|
| 415 |
+
self.base_width = width_per_group
|
| 416 |
+
self.conv1 = nn.Conv2d(imgchan, self.inplanes, kernel_size=7, stride=2, padding=3,
|
| 417 |
+
bias=False)
|
| 418 |
+
self.conv2 = nn.Conv2d(self.inplanes, 128, kernel_size=3, stride=1, padding=1, bias=False)
|
| 419 |
+
self.conv3 = nn.Conv2d(128, self.inplanes, kernel_size=3, stride=1, padding=1, bias=False)
|
| 420 |
+
self.bn1 = norm_layer(self.inplanes)
|
| 421 |
+
self.bn2 = norm_layer(128)
|
| 422 |
+
self.bn3 = norm_layer(self.inplanes)
|
| 423 |
+
self.relu = nn.ReLU(inplace=True)
|
| 424 |
+
# self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
|
| 425 |
+
self.layer1 = self._make_layer(block, int(128 * s), layers[0], kernel_size= (img_size//2))
|
| 426 |
+
self.layer2 = self._make_layer(block, int(256 * s), layers[1], stride=2, kernel_size=(img_size//2),
|
| 427 |
+
dilate=replace_stride_with_dilation[0])
|
| 428 |
+
self.layer3 = self._make_layer(block, int(512 * s), layers[2], stride=2, kernel_size=(img_size//4),
|
| 429 |
+
dilate=replace_stride_with_dilation[1])
|
| 430 |
+
self.layer4 = self._make_layer(block, int(1024 * s), layers[3], stride=2, kernel_size=(img_size//8),
|
| 431 |
+
dilate=replace_stride_with_dilation[2])
|
| 432 |
+
|
| 433 |
+
# Decoder
|
| 434 |
+
self.decoder1 = nn.Conv2d(int(1024 *2*s) , int(1024*2*s), kernel_size=3, stride=2, padding=1)
|
| 435 |
+
self.decoder2 = nn.Conv2d(int(1024 *2*s) , int(1024*s), kernel_size=3, stride=1, padding=1)
|
| 436 |
+
self.decoder3 = nn.Conv2d(int(1024*s), int(512*s), kernel_size=3, stride=1, padding=1)
|
| 437 |
+
self.decoder4 = nn.Conv2d(int(512*s) , int(256*s), kernel_size=3, stride=1, padding=1)
|
| 438 |
+
self.decoder5 = nn.Conv2d(int(256*s) , int(128*s) , kernel_size=3, stride=1, padding=1)
|
| 439 |
+
self.adjust = nn.Conv2d(int(128*s) , num_classes, kernel_size=1, stride=1, padding=0)
|
| 440 |
+
self.soft = nn.Softmax(dim=1)
|
| 441 |
+
|
| 442 |
+
|
| 443 |
+
def _make_layer(self, block, planes, blocks, kernel_size=56, stride=1, dilate=False):
|
| 444 |
+
norm_layer = self._norm_layer
|
| 445 |
+
downsample = None
|
| 446 |
+
previous_dilation = self.dilation
|
| 447 |
+
if dilate:
|
| 448 |
+
self.dilation *= stride
|
| 449 |
+
stride = 1
|
| 450 |
+
if stride != 1 or self.inplanes != planes * block.expansion:
|
| 451 |
+
downsample = nn.Sequential(
|
| 452 |
+
conv1x1(self.inplanes, planes * block.expansion, stride),
|
| 453 |
+
norm_layer(planes * block.expansion),
|
| 454 |
+
)
|
| 455 |
+
|
| 456 |
+
layers = []
|
| 457 |
+
layers.append(block(self.inplanes, planes, stride, downsample, groups=self.groups,
|
| 458 |
+
base_width=self.base_width, dilation=previous_dilation,
|
| 459 |
+
norm_layer=norm_layer, kernel_size=kernel_size))
|
| 460 |
+
self.inplanes = planes * block.expansion
|
| 461 |
+
if stride != 1:
|
| 462 |
+
kernel_size = kernel_size // 2
|
| 463 |
+
|
| 464 |
+
for _ in range(1, blocks):
|
| 465 |
+
layers.append(block(self.inplanes, planes, groups=self.groups,
|
| 466 |
+
base_width=self.base_width, dilation=self.dilation,
|
| 467 |
+
norm_layer=norm_layer, kernel_size=kernel_size))
|
| 468 |
+
|
| 469 |
+
return nn.Sequential(*layers)
|
| 470 |
+
|
| 471 |
+
def _forward_impl(self, x):
|
| 472 |
+
|
| 473 |
+
# AxialAttention Encoder
|
| 474 |
+
# pdb.set_trace()
|
| 475 |
+
x = self.conv1(x)
|
| 476 |
+
x = self.bn1(x)
|
| 477 |
+
x = self.relu(x)
|
| 478 |
+
x = self.conv2(x)
|
| 479 |
+
x = self.bn2(x)
|
| 480 |
+
x = self.relu(x)
|
| 481 |
+
x = self.conv3(x)
|
| 482 |
+
x = self.bn3(x)
|
| 483 |
+
x = self.relu(x)
|
| 484 |
+
|
| 485 |
+
x1 = self.layer1(x)
|
| 486 |
+
|
| 487 |
+
x2 = self.layer2(x1)
|
| 488 |
+
# print(x2.shape)
|
| 489 |
+
x3 = self.layer3(x2)
|
| 490 |
+
# print(x3.shape)
|
| 491 |
+
x4 = self.layer4(x3)
|
| 492 |
+
|
| 493 |
+
x = F.relu(F.interpolate(self.decoder1(x4), scale_factor=(2,2), mode ='bilinear'))
|
| 494 |
+
x = torch.add(x, x4)
|
| 495 |
+
x = F.relu(F.interpolate(self.decoder2(x) , scale_factor=(2,2), mode ='bilinear'))
|
| 496 |
+
x = torch.add(x, x3)
|
| 497 |
+
x = F.relu(F.interpolate(self.decoder3(x) , scale_factor=(2,2), mode ='bilinear'))
|
| 498 |
+
x = torch.add(x, x2)
|
| 499 |
+
x = F.relu(F.interpolate(self.decoder4(x) , scale_factor=(2,2), mode ='bilinear'))
|
| 500 |
+
x = torch.add(x, x1)
|
| 501 |
+
x = F.relu(F.interpolate(self.decoder5(x) , scale_factor=(2,2), mode ='bilinear'))
|
| 502 |
+
x = self.adjust(F.relu(x))
|
| 503 |
+
# pdb.set_trace()
|
| 504 |
+
return x
|
| 505 |
+
|
| 506 |
+
def forward(self, x):
|
| 507 |
+
return self._forward_impl(x)
|
| 508 |
+
|
| 509 |
+
class medt_net(nn.Module):
|
| 510 |
+
|
| 511 |
+
def __init__(self, block, block_2, layers, num_classes=2, zero_init_residual=True,
|
| 512 |
+
groups=8, width_per_group=64, replace_stride_with_dilation=None,
|
| 513 |
+
norm_layer=None, s=0.125, img_size = 128,imgchan = 3):
|
| 514 |
+
super(medt_net, self).__init__()
|
| 515 |
+
if norm_layer is None:
|
| 516 |
+
norm_layer = nn.BatchNorm2d
|
| 517 |
+
self._norm_layer = norm_layer
|
| 518 |
+
|
| 519 |
+
self.inplanes = int(64 * s)
|
| 520 |
+
self.dilation = 1
|
| 521 |
+
if replace_stride_with_dilation is None:
|
| 522 |
+
replace_stride_with_dilation = [False, False, False]
|
| 523 |
+
if len(replace_stride_with_dilation) != 3:
|
| 524 |
+
raise ValueError("replace_stride_with_dilation should be None "
|
| 525 |
+
"or a 3-element tuple, got {}".format(replace_stride_with_dilation))
|
| 526 |
+
self.groups = groups
|
| 527 |
+
self.base_width = width_per_group
|
| 528 |
+
self.conv1 = nn.Conv2d(imgchan, self.inplanes, kernel_size=7, stride=2, padding=3,
|
| 529 |
+
bias=False)
|
| 530 |
+
self.conv2 = nn.Conv2d(self.inplanes, 128, kernel_size=3, stride=1, padding=1, bias=False)
|
| 531 |
+
self.conv3 = nn.Conv2d(128, self.inplanes, kernel_size=3, stride=1, padding=1, bias=False)
|
| 532 |
+
self.bn1 = norm_layer(self.inplanes)
|
| 533 |
+
self.bn2 = norm_layer(128)
|
| 534 |
+
self.bn3 = norm_layer(self.inplanes)
|
| 535 |
+
# self.conv1 = nn.Conv2d(1, self.inplanes, kernel_size=3, stride=1, padding=1, bias=False)
|
| 536 |
+
self.bn1 = norm_layer(self.inplanes)
|
| 537 |
+
self.relu = nn.ReLU(inplace=True)
|
| 538 |
+
# self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
|
| 539 |
+
self.layer1 = self._make_layer(block, int(128 * s), layers[0], kernel_size= (img_size//2))
|
| 540 |
+
self.layer2 = self._make_layer(block, int(256 * s), layers[1], stride=2, kernel_size=(img_size//2),
|
| 541 |
+
dilate=replace_stride_with_dilation[0])
|
| 542 |
+
# self.layer3 = self._make_layer(block, int(512 * s), layers[2], stride=2, kernel_size=(img_size//4),
|
| 543 |
+
# dilate=replace_stride_with_dilation[1])
|
| 544 |
+
# self.layer4 = self._make_layer(block, int(1024 * s), layers[3], stride=2, kernel_size=(img_size//8),
|
| 545 |
+
# dilate=replace_stride_with_dilation[2])
|
| 546 |
+
|
| 547 |
+
# Decoder
|
| 548 |
+
# self.decoder1 = nn.Conv2d(int(1024 *2*s) , int(1024*2*s), kernel_size=3, stride=2, padding=1)
|
| 549 |
+
# self.decoder2 = nn.Conv2d(int(1024 *2*s) , int(1024*s), kernel_size=3, stride=1, padding=1)
|
| 550 |
+
# self.decoder3 = nn.Conv2d(int(1024*s), int(512*s), kernel_size=3, stride=1, padding=1)
|
| 551 |
+
self.decoder4 = nn.Conv2d(int(512*s) , int(256*s), kernel_size=3, stride=1, padding=1)
|
| 552 |
+
self.decoder5 = nn.Conv2d(int(256*s) , int(128*s) , kernel_size=3, stride=1, padding=1)
|
| 553 |
+
self.adjust = nn.Conv2d(int(128*s) , num_classes, kernel_size=1, stride=1, padding=0)
|
| 554 |
+
self.soft = nn.Softmax(dim=1)
|
| 555 |
+
|
| 556 |
+
|
| 557 |
+
self.conv1_p = nn.Conv2d(imgchan, self.inplanes, kernel_size=7, stride=2, padding=3,
|
| 558 |
+
bias=False)
|
| 559 |
+
self.conv2_p = nn.Conv2d(self.inplanes,128, kernel_size=3, stride=1, padding=1,
|
| 560 |
+
bias=False)
|
| 561 |
+
self.conv3_p = nn.Conv2d(128, self.inplanes, kernel_size=3, stride=1, padding=1,
|
| 562 |
+
bias=False)
|
| 563 |
+
# self.conv1 = nn.Conv2d(1, self.inplanes, kernel_size=3, stride=1, padding=1, bias=False)
|
| 564 |
+
self.bn1_p = norm_layer(self.inplanes)
|
| 565 |
+
self.bn2_p = norm_layer(128)
|
| 566 |
+
self.bn3_p = norm_layer(self.inplanes)
|
| 567 |
+
|
| 568 |
+
self.relu_p = nn.ReLU(inplace=True)
|
| 569 |
+
|
| 570 |
+
img_size_p = img_size // 4
|
| 571 |
+
|
| 572 |
+
self.layer1_p = self._make_layer(block_2, int(128 * s), layers[0], kernel_size= (img_size_p//2))
|
| 573 |
+
self.layer2_p = self._make_layer(block_2, int(256 * s), layers[1], stride=2, kernel_size=(img_size_p//2),
|
| 574 |
+
dilate=replace_stride_with_dilation[0])
|
| 575 |
+
self.layer3_p = self._make_layer(block_2, int(512 * s), layers[2], stride=2, kernel_size=(img_size_p//4),
|
| 576 |
+
dilate=replace_stride_with_dilation[1])
|
| 577 |
+
self.layer4_p = self._make_layer(block_2, int(1024 * s), layers[3], stride=2, kernel_size=(img_size_p//8),
|
| 578 |
+
dilate=replace_stride_with_dilation[2])
|
| 579 |
+
|
| 580 |
+
# Decoder
|
| 581 |
+
self.decoder1_p = nn.Conv2d(int(1024 *2*s) , int(1024*2*s), kernel_size=3, stride=2, padding=1)
|
| 582 |
+
self.decoder2_p = nn.Conv2d(int(1024 *2*s) , int(1024*s), kernel_size=3, stride=1, padding=1)
|
| 583 |
+
self.decoder3_p = nn.Conv2d(int(1024*s), int(512*s), kernel_size=3, stride=1, padding=1)
|
| 584 |
+
self.decoder4_p = nn.Conv2d(int(512*s) , int(256*s), kernel_size=3, stride=1, padding=1)
|
| 585 |
+
self.decoder5_p = nn.Conv2d(int(256*s) , int(128*s) , kernel_size=3, stride=1, padding=1)
|
| 586 |
+
|
| 587 |
+
self.decoderf = nn.Conv2d(int(128*s) , int(128*s) , kernel_size=3, stride=1, padding=1)
|
| 588 |
+
self.adjust_p = nn.Conv2d(int(128*s) , num_classes, kernel_size=1, stride=1, padding=0)
|
| 589 |
+
self.soft_p = nn.Softmax(dim=1)
|
| 590 |
+
|
| 591 |
+
|
| 592 |
+
def _make_layer(self, block, planes, blocks, kernel_size=56, stride=1, dilate=False):
|
| 593 |
+
norm_layer = self._norm_layer
|
| 594 |
+
downsample = None
|
| 595 |
+
previous_dilation = self.dilation
|
| 596 |
+
if dilate:
|
| 597 |
+
self.dilation *= stride
|
| 598 |
+
stride = 1
|
| 599 |
+
if stride != 1 or self.inplanes != planes * block.expansion:
|
| 600 |
+
downsample = nn.Sequential(
|
| 601 |
+
conv1x1(self.inplanes, planes * block.expansion, stride),
|
| 602 |
+
norm_layer(planes * block.expansion),
|
| 603 |
+
)
|
| 604 |
+
|
| 605 |
+
layers = []
|
| 606 |
+
layers.append(block(self.inplanes, planes, stride, downsample, groups=self.groups,
|
| 607 |
+
base_width=self.base_width, dilation=previous_dilation,
|
| 608 |
+
norm_layer=norm_layer, kernel_size=kernel_size))
|
| 609 |
+
self.inplanes = planes * block.expansion
|
| 610 |
+
if stride != 1:
|
| 611 |
+
kernel_size = kernel_size // 2
|
| 612 |
+
|
| 613 |
+
for _ in range(1, blocks):
|
| 614 |
+
layers.append(block(self.inplanes, planes, groups=self.groups,
|
| 615 |
+
base_width=self.base_width, dilation=self.dilation,
|
| 616 |
+
norm_layer=norm_layer, kernel_size=kernel_size))
|
| 617 |
+
|
| 618 |
+
return nn.Sequential(*layers)
|
| 619 |
+
|
| 620 |
+
def _forward_impl(self, x):
|
| 621 |
+
|
| 622 |
+
xin = x.clone()
|
| 623 |
+
x = self.conv1(x)
|
| 624 |
+
x = self.bn1(x)
|
| 625 |
+
x = self.relu(x)
|
| 626 |
+
x = self.conv2(x)
|
| 627 |
+
x = self.bn2(x)
|
| 628 |
+
x = self.relu(x)
|
| 629 |
+
x = self.conv3(x)
|
| 630 |
+
x = self.bn3(x)
|
| 631 |
+
# x = F.max_pool2d(x,2,2)
|
| 632 |
+
x = self.relu(x)
|
| 633 |
+
|
| 634 |
+
# x = self.maxpool(x)
|
| 635 |
+
# pdb.set_trace()
|
| 636 |
+
x1 = self.layer1(x)
|
| 637 |
+
# print(x1.shape)
|
| 638 |
+
x2 = self.layer2(x1)
|
| 639 |
+
# print(x2.shape)
|
| 640 |
+
# x3 = self.layer3(x2)
|
| 641 |
+
# # print(x3.shape)
|
| 642 |
+
# x4 = self.layer4(x3)
|
| 643 |
+
# # print(x4.shape)
|
| 644 |
+
# x = F.relu(F.interpolate(self.decoder1(x4), scale_factor=(2,2), mode ='bilinear'))
|
| 645 |
+
# x = torch.add(x, x4)
|
| 646 |
+
# x = F.relu(F.interpolate(self.decoder2(x4) , scale_factor=(2,2), mode ='bilinear'))
|
| 647 |
+
# x = torch.add(x, x3)
|
| 648 |
+
# x = F.relu(F.interpolate(self.decoder3(x3) , scale_factor=(2,2), mode ='bilinear'))
|
| 649 |
+
# x = torch.add(x, x2)
|
| 650 |
+
x = F.relu(F.interpolate(self.decoder4(x2) , scale_factor=(2,2), mode ='bilinear'))
|
| 651 |
+
x = torch.add(x, x1)
|
| 652 |
+
x = F.relu(F.interpolate(self.decoder5(x) , scale_factor=(2,2), mode ='bilinear'))
|
| 653 |
+
# print(x.shape)
|
| 654 |
+
|
| 655 |
+
# end of full image training
|
| 656 |
+
|
| 657 |
+
# y_out = torch.ones((1,2,128,128))
|
| 658 |
+
x_loc = x.clone()
|
| 659 |
+
# x = F.relu(F.interpolate(self.decoder5(x) , scale_factor=(2,2), mode ='bilinear'))
|
| 660 |
+
#start
|
| 661 |
+
for i in range(0,4):
|
| 662 |
+
for j in range(0,4):
|
| 663 |
+
|
| 664 |
+
x_p = xin[:,:,32*i:32*(i+1),32*j:32*(j+1)]
|
| 665 |
+
# begin patch wise
|
| 666 |
+
x_p = self.conv1_p(x_p)
|
| 667 |
+
x_p = self.bn1_p(x_p)
|
| 668 |
+
# x = F.max_pool2d(x,2,2)
|
| 669 |
+
x_p = self.relu(x_p)
|
| 670 |
+
|
| 671 |
+
x_p = self.conv2_p(x_p)
|
| 672 |
+
x_p = self.bn2_p(x_p)
|
| 673 |
+
# x = F.max_pool2d(x,2,2)
|
| 674 |
+
x_p = self.relu(x_p)
|
| 675 |
+
x_p = self.conv3_p(x_p)
|
| 676 |
+
x_p = self.bn3_p(x_p)
|
| 677 |
+
# x = F.max_pool2d(x,2,2)
|
| 678 |
+
x_p = self.relu(x_p)
|
| 679 |
+
|
| 680 |
+
# x = self.maxpool(x)
|
| 681 |
+
# pdb.set_trace()
|
| 682 |
+
x1_p = self.layer1_p(x_p)
|
| 683 |
+
# print(x1.shape)
|
| 684 |
+
x2_p = self.layer2_p(x1_p)
|
| 685 |
+
# print(x2.shape)
|
| 686 |
+
x3_p = self.layer3_p(x2_p)
|
| 687 |
+
# # print(x3.shape)
|
| 688 |
+
x4_p = self.layer4_p(x3_p)
|
| 689 |
+
|
| 690 |
+
x_p = F.relu(F.interpolate(self.decoder1_p(x4_p), scale_factor=(2,2), mode ='bilinear'))
|
| 691 |
+
x_p = torch.add(x_p, x4_p)
|
| 692 |
+
x_p = F.relu(F.interpolate(self.decoder2_p(x_p) , scale_factor=(2,2), mode ='bilinear'))
|
| 693 |
+
x_p = torch.add(x_p, x3_p)
|
| 694 |
+
x_p = F.relu(F.interpolate(self.decoder3_p(x_p) , scale_factor=(2,2), mode ='bilinear'))
|
| 695 |
+
x_p = torch.add(x_p, x2_p)
|
| 696 |
+
x_p = F.relu(F.interpolate(self.decoder4_p(x_p) , scale_factor=(2,2), mode ='bilinear'))
|
| 697 |
+
x_p = torch.add(x_p, x1_p)
|
| 698 |
+
x_p = F.relu(F.interpolate(self.decoder5_p(x_p) , scale_factor=(2,2), mode ='bilinear'))
|
| 699 |
+
|
| 700 |
+
x_loc[:,:,32*i:32*(i+1),32*j:32*(j+1)] = x_p
|
| 701 |
+
|
| 702 |
+
x = torch.add(x,x_loc)
|
| 703 |
+
x = F.relu(self.decoderf(x))
|
| 704 |
+
|
| 705 |
+
x = self.adjust(F.relu(x))
|
| 706 |
+
|
| 707 |
+
# pdb.set_trace()
|
| 708 |
+
return x
|
| 709 |
+
|
| 710 |
+
def forward(self, x, text_dummy):
|
| 711 |
+
return self.soft(self._forward_impl(x)),0
|
| 712 |
+
|
| 713 |
+
|
| 714 |
+
def axialunet(pretrained=False, **kwargs):
|
| 715 |
+
model = ResAxialAttentionUNet(AxialBlock, [1, 2, 4, 1], s= 0.125, **kwargs)
|
| 716 |
+
return model
|
| 717 |
+
|
| 718 |
+
def gated(pretrained=False, **kwargs):
|
| 719 |
+
model = ResAxialAttentionUNet(AxialBlock_dynamic, [1, 2, 4, 1], s= 0.125, **kwargs)
|
| 720 |
+
return model
|
| 721 |
+
|
| 722 |
+
def MedT(pretrained=False, **kwargs):
|
| 723 |
+
model = medt_net(AxialBlock_dynamic,AxialBlock_wopos, [1, 2, 4, 1], s= 0.125, **kwargs)
|
| 724 |
+
return model
|
| 725 |
+
|
| 726 |
+
def logo(pretrained=False, **kwargs):
|
| 727 |
+
model = medt_net(AxialBlock,AxialBlock, [1, 2, 4, 1], s= 0.125, **kwargs)
|
| 728 |
+
return model
|
| 729 |
+
|
| 730 |
+
# EOF
|
AllinonSAM/baselines.py
ADDED
|
@@ -0,0 +1,630 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
from backbones_unet.model.unet import Unet
|
| 4 |
+
import torch.nn.functional as F
|
| 5 |
+
from utils import *
|
| 6 |
+
__all__ = ['UNext']
|
| 7 |
+
|
| 8 |
+
from timm.models.layers import DropPath, to_2tuple, trunc_normal_
|
| 9 |
+
import math
|
| 10 |
+
|
| 11 |
+
class UNet(nn.Module):
|
| 12 |
+
def __init__(self, in_channels = 3, out_channels = 1, init_features = 32, pretrained=True , back_bone=None):
|
| 13 |
+
super().__init__()
|
| 14 |
+
if back_bone is None:
|
| 15 |
+
self.model = torch.hub.load(
|
| 16 |
+
'mateuszbuda/brain-segmentation-pytorch', 'unet', in_channels=in_channels, out_channels=out_channels,
|
| 17 |
+
init_features=init_features, pretrained=pretrained
|
| 18 |
+
)
|
| 19 |
+
else:
|
| 20 |
+
self.model = UNet(
|
| 21 |
+
in_channels= in_channels,
|
| 22 |
+
out_channels= out_channels,
|
| 23 |
+
backbone=back_bone
|
| 24 |
+
)
|
| 25 |
+
|
| 26 |
+
self.soft = nn.Softmax(dim =1)
|
| 27 |
+
def forward(self, x, text_dummy):
|
| 28 |
+
return self.soft(self.model(x)),0
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
def conv1x1(in_planes: int, out_planes: int, stride: int = 1) -> nn.Conv2d:
|
| 32 |
+
"""1x1 convolution"""
|
| 33 |
+
return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=1, bias=False)
|
| 34 |
+
|
| 35 |
+
class shiftmlp(nn.Module):
|
| 36 |
+
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0., shift_size=5):
|
| 37 |
+
super().__init__()
|
| 38 |
+
out_features = out_features or in_features
|
| 39 |
+
hidden_features = hidden_features or in_features
|
| 40 |
+
self.dim = in_features
|
| 41 |
+
self.fc1 = nn.Linear(in_features, hidden_features)
|
| 42 |
+
self.dwconv = DWConv(hidden_features)
|
| 43 |
+
self.act = act_layer()
|
| 44 |
+
self.fc2 = nn.Linear(hidden_features, out_features)
|
| 45 |
+
self.drop = nn.Dropout(drop)
|
| 46 |
+
|
| 47 |
+
self.shift_size = shift_size
|
| 48 |
+
self.pad = shift_size // 2
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
self.apply(self._init_weights)
|
| 52 |
+
|
| 53 |
+
def _init_weights(self, m):
|
| 54 |
+
if isinstance(m, nn.Linear):
|
| 55 |
+
trunc_normal_(m.weight, std=.02)
|
| 56 |
+
if isinstance(m, nn.Linear) and m.bias is not None:
|
| 57 |
+
nn.init.constant_(m.bias, 0)
|
| 58 |
+
elif isinstance(m, nn.LayerNorm):
|
| 59 |
+
nn.init.constant_(m.bias, 0)
|
| 60 |
+
nn.init.constant_(m.weight, 1.0)
|
| 61 |
+
elif isinstance(m, nn.Conv2d):
|
| 62 |
+
fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
|
| 63 |
+
fan_out //= m.groups
|
| 64 |
+
m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
|
| 65 |
+
if m.bias is not None:
|
| 66 |
+
m.bias.data.zero_()
|
| 67 |
+
|
| 68 |
+
|
| 69 |
+
def forward(self, x, H, W):
|
| 70 |
+
# pdb.set_trace()
|
| 71 |
+
B, N, C = x.shape
|
| 72 |
+
|
| 73 |
+
xn = x.transpose(1, 2).view(B, C, H, W).contiguous()
|
| 74 |
+
xn = F.pad(xn, (self.pad, self.pad, self.pad, self.pad) , "constant", 0)
|
| 75 |
+
xs = torch.chunk(xn, self.shift_size, 1)
|
| 76 |
+
x_shift = [torch.roll(x_c, shift, 2) for x_c, shift in zip(xs, range(-self.pad, self.pad+1))]
|
| 77 |
+
x_cat = torch.cat(x_shift, 1)
|
| 78 |
+
x_cat = torch.narrow(x_cat, 2, self.pad, H)
|
| 79 |
+
x_s = torch.narrow(x_cat, 3, self.pad, W)
|
| 80 |
+
|
| 81 |
+
|
| 82 |
+
x_s = x_s.reshape(B,C,H*W).contiguous()
|
| 83 |
+
x_shift_r = x_s.transpose(1,2)
|
| 84 |
+
|
| 85 |
+
|
| 86 |
+
x = self.fc1(x_shift_r)
|
| 87 |
+
|
| 88 |
+
x = self.dwconv(x, H, W)
|
| 89 |
+
x = self.act(x)
|
| 90 |
+
x = self.drop(x)
|
| 91 |
+
|
| 92 |
+
xn = x.transpose(1, 2).view(B, C, H, W).contiguous()
|
| 93 |
+
xn = F.pad(xn, (self.pad, self.pad, self.pad, self.pad) , "constant", 0)
|
| 94 |
+
xs = torch.chunk(xn, self.shift_size, 1)
|
| 95 |
+
x_shift = [torch.roll(x_c, shift, 3) for x_c, shift in zip(xs, range(-self.pad, self.pad+1))]
|
| 96 |
+
x_cat = torch.cat(x_shift, 1)
|
| 97 |
+
x_cat = torch.narrow(x_cat, 2, self.pad, H)
|
| 98 |
+
x_s = torch.narrow(x_cat, 3, self.pad, W)
|
| 99 |
+
x_s = x_s.reshape(B,C,H*W).contiguous()
|
| 100 |
+
x_shift_c = x_s.transpose(1,2)
|
| 101 |
+
|
| 102 |
+
x = self.fc2(x_shift_c)
|
| 103 |
+
x = self.drop(x)
|
| 104 |
+
return x
|
| 105 |
+
|
| 106 |
+
|
| 107 |
+
|
| 108 |
+
class shiftedBlock(nn.Module):
|
| 109 |
+
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
|
| 110 |
+
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, sr_ratio=1):
|
| 111 |
+
super().__init__()
|
| 112 |
+
|
| 113 |
+
|
| 114 |
+
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
| 115 |
+
self.norm2 = norm_layer(dim)
|
| 116 |
+
mlp_hidden_dim = int(dim * mlp_ratio)
|
| 117 |
+
self.mlp = shiftmlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
|
| 118 |
+
self.apply(self._init_weights)
|
| 119 |
+
|
| 120 |
+
def _init_weights(self, m):
|
| 121 |
+
if isinstance(m, nn.Linear):
|
| 122 |
+
trunc_normal_(m.weight, std=.02)
|
| 123 |
+
if isinstance(m, nn.Linear) and m.bias is not None:
|
| 124 |
+
nn.init.constant_(m.bias, 0)
|
| 125 |
+
elif isinstance(m, nn.LayerNorm):
|
| 126 |
+
nn.init.constant_(m.bias, 0)
|
| 127 |
+
nn.init.constant_(m.weight, 1.0)
|
| 128 |
+
elif isinstance(m, nn.Conv2d):
|
| 129 |
+
fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
|
| 130 |
+
fan_out //= m.groups
|
| 131 |
+
m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
|
| 132 |
+
if m.bias is not None:
|
| 133 |
+
m.bias.data.zero_()
|
| 134 |
+
|
| 135 |
+
def forward(self, x, H, W):
|
| 136 |
+
|
| 137 |
+
x = x + self.drop_path(self.mlp(self.norm2(x), H, W))
|
| 138 |
+
return x
|
| 139 |
+
|
| 140 |
+
|
| 141 |
+
class DWConv(nn.Module):
|
| 142 |
+
def __init__(self, dim=768):
|
| 143 |
+
super(DWConv, self).__init__()
|
| 144 |
+
self.dwconv = nn.Conv2d(dim, dim, 3, 1, 1, bias=True, groups=dim)
|
| 145 |
+
|
| 146 |
+
def forward(self, x, H, W):
|
| 147 |
+
B, N, C = x.shape
|
| 148 |
+
x = x.transpose(1, 2).view(B, C, H, W)
|
| 149 |
+
x = self.dwconv(x)
|
| 150 |
+
x = x.flatten(2).transpose(1, 2)
|
| 151 |
+
|
| 152 |
+
return x
|
| 153 |
+
|
| 154 |
+
class OverlapPatchEmbed(nn.Module):
|
| 155 |
+
""" Image to Patch Embedding
|
| 156 |
+
"""
|
| 157 |
+
|
| 158 |
+
def __init__(self, img_size=224, patch_size=7, stride=4, in_chans=3, embed_dim=768):
|
| 159 |
+
super().__init__()
|
| 160 |
+
img_size = to_2tuple(img_size)
|
| 161 |
+
patch_size = to_2tuple(patch_size)
|
| 162 |
+
|
| 163 |
+
self.img_size = img_size
|
| 164 |
+
self.patch_size = patch_size
|
| 165 |
+
self.H, self.W = img_size[0] // patch_size[0], img_size[1] // patch_size[1]
|
| 166 |
+
self.num_patches = self.H * self.W
|
| 167 |
+
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=stride,
|
| 168 |
+
padding=(patch_size[0] // 2, patch_size[1] // 2))
|
| 169 |
+
self.norm = nn.LayerNorm(embed_dim)
|
| 170 |
+
|
| 171 |
+
self.apply(self._init_weights)
|
| 172 |
+
|
| 173 |
+
def _init_weights(self, m):
|
| 174 |
+
if isinstance(m, nn.Linear):
|
| 175 |
+
trunc_normal_(m.weight, std=.02)
|
| 176 |
+
if isinstance(m, nn.Linear) and m.bias is not None:
|
| 177 |
+
nn.init.constant_(m.bias, 0)
|
| 178 |
+
elif isinstance(m, nn.LayerNorm):
|
| 179 |
+
nn.init.constant_(m.bias, 0)
|
| 180 |
+
nn.init.constant_(m.weight, 1.0)
|
| 181 |
+
elif isinstance(m, nn.Conv2d):
|
| 182 |
+
fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
|
| 183 |
+
fan_out //= m.groups
|
| 184 |
+
m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
|
| 185 |
+
if m.bias is not None:
|
| 186 |
+
m.bias.data.zero_()
|
| 187 |
+
|
| 188 |
+
def forward(self, x):
|
| 189 |
+
x = self.proj(x)
|
| 190 |
+
_, _, H, W = x.shape
|
| 191 |
+
x = x.flatten(2).transpose(1, 2)
|
| 192 |
+
x = self.norm(x)
|
| 193 |
+
|
| 194 |
+
return x, H, W
|
| 195 |
+
|
| 196 |
+
|
| 197 |
+
class UNext(nn.Module):
|
| 198 |
+
|
| 199 |
+
## Conv 3 + MLP 2 + shifted MLP
|
| 200 |
+
|
| 201 |
+
def __init__(self, num_classes, input_channels=3, deep_supervision=False,img_size=256, patch_size=16, in_chans=3, embed_dims=[ 128, 160, 256],
|
| 202 |
+
num_heads=[1, 2, 4, 8], mlp_ratios=[4, 4, 4, 4], qkv_bias=False, qk_scale=None, drop_rate=0.,
|
| 203 |
+
attn_drop_rate=0., drop_path_rate=0., norm_layer=nn.LayerNorm,
|
| 204 |
+
depths=[1, 1, 1], sr_ratios=[8, 4, 2, 1], **kwargs):
|
| 205 |
+
super().__init__()
|
| 206 |
+
|
| 207 |
+
self.encoder1 = nn.Conv2d(3, 16, 3, stride=1, padding=1)
|
| 208 |
+
self.encoder2 = nn.Conv2d(16, 32, 3, stride=1, padding=1)
|
| 209 |
+
self.encoder3 = nn.Conv2d(32, 128, 3, stride=1, padding=1)
|
| 210 |
+
|
| 211 |
+
self.ebn1 = nn.BatchNorm2d(16)
|
| 212 |
+
self.ebn2 = nn.BatchNorm2d(32)
|
| 213 |
+
self.ebn3 = nn.BatchNorm2d(128)
|
| 214 |
+
|
| 215 |
+
self.norm3 = norm_layer(embed_dims[1])
|
| 216 |
+
self.norm4 = norm_layer(embed_dims[2])
|
| 217 |
+
|
| 218 |
+
self.dnorm3 = norm_layer(160)
|
| 219 |
+
self.dnorm4 = norm_layer(128)
|
| 220 |
+
|
| 221 |
+
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))]
|
| 222 |
+
|
| 223 |
+
self.block1 = nn.ModuleList([shiftedBlock(
|
| 224 |
+
dim=embed_dims[1], num_heads=num_heads[0], mlp_ratio=1, qkv_bias=qkv_bias, qk_scale=qk_scale,
|
| 225 |
+
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[0], norm_layer=norm_layer,
|
| 226 |
+
sr_ratio=sr_ratios[0])])
|
| 227 |
+
|
| 228 |
+
self.block2 = nn.ModuleList([shiftedBlock(
|
| 229 |
+
dim=embed_dims[2], num_heads=num_heads[0], mlp_ratio=1, qkv_bias=qkv_bias, qk_scale=qk_scale,
|
| 230 |
+
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[1], norm_layer=norm_layer,
|
| 231 |
+
sr_ratio=sr_ratios[0])])
|
| 232 |
+
|
| 233 |
+
self.dblock1 = nn.ModuleList([shiftedBlock(
|
| 234 |
+
dim=embed_dims[1], num_heads=num_heads[0], mlp_ratio=1, qkv_bias=qkv_bias, qk_scale=qk_scale,
|
| 235 |
+
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[0], norm_layer=norm_layer,
|
| 236 |
+
sr_ratio=sr_ratios[0])])
|
| 237 |
+
|
| 238 |
+
self.dblock2 = nn.ModuleList([shiftedBlock(
|
| 239 |
+
dim=embed_dims[0], num_heads=num_heads[0], mlp_ratio=1, qkv_bias=qkv_bias, qk_scale=qk_scale,
|
| 240 |
+
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[1], norm_layer=norm_layer,
|
| 241 |
+
sr_ratio=sr_ratios[0])])
|
| 242 |
+
|
| 243 |
+
self.patch_embed3 = OverlapPatchEmbed(img_size=img_size // 4, patch_size=3, stride=2, in_chans=embed_dims[0],
|
| 244 |
+
embed_dim=embed_dims[1])
|
| 245 |
+
self.patch_embed4 = OverlapPatchEmbed(img_size=img_size // 8, patch_size=3, stride=2, in_chans=embed_dims[1],
|
| 246 |
+
embed_dim=embed_dims[2])
|
| 247 |
+
|
| 248 |
+
self.decoder1 = nn.Conv2d(256, 160, 3, stride=1,padding=1)
|
| 249 |
+
self.decoder2 = nn.Conv2d(160, 128, 3, stride=1, padding=1)
|
| 250 |
+
self.decoder3 = nn.Conv2d(128, 32, 3, stride=1, padding=1)
|
| 251 |
+
self.decoder4 = nn.Conv2d(32, 16, 3, stride=1, padding=1)
|
| 252 |
+
self.decoder5 = nn.Conv2d(16, 16, 3, stride=1, padding=1)
|
| 253 |
+
|
| 254 |
+
self.dbn1 = nn.BatchNorm2d(160)
|
| 255 |
+
self.dbn2 = nn.BatchNorm2d(128)
|
| 256 |
+
self.dbn3 = nn.BatchNorm2d(32)
|
| 257 |
+
self.dbn4 = nn.BatchNorm2d(16)
|
| 258 |
+
|
| 259 |
+
self.final = nn.Conv2d(16, num_classes, kernel_size=1)
|
| 260 |
+
|
| 261 |
+
self.soft = nn.Softmax(dim =1)
|
| 262 |
+
|
| 263 |
+
def forward(self, x, text_dummy):
|
| 264 |
+
|
| 265 |
+
B = x.shape[0]
|
| 266 |
+
### Encoder
|
| 267 |
+
### Conv Stage
|
| 268 |
+
|
| 269 |
+
### Stage 1
|
| 270 |
+
out = F.relu(F.max_pool2d(self.ebn1(self.encoder1(x)),2,2))
|
| 271 |
+
t1 = out
|
| 272 |
+
### Stage 2
|
| 273 |
+
out = F.relu(F.max_pool2d(self.ebn2(self.encoder2(out)),2,2))
|
| 274 |
+
t2 = out
|
| 275 |
+
### Stage 3
|
| 276 |
+
out = F.relu(F.max_pool2d(self.ebn3(self.encoder3(out)),2,2))
|
| 277 |
+
t3 = out
|
| 278 |
+
|
| 279 |
+
### Tokenized MLP Stage
|
| 280 |
+
### Stage 4
|
| 281 |
+
|
| 282 |
+
out,H,W = self.patch_embed3(out)
|
| 283 |
+
for i, blk in enumerate(self.block1):
|
| 284 |
+
out = blk(out, H, W)
|
| 285 |
+
out = self.norm3(out)
|
| 286 |
+
out = out.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous()
|
| 287 |
+
t4 = out
|
| 288 |
+
|
| 289 |
+
### Bottleneck
|
| 290 |
+
|
| 291 |
+
out ,H,W= self.patch_embed4(out)
|
| 292 |
+
for i, blk in enumerate(self.block2):
|
| 293 |
+
out = blk(out, H, W)
|
| 294 |
+
out = self.norm4(out)
|
| 295 |
+
out = out.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous()
|
| 296 |
+
|
| 297 |
+
### Stage 4
|
| 298 |
+
|
| 299 |
+
out = F.relu(F.interpolate(self.dbn1(self.decoder1(out)),scale_factor=(2,2),mode ='bilinear'))
|
| 300 |
+
|
| 301 |
+
out = torch.add(out,t4)
|
| 302 |
+
_,_,H,W = out.shape
|
| 303 |
+
out = out.flatten(2).transpose(1,2)
|
| 304 |
+
for i, blk in enumerate(self.dblock1):
|
| 305 |
+
out = blk(out, H, W)
|
| 306 |
+
|
| 307 |
+
### Stage 3
|
| 308 |
+
|
| 309 |
+
out = self.dnorm3(out)
|
| 310 |
+
out = out.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous()
|
| 311 |
+
out = F.relu(F.interpolate(self.dbn2(self.decoder2(out)),scale_factor=(2,2),mode ='bilinear'))
|
| 312 |
+
out = torch.add(out,t3)
|
| 313 |
+
_,_,H,W = out.shape
|
| 314 |
+
out = out.flatten(2).transpose(1,2)
|
| 315 |
+
|
| 316 |
+
for i, blk in enumerate(self.dblock2):
|
| 317 |
+
out = blk(out, H, W)
|
| 318 |
+
|
| 319 |
+
out = self.dnorm4(out)
|
| 320 |
+
out = out.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous()
|
| 321 |
+
|
| 322 |
+
out = F.relu(F.interpolate(self.dbn3(self.decoder3(out)),scale_factor=(2,2),mode ='bilinear'))
|
| 323 |
+
out = torch.add(out,t2)
|
| 324 |
+
out = F.relu(F.interpolate(self.dbn4(self.decoder4(out)),scale_factor=(2,2),mode ='bilinear'))
|
| 325 |
+
out = torch.add(out,t1)
|
| 326 |
+
out = F.relu(F.interpolate(self.decoder5(out),scale_factor=(2,2),mode ='bilinear'))
|
| 327 |
+
|
| 328 |
+
return self.soft(self.final(out)),0
|
| 329 |
+
|
| 330 |
+
|
| 331 |
+
class UNext_S(nn.Module):
|
| 332 |
+
|
| 333 |
+
## Conv 3 + MLP 2 + shifted MLP w less parameters
|
| 334 |
+
|
| 335 |
+
def __init__(self, num_classes, input_channels=3, deep_supervision=False,img_size=256, patch_size=16, in_chans=3, embed_dims=[32, 64, 128, 512],
|
| 336 |
+
num_heads=[1, 2, 4, 8], mlp_ratios=[4, 4, 4, 4], qkv_bias=False, qk_scale=None, drop_rate=0.,
|
| 337 |
+
attn_drop_rate=0., drop_path_rate=0., norm_layer=nn.LayerNorm,
|
| 338 |
+
depths=[1, 1, 1], sr_ratios=[8, 4, 2, 1], **kwargs):
|
| 339 |
+
super().__init__()
|
| 340 |
+
|
| 341 |
+
self.encoder1 = nn.Conv2d(3, 8, 3, stride=1, padding=1)
|
| 342 |
+
self.encoder2 = nn.Conv2d(8, 16, 3, stride=1, padding=1)
|
| 343 |
+
self.encoder3 = nn.Conv2d(16, 32, 3, stride=1, padding=1)
|
| 344 |
+
|
| 345 |
+
self.ebn1 = nn.BatchNorm2d(8)
|
| 346 |
+
self.ebn2 = nn.BatchNorm2d(16)
|
| 347 |
+
self.ebn3 = nn.BatchNorm2d(32)
|
| 348 |
+
|
| 349 |
+
self.norm3 = norm_layer(embed_dims[1])
|
| 350 |
+
self.norm4 = norm_layer(embed_dims[2])
|
| 351 |
+
|
| 352 |
+
self.dnorm3 = norm_layer(64)
|
| 353 |
+
self.dnorm4 = norm_layer(32)
|
| 354 |
+
|
| 355 |
+
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))]
|
| 356 |
+
|
| 357 |
+
self.block1 = nn.ModuleList([shiftedBlock(
|
| 358 |
+
dim=embed_dims[1], num_heads=num_heads[0], mlp_ratio=1, qkv_bias=qkv_bias, qk_scale=qk_scale,
|
| 359 |
+
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[0], norm_layer=norm_layer,
|
| 360 |
+
sr_ratio=sr_ratios[0])])
|
| 361 |
+
|
| 362 |
+
self.block2 = nn.ModuleList([shiftedBlock(
|
| 363 |
+
dim=embed_dims[2], num_heads=num_heads[0], mlp_ratio=1, qkv_bias=qkv_bias, qk_scale=qk_scale,
|
| 364 |
+
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[1], norm_layer=norm_layer,
|
| 365 |
+
sr_ratio=sr_ratios[0])])
|
| 366 |
+
|
| 367 |
+
self.dblock1 = nn.ModuleList([shiftedBlock(
|
| 368 |
+
dim=embed_dims[1], num_heads=num_heads[0], mlp_ratio=1, qkv_bias=qkv_bias, qk_scale=qk_scale,
|
| 369 |
+
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[0], norm_layer=norm_layer,
|
| 370 |
+
sr_ratio=sr_ratios[0])])
|
| 371 |
+
|
| 372 |
+
self.dblock2 = nn.ModuleList([shiftedBlock(
|
| 373 |
+
dim=embed_dims[0], num_heads=num_heads[0], mlp_ratio=1, qkv_bias=qkv_bias, qk_scale=qk_scale,
|
| 374 |
+
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[1], norm_layer=norm_layer,
|
| 375 |
+
sr_ratio=sr_ratios[0])])
|
| 376 |
+
|
| 377 |
+
self.patch_embed3 = OverlapPatchEmbed(img_size=img_size // 4, patch_size=3, stride=2, in_chans=embed_dims[0],
|
| 378 |
+
embed_dim=embed_dims[1])
|
| 379 |
+
self.patch_embed4 = OverlapPatchEmbed(img_size=img_size // 8, patch_size=3, stride=2, in_chans=embed_dims[1],
|
| 380 |
+
embed_dim=embed_dims[2])
|
| 381 |
+
|
| 382 |
+
self.decoder1 = nn.Conv2d(128, 64, 3, stride=1,padding=1)
|
| 383 |
+
self.decoder2 = nn.Conv2d(64, 32, 3, stride=1, padding=1)
|
| 384 |
+
self.decoder3 = nn.Conv2d(32, 16, 3, stride=1, padding=1)
|
| 385 |
+
self.decoder4 = nn.Conv2d(16, 8, 3, stride=1, padding=1)
|
| 386 |
+
self.decoder5 = nn.Conv2d(8, 8, 3, stride=1, padding=1)
|
| 387 |
+
|
| 388 |
+
self.dbn1 = nn.BatchNorm2d(64)
|
| 389 |
+
self.dbn2 = nn.BatchNorm2d(32)
|
| 390 |
+
self.dbn3 = nn.BatchNorm2d(16)
|
| 391 |
+
self.dbn4 = nn.BatchNorm2d(8)
|
| 392 |
+
|
| 393 |
+
self.final = nn.Conv2d(8, num_classes, kernel_size=1)
|
| 394 |
+
|
| 395 |
+
self.soft = nn.Softmax(dim =1)
|
| 396 |
+
|
| 397 |
+
def forward(self, x, text_dummy):
|
| 398 |
+
|
| 399 |
+
B = x.shape[0]
|
| 400 |
+
### Encoder
|
| 401 |
+
### Conv Stage
|
| 402 |
+
|
| 403 |
+
### Stage 1
|
| 404 |
+
out = F.relu(F.max_pool2d(self.ebn1(self.encoder1(x)),2,2))
|
| 405 |
+
t1 = out
|
| 406 |
+
### Stage 2
|
| 407 |
+
out = F.relu(F.max_pool2d(self.ebn2(self.encoder2(out)),2,2))
|
| 408 |
+
t2 = out
|
| 409 |
+
### Stage 3
|
| 410 |
+
out = F.relu(F.max_pool2d(self.ebn3(self.encoder3(out)),2,2))
|
| 411 |
+
t3 = out
|
| 412 |
+
|
| 413 |
+
### Tokenized MLP Stage
|
| 414 |
+
### Stage 4
|
| 415 |
+
|
| 416 |
+
out,H,W = self.patch_embed3(out)
|
| 417 |
+
for i, blk in enumerate(self.block1):
|
| 418 |
+
out = blk(out, H, W)
|
| 419 |
+
out = self.norm3(out)
|
| 420 |
+
out = out.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous()
|
| 421 |
+
t4 = out
|
| 422 |
+
|
| 423 |
+
### Bottleneck
|
| 424 |
+
|
| 425 |
+
out ,H,W= self.patch_embed4(out)
|
| 426 |
+
for i, blk in enumerate(self.block2):
|
| 427 |
+
out = blk(out, H, W)
|
| 428 |
+
out = self.norm4(out)
|
| 429 |
+
out = out.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous()
|
| 430 |
+
|
| 431 |
+
### Stage 4
|
| 432 |
+
|
| 433 |
+
out = F.relu(F.interpolate(self.dbn1(self.decoder1(out)),scale_factor=(2,2),mode ='bilinear'))
|
| 434 |
+
|
| 435 |
+
out = torch.add(out,t4)
|
| 436 |
+
_,_,H,W = out.shape
|
| 437 |
+
out = out.flatten(2).transpose(1,2)
|
| 438 |
+
for i, blk in enumerate(self.dblock1):
|
| 439 |
+
out = blk(out, H, W)
|
| 440 |
+
|
| 441 |
+
### Stage 3
|
| 442 |
+
|
| 443 |
+
out = self.dnorm3(out)
|
| 444 |
+
out = out.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous()
|
| 445 |
+
out = F.relu(F.interpolate(self.dbn2(self.decoder2(out)),scale_factor=(2,2),mode ='bilinear'))
|
| 446 |
+
out = torch.add(out,t3)
|
| 447 |
+
_,_,H,W = out.shape
|
| 448 |
+
out = out.flatten(2).transpose(1,2)
|
| 449 |
+
|
| 450 |
+
for i, blk in enumerate(self.dblock2):
|
| 451 |
+
out = blk(out, H, W)
|
| 452 |
+
|
| 453 |
+
out = self.dnorm4(out)
|
| 454 |
+
out = out.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous()
|
| 455 |
+
|
| 456 |
+
out = F.relu(F.interpolate(self.dbn3(self.decoder3(out)),scale_factor=(2,2),mode ='bilinear'))
|
| 457 |
+
out = torch.add(out,t2)
|
| 458 |
+
out = F.relu(F.interpolate(self.dbn4(self.decoder4(out)),scale_factor=(2,2),mode ='bilinear'))
|
| 459 |
+
out = torch.add(out,t1)
|
| 460 |
+
out = F.relu(F.interpolate(self.decoder5(out),scale_factor=(2,2),mode ='bilinear'))
|
| 461 |
+
|
| 462 |
+
return self.final(out)
|
| 463 |
+
|
| 464 |
+
|
| 465 |
+
class medt_net(nn.Module):
|
| 466 |
+
|
| 467 |
+
def __init__(self, block, block_2, layers, num_classes=2, zero_init_residual=True,
|
| 468 |
+
groups=8, width_per_group=64, replace_stride_with_dilation=None,
|
| 469 |
+
norm_layer=None, s=0.125, img_size = 128,imgchan = 3):
|
| 470 |
+
super(medt_net, self).__init__()
|
| 471 |
+
if norm_layer is None:
|
| 472 |
+
norm_layer = nn.BatchNorm2d
|
| 473 |
+
self._norm_layer = norm_layer
|
| 474 |
+
|
| 475 |
+
self.inplanes = int(64 * s)
|
| 476 |
+
self.dilation = 1
|
| 477 |
+
if replace_stride_with_dilation is None:
|
| 478 |
+
replace_stride_with_dilation = [False, False, False]
|
| 479 |
+
if len(replace_stride_with_dilation) != 3:
|
| 480 |
+
raise ValueError("replace_stride_with_dilation should be None "
|
| 481 |
+
"or a 3-element tuple, got {}".format(replace_stride_with_dilation))
|
| 482 |
+
self.groups = groups
|
| 483 |
+
self.base_width = width_per_group
|
| 484 |
+
self.conv1 = nn.Conv2d(imgchan, self.inplanes, kernel_size=7, stride=2, padding=3,
|
| 485 |
+
bias=False)
|
| 486 |
+
self.conv2 = nn.Conv2d(self.inplanes, 128, kernel_size=3, stride=1, padding=1, bias=False)
|
| 487 |
+
self.conv3 = nn.Conv2d(128, self.inplanes, kernel_size=3, stride=1, padding=1, bias=False)
|
| 488 |
+
self.bn1 = norm_layer(self.inplanes)
|
| 489 |
+
self.bn2 = norm_layer(128)
|
| 490 |
+
self.bn3 = norm_layer(self.inplanes)
|
| 491 |
+
self.bn1 = norm_layer(self.inplanes)
|
| 492 |
+
self.relu = nn.ReLU(inplace=True)
|
| 493 |
+
self.layer1 = self._make_layer(block, int(128 * s), layers[0], kernel_size= (img_size//2))
|
| 494 |
+
self.layer2 = self._make_layer(block, int(256 * s), layers[1], stride=2, kernel_size=(img_size//2),
|
| 495 |
+
dilate=replace_stride_with_dilation[0])
|
| 496 |
+
|
| 497 |
+
self.decoder4 = nn.Conv2d(int(512*s) , int(256*s), kernel_size=3, stride=1, padding=1)
|
| 498 |
+
self.decoder5 = nn.Conv2d(int(256*s) , int(128*s) , kernel_size=3, stride=1, padding=1)
|
| 499 |
+
self.adjust = nn.Conv2d(int(128*s) , num_classes, kernel_size=1, stride=1, padding=0)
|
| 500 |
+
self.soft = nn.Softmax(dim=1)
|
| 501 |
+
|
| 502 |
+
|
| 503 |
+
self.conv1_p = nn.Conv2d(imgchan, self.inplanes, kernel_size=7, stride=2, padding=3,
|
| 504 |
+
bias=False)
|
| 505 |
+
self.conv2_p = nn.Conv2d(self.inplanes,128, kernel_size=3, stride=1, padding=1,
|
| 506 |
+
bias=False)
|
| 507 |
+
self.conv3_p = nn.Conv2d(128, self.inplanes, kernel_size=3, stride=1, padding=1,
|
| 508 |
+
bias=False)
|
| 509 |
+
self.bn1_p = norm_layer(self.inplanes)
|
| 510 |
+
self.bn2_p = norm_layer(128)
|
| 511 |
+
self.bn3_p = norm_layer(self.inplanes)
|
| 512 |
+
|
| 513 |
+
self.relu_p = nn.ReLU(inplace=True)
|
| 514 |
+
|
| 515 |
+
img_size_p = img_size // 4
|
| 516 |
+
|
| 517 |
+
self.layer1_p = self._make_layer(block_2, int(128 * s), layers[0], kernel_size= (img_size_p//2))
|
| 518 |
+
self.layer2_p = self._make_layer(block_2, int(256 * s), layers[1], stride=2, kernel_size=(img_size_p//2),
|
| 519 |
+
dilate=replace_stride_with_dilation[0])
|
| 520 |
+
self.layer3_p = self._make_layer(block_2, int(512 * s), layers[2], stride=2, kernel_size=(img_size_p//4),
|
| 521 |
+
dilate=replace_stride_with_dilation[1])
|
| 522 |
+
self.layer4_p = self._make_layer(block_2, int(1024 * s), layers[3], stride=2, kernel_size=(img_size_p//8),
|
| 523 |
+
dilate=replace_stride_with_dilation[2])
|
| 524 |
+
|
| 525 |
+
# Decoder
|
| 526 |
+
self.decoder1_p = nn.Conv2d(int(1024 *2*s) , int(1024*2*s), kernel_size=3, stride=2, padding=1)
|
| 527 |
+
self.decoder2_p = nn.Conv2d(int(1024 *2*s) , int(1024*s), kernel_size=3, stride=1, padding=1)
|
| 528 |
+
self.decoder3_p = nn.Conv2d(int(1024*s), int(512*s), kernel_size=3, stride=1, padding=1)
|
| 529 |
+
self.decoder4_p = nn.Conv2d(int(512*s) , int(256*s), kernel_size=3, stride=1, padding=1)
|
| 530 |
+
self.decoder5_p = nn.Conv2d(int(256*s) , int(128*s) , kernel_size=3, stride=1, padding=1)
|
| 531 |
+
|
| 532 |
+
self.decoderf = nn.Conv2d(int(128*s) , int(128*s) , kernel_size=3, stride=1, padding=1)
|
| 533 |
+
self.adjust_p = nn.Conv2d(int(128*s) , num_classes, kernel_size=1, stride=1, padding=0)
|
| 534 |
+
self.soft_p = nn.Softmax(dim=1)
|
| 535 |
+
|
| 536 |
+
|
| 537 |
+
def _make_layer(self, block, planes, blocks, kernel_size=56, stride=1, dilate=False):
|
| 538 |
+
norm_layer = self._norm_layer
|
| 539 |
+
downsample = None
|
| 540 |
+
previous_dilation = self.dilation
|
| 541 |
+
if dilate:
|
| 542 |
+
self.dilation *= stride
|
| 543 |
+
stride = 1
|
| 544 |
+
if stride != 1 or self.inplanes != planes * block.expansion:
|
| 545 |
+
downsample = nn.Sequential(
|
| 546 |
+
conv1x1(self.inplanes, planes * block.expansion, stride),
|
| 547 |
+
norm_layer(planes * block.expansion),
|
| 548 |
+
)
|
| 549 |
+
|
| 550 |
+
layers = []
|
| 551 |
+
layers.append(block(self.inplanes, planes, stride, downsample, groups=self.groups,
|
| 552 |
+
base_width=self.base_width, dilation=previous_dilation,
|
| 553 |
+
norm_layer=norm_layer, kernel_size=kernel_size))
|
| 554 |
+
self.inplanes = planes * block.expansion
|
| 555 |
+
if stride != 1:
|
| 556 |
+
kernel_size = kernel_size // 2
|
| 557 |
+
|
| 558 |
+
for _ in range(1, blocks):
|
| 559 |
+
layers.append(block(self.inplanes, planes, groups=self.groups,
|
| 560 |
+
base_width=self.base_width, dilation=self.dilation,
|
| 561 |
+
norm_layer=norm_layer, kernel_size=kernel_size))
|
| 562 |
+
|
| 563 |
+
return nn.Sequential(*layers)
|
| 564 |
+
|
| 565 |
+
def _forward_impl(self, x):
|
| 566 |
+
|
| 567 |
+
xin = x.clone()
|
| 568 |
+
x = self.conv1(x)
|
| 569 |
+
x = self.bn1(x)
|
| 570 |
+
x = self.relu(x)
|
| 571 |
+
x = self.conv2(x)
|
| 572 |
+
x = self.bn2(x)
|
| 573 |
+
x = self.relu(x)
|
| 574 |
+
x = self.conv3(x)
|
| 575 |
+
x = self.bn3(x)
|
| 576 |
+
x = self.relu(x)
|
| 577 |
+
|
| 578 |
+
x1 = self.layer1(x)
|
| 579 |
+
x2 = self.layer2(x1)
|
| 580 |
+
|
| 581 |
+
x = F.relu(F.interpolate(self.decoder4(x2) , scale_factor=(2,2), mode ='bilinear'))
|
| 582 |
+
x = torch.add(x, x1)
|
| 583 |
+
x = F.relu(F.interpolate(self.decoder5(x) , scale_factor=(2,2), mode ='bilinear'))
|
| 584 |
+
|
| 585 |
+
# end of full image training
|
| 586 |
+
|
| 587 |
+
x_loc = x.clone()
|
| 588 |
+
#start
|
| 589 |
+
for i in range(0,4):
|
| 590 |
+
for j in range(0,4):
|
| 591 |
+
|
| 592 |
+
x_p = xin[:,:,32*i:32*(i+1),32*j:32*(j+1)]
|
| 593 |
+
# begin patch wise
|
| 594 |
+
x_p = self.conv1_p(x_p)
|
| 595 |
+
x_p = self.bn1_p(x_p)
|
| 596 |
+
x_p = self.relu(x_p)
|
| 597 |
+
|
| 598 |
+
x_p = self.conv2_p(x_p)
|
| 599 |
+
x_p = self.bn2_p(x_p)
|
| 600 |
+
x_p = self.relu(x_p)
|
| 601 |
+
x_p = self.conv3_p(x_p)
|
| 602 |
+
x_p = self.bn3_p(x_p)
|
| 603 |
+
x_p = self.relu(x_p)
|
| 604 |
+
|
| 605 |
+
x1_p = self.layer1_p(x_p)
|
| 606 |
+
x2_p = self.layer2_p(x1_p)
|
| 607 |
+
x3_p = self.layer3_p(x2_p)
|
| 608 |
+
x4_p = self.layer4_p(x3_p)
|
| 609 |
+
|
| 610 |
+
x_p = F.relu(F.interpolate(self.decoder1_p(x4_p), scale_factor=(2,2), mode ='bilinear'))
|
| 611 |
+
x_p = torch.add(x_p, x4_p)
|
| 612 |
+
x_p = F.relu(F.interpolate(self.decoder2_p(x_p) , scale_factor=(2,2), mode ='bilinear'))
|
| 613 |
+
x_p = torch.add(x_p, x3_p)
|
| 614 |
+
x_p = F.relu(F.interpolate(self.decoder3_p(x_p) , scale_factor=(2,2), mode ='bilinear'))
|
| 615 |
+
x_p = torch.add(x_p, x2_p)
|
| 616 |
+
x_p = F.relu(F.interpolate(self.decoder4_p(x_p) , scale_factor=(2,2), mode ='bilinear'))
|
| 617 |
+
x_p = torch.add(x_p, x1_p)
|
| 618 |
+
x_p = F.relu(F.interpolate(self.decoder5_p(x_p) , scale_factor=(2,2), mode ='bilinear'))
|
| 619 |
+
|
| 620 |
+
x_loc[:,:,32*i:32*(i+1),32*j:32*(j+1)] = x_p
|
| 621 |
+
|
| 622 |
+
x = torch.add(x,x_loc)
|
| 623 |
+
x = F.relu(self.decoderf(x))
|
| 624 |
+
|
| 625 |
+
x = self.adjust(F.relu(x))
|
| 626 |
+
|
| 627 |
+
return x
|
| 628 |
+
|
| 629 |
+
def forward(self, x, text_dummy):
|
| 630 |
+
return self._forward_impl(x)
|
AllinonSAM/biastuning/DIAS/labels/epoch_0_batch_0_img_0.png
ADDED
|
AllinonSAM/biastuning/DIAS/labels/epoch_0_batch_0_img_1.png
ADDED
|
AllinonSAM/biastuning/DIAS/labels/epoch_0_batch_1_img_0.png
ADDED
|
AllinonSAM/biastuning/DIAS/labels/epoch_0_batch_1_img_1.png
ADDED
|
AllinonSAM/biastuning/DIAS/labels/epoch_100_batch_0_img_0.png
ADDED
|
AllinonSAM/biastuning/DIAS/labels/epoch_100_batch_0_img_1.png
ADDED
|
AllinonSAM/biastuning/DIAS/labels/epoch_100_batch_1_img_0.png
ADDED
|
AllinonSAM/biastuning/DIAS/labels/epoch_100_batch_1_img_1.png
ADDED
|
AllinonSAM/biastuning/DIAS/labels/epoch_10_batch_0_img_0.png
ADDED
|
AllinonSAM/biastuning/DIAS/labels/epoch_10_batch_0_img_1.png
ADDED
|
AllinonSAM/biastuning/DIAS/labels/epoch_10_batch_1_img_0.png
ADDED
|
AllinonSAM/biastuning/DIAS/labels/epoch_10_batch_1_img_1.png
ADDED
|
AllinonSAM/biastuning/DIAS/labels/epoch_110_batch_0_img_0.png
ADDED
|
AllinonSAM/biastuning/DIAS/labels/epoch_110_batch_0_img_1.png
ADDED
|
AllinonSAM/biastuning/DIAS/labels/epoch_110_batch_1_img_0.png
ADDED
|
AllinonSAM/biastuning/DIAS/labels/epoch_110_batch_1_img_1.png
ADDED
|
AllinonSAM/biastuning/DIAS/labels/epoch_120_batch_0_img_0.png
ADDED
|
AllinonSAM/biastuning/DIAS/labels/epoch_120_batch_0_img_1.png
ADDED
|
AllinonSAM/biastuning/DIAS/labels/epoch_120_batch_1_img_0.png
ADDED
|
AllinonSAM/biastuning/DIAS/labels/epoch_120_batch_1_img_1.png
ADDED
|
AllinonSAM/biastuning/DIAS/labels/epoch_130_batch_0_img_0.png
ADDED
|
AllinonSAM/biastuning/DIAS/labels/epoch_130_batch_0_img_1.png
ADDED
|
AllinonSAM/biastuning/DIAS/labels/epoch_130_batch_1_img_0.png
ADDED
|
AllinonSAM/biastuning/DIAS/labels/epoch_130_batch_1_img_1.png
ADDED
|
AllinonSAM/biastuning/DIAS/labels/epoch_140_batch_0_img_0.png
ADDED
|
AllinonSAM/biastuning/DIAS/labels/epoch_140_batch_0_img_1.png
ADDED
|
AllinonSAM/biastuning/DIAS/labels/epoch_140_batch_1_img_0.png
ADDED
|
AllinonSAM/biastuning/DIAS/labels/epoch_140_batch_1_img_1.png
ADDED
|