Preetham Ganesh commited on
Commit
d6594dc
·
1 Parent(s): 61ae1b4

updated README.

Browse files
Files changed (1) hide show
  1. README.md +4 -4
README.md CHANGED
@@ -18,7 +18,7 @@ model-index:
18
  link: https://www.kaggle.com/datasets/mateuszbuda/lgg-mri-segmentation
19
  metrics:
20
  - type: accuracy
21
- value: 0.958
22
  name: Accuracy
23
  ---
24
 
@@ -60,7 +60,7 @@ input_data = tf.ones((1, 256, 256, 3), dtype=tf.float32)
60
  output = model(input_data)["output_0"]
61
 
62
  # Prints the predicted class (e.g., 0 for normal, 1 for abnormal)
63
- predicted_class = tf.argmax(output, axis=-1).numpy()
64
  print("Predicted class: ", predicted_class)
65
  ```
66
 
@@ -69,7 +69,7 @@ print("Predicted class: ", predicted_class)
69
  ### Compute
70
 
71
  - The model was trained on a GeForce 4070Ti GPU with 16GB VRAM.
72
- - Training completed in approximately 1.8 minutes over 20 epochs.
73
 
74
  ### Dataset
75
 
@@ -77,7 +77,7 @@ print("Predicted class: ", predicted_class)
77
 
78
  ### Performance on test set
79
 
80
- - **Accuracy:** 0.958
81
 
82
  ## Citation
83
 
 
18
  link: https://www.kaggle.com/datasets/mateuszbuda/lgg-mri-segmentation
19
  metrics:
20
  - type: accuracy
21
+ value: 0.953
22
  name: Accuracy
23
  ---
24
 
 
60
  output = model(input_data)["output_0"]
61
 
62
  # Prints the predicted class (e.g., 0 for normal, 1 for abnormal)
63
+ predicted_class = tf.argmax(output, axis=-1).numpy()[0]
64
  print("Predicted class: ", predicted_class)
65
  ```
66
 
 
69
  ### Compute
70
 
71
  - The model was trained on a GeForce 4070Ti GPU with 16GB VRAM.
72
+ - Training completed in approximately 1.6 minutes over 17 epochs.
73
 
74
  ### Dataset
75
 
 
77
 
78
  ### Performance on test set
79
 
80
+ - **Accuracy:** 0.953
81
 
82
  ## Citation
83