--- language: - en - zh base_model: - Qwen/Qwen2.5-VL-7B-Instruct pipeline_tag: image-text-to-text library_name: transformers tags: - Document - KIE - OCR - VL - Openpdf - Camel - text-generation-inference - Extraction - Linking - Markdown - .Md - OpenPDF - OCRmix - trl datasets: - prithivMLmods/OpenDoc-Pdf-Preview - prithivMLmods/Opendoc1-Analysis-Recognition - allenai/olmOCR-mix-0225 - prithivMLmods/Openpdf-Analysis-Recognition license: apache-2.0 --- ![1.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/CZM7u91ww9SJPFQiY7YlI.png) # **Camel-Doc-OCR-080125(v2-preview)** > The **Camel-Doc-OCR-080125** model is a fine-tuned version of **Qwen2.5-VL-7B-Instruct**, optimized for **Document Retrieval**, **Content Extraction**, and **Analysis Recognition**. Built on top of the Qwen2.5-VL architecture, this model enhances document comprehension capabilities with focused training on the Opendoc2-Analysis-Recognition dataset for superior document analysis and information extraction tasks. ## Key Enhancements * **Context-Aware Multimodal Extraction and Linking for Documents**: Advanced capability for understanding document context and establishing connections between multimodal elements within documents. * **Enhanced Document Retrieval**: Designed to efficiently locate and extract relevant information from complex document structures and layouts. * **Superior Content Extraction**: Optimized for precise extraction of structured and unstructured content from diverse document formats. * **Analysis Recognition**: Specialized in recognizing and interpreting analytical content, charts, tables, and visual data representations. * **State-of-the-Art Performance Across Resolutions**: Achieves competitive results on OCR and visual QA benchmarks such as DocVQA, MathVista, RealWorldQA, and MTVQA. * **Video Understanding up to 20+ minutes**: Supports detailed comprehension of long-duration videos for content summarization, question answering, and multi-modal reasoning. * **Visually-Grounded Device Interaction**: Enables mobile or robotic device operation via visual inputs and text-based instructions using contextual understanding and decision-making logic. ## Quick Start with Transformers ```python from transformers import Qwen2_5_VLForConditionalGeneration, AutoTokenizer, AutoProcessor from qwen_vl_utils import process_vision_info model = Qwen2_5_VLForConditionalGeneration.from_pretrained( "prithivMLmods/Camel-Doc-OCR-080125", torch_dtype="auto", device_map="auto" ) processor = AutoProcessor.from_pretrained("prithivMLmods/Camel-Doc-OCR-080125") messages = [ { "role": "user", "content": [ { "type": "image", "image": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/demo.jpeg", }, {"type": "text", "text": "Describe this image."}, ], } ] text = processor.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) image_inputs, video_inputs = process_vision_info(messages) inputs = processor( text=[text], images=image_inputs, videos=video_inputs, padding=True, return_tensors="pt", ) inputs = inputs.to("cuda") generated_ids = model.generate(**inputs, max_new_tokens=128) generated_ids_trimmed = [ out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids) ] output_text = processor.batch_decode( generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False ) print(output_text) ``` ## Intended Use This model is intended for: * Context-aware multimodal extraction and linking for complex document structures. * High-fidelity document retrieval and content extraction from various document formats. * Analysis recognition of charts, graphs, tables, and visual data representations. * Document-based question answering for educational and enterprise applications. * Extraction and LaTeX formatting of mathematical expressions from printed or handwritten content. * Retrieval and summarization from long documents, slides, and multi-modal inputs. * Multilingual document analysis and structured content extraction for global use cases. * Robotic or mobile automation with vision-guided contextual interaction. ## Limitations * May show degraded performance on extremely low-quality or occluded images. * Not optimized for real-time applications on low-resource or edge devices due to computational demands. * Variable accuracy on uncommon or low-resource languages or scripts. * Long video processing may require substantial memory and is not optimized for streaming applications. * Visual token settings affect performance; suboptimal configurations can impact results. * In rare cases, outputs may contain hallucinated or contextually misaligned information. --- ## Training Details | Parameter | Value | | ---------------------- | --------------------------------------------- | | **Dataset Size** | 230K samples (Modular Combustion of Datasets) | | **Model Architecture** | `Qwen2_5_VLForConditionalGeneration` | | **Total Disk Volume** | 400,000 MB | | **Training Time** | approx. 9,360(±120) seconds (\~2.60 hours) | | **Warmup Steps** | 750 | | **Precision** | bfloat16 | --- ## References * **DocVLM: Make Your VLM an Efficient Reader** [https://arxiv.org/pdf/2412.08746v1](https://arxiv.org/pdf/2412.08746v1) * **YaRN: Efficient Context Window Extension of Large Language Models** [https://arxiv.org/pdf/2309.00071](https://arxiv.org/pdf/2309.00071) * **Qwen2-VL: Enhancing Vision-Language Model's Perception of the World at Any Resolution** [https://arxiv.org/pdf/2409.12191](https://arxiv.org/pdf/2409.12191) * **Qwen-VL: A Versatile Vision-Language Model for Understanding, Localization, Text Reading, and Beyond** [https://arxiv.org/pdf/2308.12966](https://arxiv.org/pdf/2308.12966) * **A Comprehensive and Challenging OCR Benchmark for Evaluating Large Multimodal Models in Literacy** [https://arxiv.org/pdf/2412.02210](https://arxiv.org/pdf/2412.02210)