pineappleSoup's picture
Upload folder using huggingface_hub
57db94b verified
import math
import random
from itertools import combinations
import pytest
import networkx as nx
def l1dist(x, y):
return sum(abs(a - b) for a, b in zip(x, y))
class TestRandomGeometricGraph:
"""Unit tests for :func:`~networkx.random_geometric_graph`"""
def test_number_of_nodes(self):
G = nx.random_geometric_graph(50, 0.25, seed=42)
assert len(G) == 50
G = nx.random_geometric_graph(range(50), 0.25, seed=42)
assert len(G) == 50
def test_distances(self):
"""Tests that pairs of vertices adjacent if and only if they are
within the prescribed radius.
"""
# Use the Euclidean metric, the default according to the
# documentation.
G = nx.random_geometric_graph(50, 0.25)
for u, v in combinations(G, 2):
# Adjacent vertices must be within the given distance.
if v in G[u]:
assert math.dist(G.nodes[u]["pos"], G.nodes[v]["pos"]) <= 0.25
# Nonadjacent vertices must be at greater distance.
else:
assert not math.dist(G.nodes[u]["pos"], G.nodes[v]["pos"]) <= 0.25
def test_p(self):
"""Tests for providing an alternate distance metric to the generator."""
# Use the L1 metric.
G = nx.random_geometric_graph(50, 0.25, p=1)
for u, v in combinations(G, 2):
# Adjacent vertices must be within the given distance.
if v in G[u]:
assert l1dist(G.nodes[u]["pos"], G.nodes[v]["pos"]) <= 0.25
# Nonadjacent vertices must be at greater distance.
else:
assert not l1dist(G.nodes[u]["pos"], G.nodes[v]["pos"]) <= 0.25
def test_node_names(self):
"""Tests using values other than sequential numbers as node IDs."""
import string
nodes = list(string.ascii_lowercase)
G = nx.random_geometric_graph(nodes, 0.25)
assert len(G) == len(nodes)
for u, v in combinations(G, 2):
# Adjacent vertices must be within the given distance.
if v in G[u]:
assert math.dist(G.nodes[u]["pos"], G.nodes[v]["pos"]) <= 0.25
# Nonadjacent vertices must be at greater distance.
else:
assert not math.dist(G.nodes[u]["pos"], G.nodes[v]["pos"]) <= 0.25
def test_pos_name(self):
G = nx.random_geometric_graph(50, 0.25, seed=42, pos_name="coords")
assert all(len(d["coords"]) == 2 for n, d in G.nodes.items())
class TestSoftRandomGeometricGraph:
"""Unit tests for :func:`~networkx.soft_random_geometric_graph`"""
def test_number_of_nodes(self):
G = nx.soft_random_geometric_graph(50, 0.25, seed=42)
assert len(G) == 50
G = nx.soft_random_geometric_graph(range(50), 0.25, seed=42)
assert len(G) == 50
def test_distances(self):
"""Tests that pairs of vertices adjacent if and only if they are
within the prescribed radius.
"""
# Use the Euclidean metric, the default according to the
# documentation.
G = nx.soft_random_geometric_graph(50, 0.25)
for u, v in combinations(G, 2):
# Adjacent vertices must be within the given distance.
if v in G[u]:
assert math.dist(G.nodes[u]["pos"], G.nodes[v]["pos"]) <= 0.25
def test_p(self):
"""Tests for providing an alternate distance metric to the generator."""
# Use the L1 metric.
def dist(x, y):
return sum(abs(a - b) for a, b in zip(x, y))
G = nx.soft_random_geometric_graph(50, 0.25, p=1)
for u, v in combinations(G, 2):
# Adjacent vertices must be within the given distance.
if v in G[u]:
assert dist(G.nodes[u]["pos"], G.nodes[v]["pos"]) <= 0.25
def test_node_names(self):
"""Tests using values other than sequential numbers as node IDs."""
import string
nodes = list(string.ascii_lowercase)
G = nx.soft_random_geometric_graph(nodes, 0.25)
assert len(G) == len(nodes)
for u, v in combinations(G, 2):
# Adjacent vertices must be within the given distance.
if v in G[u]:
assert math.dist(G.nodes[u]["pos"], G.nodes[v]["pos"]) <= 0.25
def test_p_dist_default(self):
"""Tests default p_dict = 0.5 returns graph with edge count <= RGG with
same n, radius, dim and positions
"""
nodes = 50
dim = 2
pos = {v: [random.random() for i in range(dim)] for v in range(nodes)}
RGG = nx.random_geometric_graph(50, 0.25, pos=pos)
SRGG = nx.soft_random_geometric_graph(50, 0.25, pos=pos)
assert len(SRGG.edges()) <= len(RGG.edges())
def test_p_dist_zero(self):
"""Tests if p_dict = 0 returns disconnected graph with 0 edges"""
def p_dist(dist):
return 0
G = nx.soft_random_geometric_graph(50, 0.25, p_dist=p_dist)
assert len(G.edges) == 0
def test_pos_name(self):
G = nx.soft_random_geometric_graph(50, 0.25, seed=42, pos_name="coords")
assert all(len(d["coords"]) == 2 for n, d in G.nodes.items())
def join(G, u, v, theta, alpha, metric):
"""Returns ``True`` if and only if the nodes whose attributes are
``du`` and ``dv`` should be joined, according to the threshold
condition for geographical threshold graphs.
``G`` is an undirected NetworkX graph, and ``u`` and ``v`` are nodes
in that graph. The nodes must have node attributes ``'pos'`` and
``'weight'``.
``metric`` is a distance metric.
"""
du, dv = G.nodes[u], G.nodes[v]
u_pos, v_pos = du["pos"], dv["pos"]
u_weight, v_weight = du["weight"], dv["weight"]
return (u_weight + v_weight) * metric(u_pos, v_pos) ** alpha >= theta
class TestGeographicalThresholdGraph:
"""Unit tests for :func:`~networkx.geographical_threshold_graph`"""
def test_number_of_nodes(self):
G = nx.geographical_threshold_graph(50, 100, seed=42)
assert len(G) == 50
G = nx.geographical_threshold_graph(range(50), 100, seed=42)
assert len(G) == 50
def test_distances(self):
"""Tests that pairs of vertices adjacent if and only if their
distances meet the given threshold.
"""
# Use the Euclidean metric and alpha = -2
# the default according to the documentation.
G = nx.geographical_threshold_graph(50, 10)
for u, v in combinations(G, 2):
# Adjacent vertices must exceed the threshold.
if v in G[u]:
assert join(G, u, v, 10, -2, math.dist)
# Nonadjacent vertices must not exceed the threshold.
else:
assert not join(G, u, v, 10, -2, math.dist)
def test_metric(self):
"""Tests for providing an alternate distance metric to the generator."""
# Use the L1 metric.
G = nx.geographical_threshold_graph(50, 10, metric=l1dist)
for u, v in combinations(G, 2):
# Adjacent vertices must exceed the threshold.
if v in G[u]:
assert join(G, u, v, 10, -2, l1dist)
# Nonadjacent vertices must not exceed the threshold.
else:
assert not join(G, u, v, 10, -2, l1dist)
def test_p_dist_zero(self):
"""Tests if p_dict = 0 returns disconnected graph with 0 edges"""
def p_dist(dist):
return 0
G = nx.geographical_threshold_graph(50, 1, p_dist=p_dist)
assert len(G.edges) == 0
def test_pos_weight_name(self):
gtg = nx.geographical_threshold_graph
G = gtg(50, 100, seed=42, pos_name="coords", weight_name="wt")
assert all(len(d["coords"]) == 2 for n, d in G.nodes.items())
assert all(d["wt"] > 0 for n, d in G.nodes.items())
class TestWaxmanGraph:
"""Unit tests for the :func:`~networkx.waxman_graph` function."""
def test_number_of_nodes_1(self):
G = nx.waxman_graph(50, 0.5, 0.1, seed=42)
assert len(G) == 50
G = nx.waxman_graph(range(50), 0.5, 0.1, seed=42)
assert len(G) == 50
def test_number_of_nodes_2(self):
G = nx.waxman_graph(50, 0.5, 0.1, L=1)
assert len(G) == 50
G = nx.waxman_graph(range(50), 0.5, 0.1, L=1)
assert len(G) == 50
def test_metric(self):
"""Tests for providing an alternate distance metric to the generator."""
# Use the L1 metric.
G = nx.waxman_graph(50, 0.5, 0.1, metric=l1dist)
assert len(G) == 50
def test_pos_name(self):
G = nx.waxman_graph(50, 0.5, 0.1, seed=42, pos_name="coords")
assert all(len(d["coords"]) == 2 for n, d in G.nodes.items())
class TestNavigableSmallWorldGraph:
def test_navigable_small_world(self):
G = nx.navigable_small_world_graph(5, p=1, q=0, seed=42)
gg = nx.grid_2d_graph(5, 5).to_directed()
assert nx.is_isomorphic(G, gg)
G = nx.navigable_small_world_graph(5, p=1, q=0, dim=3)
gg = nx.grid_graph([5, 5, 5]).to_directed()
assert nx.is_isomorphic(G, gg)
G = nx.navigable_small_world_graph(5, p=1, q=0, dim=1)
gg = nx.grid_graph([5]).to_directed()
assert nx.is_isomorphic(G, gg)
def test_invalid_diameter_value(self):
with pytest.raises(nx.NetworkXException, match=".*p must be >= 1"):
nx.navigable_small_world_graph(5, p=0, q=0, dim=1)
def test_invalid_long_range_connections_value(self):
with pytest.raises(nx.NetworkXException, match=".*q must be >= 0"):
nx.navigable_small_world_graph(5, p=1, q=-1, dim=1)
def test_invalid_exponent_for_decaying_probability_value(self):
with pytest.raises(nx.NetworkXException, match=".*r must be >= 0"):
nx.navigable_small_world_graph(5, p=1, q=0, r=-1, dim=1)
def test_r_between_0_and_1(self):
"""Smoke test for radius in range [0, 1]"""
# q=0 means no long-range connections
G = nx.navigable_small_world_graph(3, p=1, q=0, r=0.5, dim=2, seed=42)
expected = nx.grid_2d_graph(3, 3, create_using=nx.DiGraph)
assert nx.utils.graphs_equal(G, expected)
@pytest.mark.parametrize("seed", range(2478, 2578, 10))
def test_r_general_scaling(self, seed):
"""The probability of adding a long-range edge scales with `1 / dist**r`,
so a navigable_small_world graph created with r < 1 should generally
result in more edges than a navigable_small_world graph with r >= 1
(for 0 < q << n).
N.B. this is probabilistic, so this test may not hold for all seeds."""
G1 = nx.navigable_small_world_graph(7, q=3, r=0.5, seed=seed)
G2 = nx.navigable_small_world_graph(7, q=3, r=1, seed=seed)
G3 = nx.navigable_small_world_graph(7, q=3, r=2, seed=seed)
assert G1.number_of_edges() > G2.number_of_edges()
assert G2.number_of_edges() > G3.number_of_edges()
class TestThresholdedRandomGeometricGraph:
"""Unit tests for :func:`~networkx.thresholded_random_geometric_graph`"""
def test_number_of_nodes(self):
G = nx.thresholded_random_geometric_graph(50, 0.2, 0.1, seed=42)
assert len(G) == 50
G = nx.thresholded_random_geometric_graph(range(50), 0.2, 0.1, seed=42)
assert len(G) == 50
def test_distances(self):
"""Tests that pairs of vertices adjacent if and only if they are
within the prescribed radius.
"""
# Use the Euclidean metric, the default according to the
# documentation.
G = nx.thresholded_random_geometric_graph(50, 0.25, 0.1, seed=42)
for u, v in combinations(G, 2):
# Adjacent vertices must be within the given distance.
if v in G[u]:
assert math.dist(G.nodes[u]["pos"], G.nodes[v]["pos"]) <= 0.25
def test_p(self):
"""Tests for providing an alternate distance metric to the generator."""
# Use the L1 metric.
def dist(x, y):
return sum(abs(a - b) for a, b in zip(x, y))
G = nx.thresholded_random_geometric_graph(50, 0.25, 0.1, p=1, seed=42)
for u, v in combinations(G, 2):
# Adjacent vertices must be within the given distance.
if v in G[u]:
assert dist(G.nodes[u]["pos"], G.nodes[v]["pos"]) <= 0.25
def test_node_names(self):
"""Tests using values other than sequential numbers as node IDs."""
import string
nodes = list(string.ascii_lowercase)
G = nx.thresholded_random_geometric_graph(nodes, 0.25, 0.1, seed=42)
assert len(G) == len(nodes)
for u, v in combinations(G, 2):
# Adjacent vertices must be within the given distance.
if v in G[u]:
assert math.dist(G.nodes[u]["pos"], G.nodes[v]["pos"]) <= 0.25
def test_theta(self):
"""Tests that pairs of vertices adjacent if and only if their sum
weights exceeds the threshold parameter theta.
"""
G = nx.thresholded_random_geometric_graph(50, 0.25, 0.1, seed=42)
for u, v in combinations(G, 2):
# Adjacent vertices must be within the given distance.
if v in G[u]:
assert (G.nodes[u]["weight"] + G.nodes[v]["weight"]) >= 0.1
def test_pos_name(self):
trgg = nx.thresholded_random_geometric_graph
G = trgg(50, 0.25, 0.1, seed=42, pos_name="p", weight_name="wt")
assert all(len(d["p"]) == 2 for n, d in G.nodes.items())
assert all(d["wt"] > 0 for n, d in G.nodes.items())
def test_geometric_edges_pos_attribute():
G = nx.Graph()
G.add_nodes_from(
[
(0, {"position": (0, 0)}),
(1, {"position": (0, 1)}),
(2, {"position": (1, 0)}),
]
)
expected_edges = [(0, 1), (0, 2)]
assert expected_edges == nx.geometric_edges(G, radius=1, pos_name="position")
def test_geometric_edges_raises_no_pos():
G = nx.path_graph(3)
msg = "all nodes. must have a '"
with pytest.raises(nx.NetworkXError, match=msg):
nx.geometric_edges(G, radius=1)
def test_number_of_nodes_S1():
G = nx.geometric_soft_configuration_graph(
beta=1.5, n=100, gamma=2.7, mean_degree=10, seed=42
)
assert len(G) == 100
def test_set_attributes_S1():
G = nx.geometric_soft_configuration_graph(
beta=1.5, n=100, gamma=2.7, mean_degree=10, seed=42
)
kappas = nx.get_node_attributes(G, "kappa")
assert len(kappas) == 100
thetas = nx.get_node_attributes(G, "theta")
assert len(thetas) == 100
radii = nx.get_node_attributes(G, "radius")
assert len(radii) == 100
def test_mean_kappas_mean_degree_S1():
G = nx.geometric_soft_configuration_graph(
beta=2.5, n=50, gamma=2.7, mean_degree=10, seed=8023
)
kappas = nx.get_node_attributes(G, "kappa")
mean_kappas = sum(kappas.values()) / len(kappas)
assert math.fabs(mean_kappas - 10) < 0.5
degrees = dict(G.degree())
mean_degree = sum(degrees.values()) / len(degrees)
assert math.fabs(mean_degree - 10) < 1
def test_dict_kappas_S1():
kappas = {i: 10 for i in range(1000)}
G = nx.geometric_soft_configuration_graph(beta=1, kappas=kappas)
assert len(G) == 1000
kappas = nx.get_node_attributes(G, "kappa")
assert all(kappa == 10 for kappa in kappas.values())
def test_beta_clustering_S1():
G1 = nx.geometric_soft_configuration_graph(
beta=1.5, n=100, gamma=3.5, mean_degree=10, seed=42
)
G2 = nx.geometric_soft_configuration_graph(
beta=3.0, n=100, gamma=3.5, mean_degree=10, seed=42
)
assert nx.average_clustering(G1) < nx.average_clustering(G2)
def test_wrong_parameters_S1():
with pytest.raises(
nx.NetworkXError,
match="Please provide either kappas, or all 3 of: n, gamma and mean_degree.",
):
G = nx.geometric_soft_configuration_graph(
beta=1.5, gamma=3.5, mean_degree=10, seed=42
)
with pytest.raises(
nx.NetworkXError,
match="When kappas is input, n, gamma and mean_degree must not be.",
):
kappas = {i: 10 for i in range(1000)}
G = nx.geometric_soft_configuration_graph(
beta=1.5, kappas=kappas, gamma=2.3, seed=42
)
with pytest.raises(
nx.NetworkXError,
match="Please provide either kappas, or all 3 of: n, gamma and mean_degree.",
):
G = nx.geometric_soft_configuration_graph(beta=1.5, seed=42)
def test_negative_beta_S1():
with pytest.raises(
nx.NetworkXError, match="The parameter beta cannot be smaller or equal to 0."
):
G = nx.geometric_soft_configuration_graph(
beta=-1, n=100, gamma=2.3, mean_degree=10, seed=42
)
def test_non_zero_clustering_beta_lower_one_S1():
G = nx.geometric_soft_configuration_graph(
beta=0.5, n=100, gamma=3.5, mean_degree=10, seed=42
)
assert nx.average_clustering(G) > 0
def test_mean_degree_influence_on_connectivity_S1():
low_mean_degree = 2
high_mean_degree = 20
G_low = nx.geometric_soft_configuration_graph(
beta=1.2, n=100, gamma=2.7, mean_degree=low_mean_degree, seed=42
)
G_high = nx.geometric_soft_configuration_graph(
beta=1.2, n=100, gamma=2.7, mean_degree=high_mean_degree, seed=42
)
assert nx.number_connected_components(G_low) > nx.number_connected_components(
G_high
)
def test_compare_mean_kappas_different_gammas_S1():
G1 = nx.geometric_soft_configuration_graph(
beta=1.5, n=20, gamma=2.7, mean_degree=5, seed=42
)
G2 = nx.geometric_soft_configuration_graph(
beta=1.5, n=20, gamma=3.5, mean_degree=5, seed=42
)
kappas1 = nx.get_node_attributes(G1, "kappa")
mean_kappas1 = sum(kappas1.values()) / len(kappas1)
kappas2 = nx.get_node_attributes(G2, "kappa")
mean_kappas2 = sum(kappas2.values()) / len(kappas2)
assert math.fabs(mean_kappas1 - mean_kappas2) < 1