File size: 4,537 Bytes
a6a482e
 
 
 
 
 
 
0da1383
a6a482e
 
 
 
13eca03
a6a482e
 
 
4fc6269
 
 
250ba1f
106ad94
 
d3d3a29
 
ff80302
106ad94
ff80302
106ad94
 
a099c0a
106ad94
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ff80302
106ad94
 
 
 
ff80302
 
 
 
 
 
 
 
 
 
 
 
 
 
 
106ad94
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4fc6269
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
---
license: apache-2.0
datasets:
- microsoft/rStar-Coder
language:
- en
base_model:
- Qwen/Qwen3-0.6B
pipeline_tag: text-generation
library_name: transformers
tags:
- text-generation-inference
- chain-of-thought
- trl
- coder
- code
- core
- python
- math
- gspo
---

![1.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/Ez1oF0wGQseTe2jqZhEhR.png)

# **rStar-Coder-Qwen3**

> rStar-Coder-Qwen3 is a high-efficiency, multi-domain model fine-tuned on **Qwen-0.6B** using the **rStar-Coder** dataset enhanced with **code expert clusters** and an extended **open code reasoning dataset**. This model blends symbolic precision, scientific logic, and structured output fluency—making it an ideal tool for developers, educators, and researchers seeking advanced reasoning under constrained compute.

> \[!note]
> GGUF: [https://huggingface.co/prithivMLmods/rStar-Coder-Qwen3-GGUF](https://huggingface.co/prithivMLmods/rStar-Coder-Qwen3-0.6B-GGUF)

---

## **Key Features**

1. **Unified Reasoning Across Code, Math & Science**
   Fine-tuned on **expert clusters** spanning programming, mathematics, and scientific logic, alongside an **open code reasoning dataset**, boosting multi-modal symbolic reasoning.

2. **Advanced Code Reasoning & Generation**
   Supports multi-language coding with explanations, optimization hints, and error detection—ideal for full-stack prototyping, algorithm synthesis, and debugging workflows.

3. **Scientific Problem Solving**
   Performs analytical reasoning in physics, biology, and chemistry—explaining concepts, solving equations, and handling symbolic derivations step-by-step.

4. **Hybrid Symbolic-AI Thinking**
   Combines structured logic, chain-of-thought reasoning, and open-ended inference, delivering robust performance on STEM tasks and complex prompt decomposition.

5. **Structured Output Mastery**
   Seamlessly generates output in **LaTeX**, **Markdown**, **JSON**, **CSV**, and **YAML**, suited for research reports, technical documentation, and data formats.

6. **Optimized Lightweight Footprint for Versatile Deployment**
   Strikes a balance between performance and efficiency, making it deployable on **mid-range GPUs**, **offline clusters**, and advanced **edge AI systems**.

---

## Dataset Seed

```python
from datasets import load_dataset

# Load the reasoning dataset
reasoning_dataset = load_dataset(
    "microsoft/rStar-Coder",
    data_files="seed_sft/data-00001-of-00020.parquet",
    split="train"
)
```

---

## **Quickstart with Transformers**

```python
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "prithivMLmods/rStar-Coder-Qwen3"

model = AutoModelForCausalLM.from_pretrained(
    model_name,
    torch_dtype="auto",
    device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "Explain the difference between Newtonian mechanics and quantum mechanics with examples."

messages = [
    {"role": "system", "content": "You are a scientific tutor skilled in code, math, and reasoning."},
    {"role": "user", "content": prompt}
]

text = tokenizer.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True
)

model_inputs = tokenizer([text], return_tensors="pt").to(model.device)

generated_ids = model.generate(
    **model_inputs,
    max_new_tokens=512
)
generated_ids = [
    output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]

response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
print(response)
```

---

## **Intended Use**

* Scientific tutoring, computational logic, and mathematical education
* Advanced coding assistant for algorithm design, code reviews, and documentation
* Structured technical data generation across formats and fields
* STEM-focused chatbot or API for research and education tools
* Mid-resource deployment requiring high symbolic fidelity

## **Limitations**

* Not tuned for general-purpose or long-form creative writing
* Context limitations may hinder multi-document or full codebase analysis
* Specialized in technical and symbolic tasks—general chat may underperform
* Prioritizes structured reasoning over emotional or casual tone generation

## **References**

1. [Qwen2.5 Technical Report (2024)](https://arxiv.org/pdf/2412.15115)
2. [YaRN: Efficient Context Window Extension of Large Language Models](https://arxiv.org/pdf/2309.00071)
3. [microsoft/rStar-Coder Dataset](https://huggingface.co/datasets/microsoft/rStar-Coder)