prithivMLmods commited on
Commit
9eb3fa7
·
verified ·
1 Parent(s): cfb28f1

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +74 -0
README.md CHANGED
@@ -1,6 +1,10 @@
1
  ---
2
  license: apache-2.0
3
  ---
 
 
 
 
4
  ```py
5
  Accuracy: 0.9891
6
  F1 Score: 0.9893
@@ -23,3 +27,73 @@ weighted avg 0.9891 0.9891 0.9891 17092
23
  ```
24
 
25
  ![download.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/ohM3P0nwh1LxVr7VNuQz2.png)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: apache-2.0
3
  ---
4
+ # **WBC-Type-Classifier**
5
+
6
+ > **WBC-Type-Classifier** is an image classification vision-language encoder model fine-tuned from **google/siglip2-base-patch16-224** for a single-label classification task. It is designed to classify different types of white blood cells (WBCs) using the **SiglipForImageClassification** architecture.
7
+
8
  ```py
9
  Accuracy: 0.9891
10
  F1 Score: 0.9893
 
27
  ```
28
 
29
  ![download.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/ohM3P0nwh1LxVr7VNuQz2.png)
30
+
31
+ The model categorizes images into eight classes:
32
+ - **Class 0:** "Basophil"
33
+ - **Class 1:** "Eosinophil"
34
+ - **Class 2:** "Erythroblast"
35
+ - **Class 3:** "IG"
36
+ - **Class 4:** "Lymphocyte"
37
+ - **Class 5:** "Monocyte"
38
+ - **Class 6:** "Neutrophil"
39
+ - **Class 7:** "Platelet"
40
+
41
+ # **Run with Transformers🤗**
42
+
43
+ ```python
44
+ !pip install -q transformers torch pillow gradio
45
+ ```
46
+
47
+ ```python
48
+ import gradio as gr
49
+ from transformers import AutoImageProcessor
50
+ from transformers import SiglipForImageClassification
51
+ from transformers.image_utils import load_image
52
+ from PIL import Image
53
+ import torch
54
+
55
+ # Load model and processor
56
+ model_name = "prithivMLmods/WBC-Type-Classifier"
57
+ model = SiglipForImageClassification.from_pretrained(model_name)
58
+ processor = AutoImageProcessor.from_pretrained(model_name)
59
+
60
+ def wbc_classification(image):
61
+ """Predicts WBC type for a given blood cell image."""
62
+ image = Image.fromarray(image).convert("RGB")
63
+ inputs = processor(images=image, return_tensors="pt")
64
+
65
+ with torch.no_grad():
66
+ outputs = model(**inputs)
67
+ logits = outputs.logits
68
+ probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist()
69
+
70
+ labels = {
71
+ "0": "Basophil", "1": "Eosinophil", "2": "Erythroblast", "3": "IG",
72
+ "4": "Lymphocyte", "5": "Monocyte", "6": "Neutrophil", "7": "Platelet"
73
+ }
74
+ predictions = {labels[str(i)]: round(probs[i], 3) for i in range(len(probs))}
75
+
76
+ return predictions
77
+
78
+ # Create Gradio interface
79
+ iface = gr.Interface(
80
+ fn=wbc_classification,
81
+ inputs=gr.Image(type="numpy"),
82
+ outputs=gr.Label(label="Prediction Scores"),
83
+ title="WBC Type Classification",
84
+ description="Upload a blood cell image to classify its WBC type."
85
+ )
86
+
87
+ # Launch the app
88
+ if __name__ == "__main__":
89
+ iface.launch()
90
+ ```
91
+
92
+ # **Intended Use:**
93
+
94
+ The **WBC-Type-Classifier** model is designed to classify different types of white blood cells from blood smear images. Potential use cases include:
95
+
96
+ - **Medical Diagnostics:** Assisting pathologists in identifying different WBC types for diagnosis.
97
+ - **Hematology Research:** Supporting studies related to blood cell morphology and disease detection.
98
+ - **Automated Blood Analysis:** Enhancing automated diagnostic tools for rapid blood cell classification.
99
+ - **Educational Purposes:** Providing insights and training data for medical students and researchers.