prithivMLmods commited on
Commit
1cbbdfb
·
verified ·
1 Parent(s): 846856f

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +92 -1
README.md CHANGED
@@ -17,4 +17,95 @@ tags:
17
  - code
18
  - math
19
  - trl
20
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17
  - code
18
  - math
19
  - trl
20
+ ---
21
+
22
+ # Bootes-Qwen3\_Coder-Reasoning
23
+
24
+ > Bootes-Qwen3\_Coder-Reasoning is a fine-tuned variant of the Qwen3-4B architecture, optimized for high-accuracy code reasoning and structured logical task completion. Trained on the CodeAlpaca\_20K dataset and additional curated programming corpora, this model is designed to perform technical coding, reasoning, and instruction-following tasks with lightweight computational requirements.
25
+
26
+ ## Key Features
27
+
28
+ 1. Code Reasoning with CodeAlpaca\_20K and More
29
+ Fine-tuned on CodeAlpaca\_20K and supplementary high-quality datasets focused on:
30
+
31
+ * Multi-language programming tasks
32
+ * Code explanation, completion, and debugging
33
+ * Instruction-following with step-wise execution logic
34
+
35
+ 2. Cross-Language Code Understanding
36
+ Handles Python, JavaScript, C++, and more. Ideal for code generation, transformation, bug-fixing, and logic validation.
37
+
38
+ 3. Structured Output Generation
39
+ Delivers responses in Markdown, JSON, YAML, and structured code blocks. Optimized for IDE workflows, documentation tools, and reproducible computation notebooks.
40
+
41
+ 4. Instruction-Tuned for Developer Use Cases
42
+ Maintains strong fidelity to user prompts, especially multi-turn or step-by-step technical instructions across engineering and data workflows.
43
+
44
+ 5. Multilingual Reasoning in Technical Domains
45
+ Capable of technical comprehension and explanation in over 20 human languages, supporting global developer audiences.
46
+
47
+ 6. Efficient 4B Architecture
48
+ Based on Qwen3-4B for a performance-efficient inference model that scales well on mid-range GPUs and cloud deployment setups.
49
+
50
+ ## Quickstart with Transformers
51
+
52
+ ```python
53
+ from transformers import AutoModelForCausalLM, AutoTokenizer
54
+
55
+ model_name = "prithivMLmods/Bootes-Qwen3_Coder-Reasoning"
56
+
57
+ model = AutoModelForCausalLM.from_pretrained(
58
+ model_name,
59
+ torch_dtype="auto",
60
+ device_map="auto"
61
+ )
62
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
63
+
64
+ prompt = "Write a Python function to check whether a number is a palindrome. Explain each step."
65
+
66
+ messages = [
67
+ {"role": "system", "content": "You are a precise coding and reasoning assistant trained on CodeAlpaca and developer datasets."},
68
+ {"role": "user", "content": prompt}
69
+ ]
70
+
71
+ text = tokenizer.apply_chat_template(
72
+ messages,
73
+ tokenize=False,
74
+ add_generation_prompt=True
75
+ )
76
+
77
+ model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
78
+
79
+ generated_ids = model.generate(
80
+ **model_inputs,
81
+ max_new_tokens=512
82
+ )
83
+ generated_ids = [
84
+ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
85
+ ]
86
+
87
+ response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
88
+ print(response)
89
+ ```
90
+
91
+ ## Intended Use
92
+
93
+ * Code generation, completion, and explanation
94
+ * Multi-step algorithmic reasoning
95
+ * Structured technical document generation (Markdown, JSON, YAML)
96
+ * Debugging assistance and refactoring suggestions
97
+ * Technical tutoring and developer assistant workflows
98
+ * Cross-lingual programming education and translation
99
+
100
+ ## Limitations
101
+
102
+ * May underperform on non-code-related creative writing
103
+ * Limited context window versus larger models
104
+ * Sensitive to prompt phrasing for ambiguous instructions
105
+ * Occasionally over-justifies code when brevity is desired
106
+
107
+ ## References
108
+
109
+ 1. Qwen2.5 Technical Report – [https://arxiv.org/pdf/2412.15115](https://arxiv.org/pdf/2412.15115)
110
+ 2. CodeAlpaca Dataset – [https://github.com/sahil280114/codealpaca](https://github.com/sahil280114/codealpaca)
111
+ 3. YaRN: Context Window Extension for LLMs – [https://arxiv.org/pdf/2309.00071](https://arxiv.org/pdf/2309.00071)