prithivMLmods commited on
Commit
f99239d
·
verified ·
1 Parent(s): 244c63d

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +79 -0
README.md CHANGED
@@ -3,6 +3,11 @@ license: apache-2.0
3
  datasets:
4
  - deepghs/anime_classification
5
  ---
 
 
 
 
 
6
 
7
  ```py
8
  Classification Report:
@@ -20,3 +25,77 @@ weighted avg 0.8670 0.8648 0.8656 21373
20
 
21
  ![download.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/5jH61328ZIygBR0ExlWVv.png)
22
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  datasets:
4
  - deepghs/anime_classification
5
  ---
6
+ ![7.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/mc0ozkey2t5-c_YM8lQ21.png)
7
+
8
+ # **Anime-Classification-v1.0**
9
+
10
+ > **Anime-Classification-v1.0** is an image classification vision-language encoder model fine-tuned from **google/siglip2-base-patch16-224** for a single-label classification task. It is designed to classify anime-related images using the **SiglipForImageClassification** architecture.
11
 
12
  ```py
13
  Classification Report:
 
25
 
26
  ![download.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/5jH61328ZIygBR0ExlWVv.png)
27
 
28
+ ---
29
+
30
+ The model categorizes images into 4 anime-related classes:
31
+
32
+ ```
33
+ Class 0: "3D"
34
+ Class 1: "Bangumi"
35
+ Class 2: "Comic"
36
+ Class 3: "Illustration"
37
+ ```
38
+
39
+ ---
40
+
41
+ ## **Install dependencies**
42
+
43
+ ```python
44
+ !pip install -q transformers torch pillow gradio
45
+ ```
46
+
47
+ ---
48
+
49
+ ## **Inference Code**
50
+
51
+ ```python
52
+ import gradio as gr
53
+ from transformers import AutoImageProcessor, SiglipForImageClassification
54
+ from PIL import Image
55
+ import torch
56
+
57
+ # Load model and processor
58
+ model_name = "prithivMLmods/Anime-Classification-v1.0" # New model name
59
+ model = SiglipForImageClassification.from_pretrained(model_name)
60
+ processor = AutoImageProcessor.from_pretrained(model_name)
61
+
62
+ def classify_anime_image(image):
63
+ """Predicts the anime category for an input image."""
64
+ image = Image.fromarray(image).convert("RGB")
65
+ inputs = processor(images=image, return_tensors="pt")
66
+
67
+ with torch.no_grad():
68
+ outputs = model(**inputs)
69
+ logits = outputs.logits
70
+ probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist()
71
+
72
+ labels = {
73
+ "0": "3D", "1": "Bangumi", "2": "Comic", "3": "Illustration"
74
+ }
75
+ predictions = {labels[str(i)]: round(probs[i], 3) for i in range(len(probs))}
76
+
77
+ return predictions
78
+
79
+ # Create Gradio interface
80
+ iface = gr.Interface(
81
+ fn=classify_anime_image,
82
+ inputs=gr.Image(type="numpy"),
83
+ outputs=gr.Label(label="Prediction Scores"),
84
+ title="Anime Classification v1.0",
85
+ description="Upload an image to classify the anime style category."
86
+ )
87
+
88
+ if __name__ == "__main__":
89
+ iface.launch()
90
+ ```
91
+
92
+ ---
93
+
94
+ ## **Intended Use:**
95
+
96
+ The **Anime-Classification-v1.0** model is designed to classify anime-related images. Potential use cases include:
97
+
98
+ - **Content Tagging:** Automatically label anime artwork on platforms or apps.
99
+ - **Recommendation Engines:** Enhance personalized anime content suggestions.
100
+ - **Digital Art Curation:** Organize galleries by anime style for artists and fans.
101
+ - **Dataset Filtering:** Categorize and filter images during dataset creation.