File size: 2,590 Bytes
c50fb9a e001be0 2ce7670 e001be0 7a170d6 2f5b1ac e001be0 7b35fb0 c50fb9a de177d5 aa06c8e 7b35fb0 aa06c8e 7b35fb0 bb36ed6 7820d58 7b35fb0 bb36ed6 7b35fb0 482ab4f 7b35fb0 482ab4f 7b35fb0 bb36ed6 7b35fb0 bb36ed6 7b35fb0 bb36ed6 7b35fb0 bb36ed6 7b35fb0 bb36ed6 7b35fb0 bb36ed6 7b35fb0 bb36ed6 7b35fb0 c1001e7 7b35fb0 bb36ed6 7b35fb0 bb36ed6 7b35fb0 bb36ed6 7b35fb0 46438bd 7b35fb0 5bab673 7b35fb0 5bab673 7b35fb0 bb36ed6 7b35fb0 bb36ed6 7b35fb0 bb36ed6 7b35fb0 bb36ed6 7b35fb0 bb36ed6 7b35fb0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 |
---
license: apache-2.0
pipeline_tag: image-classification
library_name: transformers
tags:
- deep-fake
- ViT
- detection
- Image
base_model:
- google/vit-base-patch16-224-in21k
datasets:
- prithivMLmods/OpenDeepfake-Preview
language:
- en
---

# deepfake-detector-model
> deepfake-detector-model is a vision-language model fine-tuned from `google/vit-base-patch16-224-in21k` for binary image classification. It is trained to detect whether an image is fake or real using the *OpenDeepfake-Preview* dataset. The model uses the `ViTForImageClassification` architecture.
---
## Label Space: 2 Classes
The model classifies an image as either:
```
Class 0: fake
Class 1: real
```
---
## Install Dependencies
```bash
pip install -q transformers torch pillow gradio hf_xet
```
---
## Inference Code
```python
import gradio as gr
from transformers import ViTImageProcessor, ViTForImageClassification
from PIL import Image
import torch
# Load model and processor
model_name = "prithivMLmods/deepfake-detector-model"
model = ViTForImageClassification.from_pretrained(model_name)
processor = ViTImageProcessor.from_pretrained(model_name)
# Updated label mapping
labels_list = ['fake', 'real']
def classify_image(image):
image = Image.fromarray(image).convert("RGB")
inputs = processor(images=image, return_tensors="pt")
with torch.no_grad():
outputs = model(**inputs)
logits = outputs.logits
probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist()
prediction = {
labels_list[i]: round(probs[i], 3) for i in range(len(probs))
}
return prediction
# Gradio Interface
iface = gr.Interface(
fn=classify_image,
inputs=gr.Image(type="numpy"),
outputs=gr.Label(num_top_classes=2, label="Deepfake Detection"),
title="deepfake-detector-model",
description="Upload an image to detect whether it is AI-generated (fake) or a real photograph (real), using the OpenDeepfake-Preview dataset."
)
if __name__ == "__main__":
iface.launch()
```
---
## Intended Use
`deepfake-detector-model` is designed for:
* **Deepfake Detection** – Identify AI-generated or manipulated images.
* **Content Moderation** – Flag synthetic or fake visual content.
* **Dataset Curation** – Remove synthetic samples from mixed datasets.
* **Visual Authenticity Verification** – Check the integrity of visual media.
* **Digital Forensics** – Support image source verification and traceability. |