prithivMLmods commited on
Commit
a751f71
·
verified ·
1 Parent(s): 34c8a5b

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +3 -3
README.md CHANGED
@@ -20,7 +20,7 @@ tags:
20
 
21
  # **siglip2-x384-explicit-content**
22
 
23
- > **siglip2-x384-explicit-content** is a vision-language encoder model fine-tuned from **google/siglip2-base-patch16-384** for **multi-class image classification**. Based on the **SiglipForImageClassification** architecture, this model is designed to detect and categorize various forms of visual content, from safe to explicit, making it ideal for content moderation and media filtering.
24
 
25
  ---
26
 
@@ -55,7 +55,7 @@ from PIL import Image
55
  import torch
56
 
57
  # Load model and processor
58
- model_name = "prithivMLmods/siglip2-x384-explicit-content" # Replace with your HF model path if needed
59
  model = SiglipForImageClassification.from_pretrained(model_name)
60
  processor = AutoImageProcessor.from_pretrained(model_name)
61
 
@@ -88,7 +88,7 @@ iface = gr.Interface(
88
  fn=classify_explicit_content,
89
  inputs=gr.Image(type="numpy"),
90
  outputs=gr.Label(num_top_classes=5, label="Predicted Content Type"),
91
- title="siglip2-x384-explicit-content",
92
  description="Classifies images as Anime, Hentai, Pornography, Enticing, or Safe for use in moderation systems."
93
  )
94
 
 
20
 
21
  # **siglip2-x384-explicit-content**
22
 
23
+ > **siglip2-x256p32-explicit-content** is a vision-language encoder model fine-tuned from **siglip2-base-patch32-256** for **multi-class image classification**. Based on the **SiglipForImageClassification** architecture, this model is designed to detect and categorize various forms of visual content, from safe to explicit, making it ideal for content moderation and media filtering.
24
 
25
  ---
26
 
 
55
  import torch
56
 
57
  # Load model and processor
58
+ model_name = "prithivMLmods/siglip2-x256p32-explicit-content" # Replace with your HF model path if needed
59
  model = SiglipForImageClassification.from_pretrained(model_name)
60
  processor = AutoImageProcessor.from_pretrained(model_name)
61
 
 
88
  fn=classify_explicit_content,
89
  inputs=gr.Image(type="numpy"),
90
  outputs=gr.Label(num_top_classes=5, label="Predicted Content Type"),
91
+ title= "siglip2-x256p32-explicit-content",
92
  description="Classifies images as Anime, Hentai, Pornography, Enticing, or Safe for use in moderation systems."
93
  )
94