|
import math |
|
import random |
|
from itertools import combinations |
|
|
|
import pytest |
|
|
|
import networkx as nx |
|
|
|
|
|
def l1dist(x, y): |
|
return sum(abs(a - b) for a, b in zip(x, y)) |
|
|
|
|
|
class TestRandomGeometricGraph: |
|
"""Unit tests for :func:`~networkx.random_geometric_graph`""" |
|
|
|
def test_number_of_nodes(self): |
|
G = nx.random_geometric_graph(50, 0.25, seed=42) |
|
assert len(G) == 50 |
|
G = nx.random_geometric_graph(range(50), 0.25, seed=42) |
|
assert len(G) == 50 |
|
|
|
def test_distances(self): |
|
"""Tests that pairs of vertices adjacent if and only if they are |
|
within the prescribed radius. |
|
""" |
|
|
|
|
|
G = nx.random_geometric_graph(50, 0.25) |
|
for u, v in combinations(G, 2): |
|
|
|
if v in G[u]: |
|
assert math.dist(G.nodes[u]["pos"], G.nodes[v]["pos"]) <= 0.25 |
|
|
|
else: |
|
assert not math.dist(G.nodes[u]["pos"], G.nodes[v]["pos"]) <= 0.25 |
|
|
|
def test_p(self): |
|
"""Tests for providing an alternate distance metric to the generator.""" |
|
|
|
G = nx.random_geometric_graph(50, 0.25, p=1) |
|
for u, v in combinations(G, 2): |
|
|
|
if v in G[u]: |
|
assert l1dist(G.nodes[u]["pos"], G.nodes[v]["pos"]) <= 0.25 |
|
|
|
else: |
|
assert not l1dist(G.nodes[u]["pos"], G.nodes[v]["pos"]) <= 0.25 |
|
|
|
def test_node_names(self): |
|
"""Tests using values other than sequential numbers as node IDs.""" |
|
import string |
|
|
|
nodes = list(string.ascii_lowercase) |
|
G = nx.random_geometric_graph(nodes, 0.25) |
|
assert len(G) == len(nodes) |
|
|
|
for u, v in combinations(G, 2): |
|
|
|
if v in G[u]: |
|
assert math.dist(G.nodes[u]["pos"], G.nodes[v]["pos"]) <= 0.25 |
|
|
|
else: |
|
assert not math.dist(G.nodes[u]["pos"], G.nodes[v]["pos"]) <= 0.25 |
|
|
|
def test_pos_name(self): |
|
G = nx.random_geometric_graph(50, 0.25, seed=42, pos_name="coords") |
|
assert all(len(d["coords"]) == 2 for n, d in G.nodes.items()) |
|
|
|
|
|
class TestSoftRandomGeometricGraph: |
|
"""Unit tests for :func:`~networkx.soft_random_geometric_graph`""" |
|
|
|
def test_number_of_nodes(self): |
|
G = nx.soft_random_geometric_graph(50, 0.25, seed=42) |
|
assert len(G) == 50 |
|
G = nx.soft_random_geometric_graph(range(50), 0.25, seed=42) |
|
assert len(G) == 50 |
|
|
|
def test_distances(self): |
|
"""Tests that pairs of vertices adjacent if and only if they are |
|
within the prescribed radius. |
|
""" |
|
|
|
|
|
G = nx.soft_random_geometric_graph(50, 0.25) |
|
for u, v in combinations(G, 2): |
|
|
|
if v in G[u]: |
|
assert math.dist(G.nodes[u]["pos"], G.nodes[v]["pos"]) <= 0.25 |
|
|
|
def test_p(self): |
|
"""Tests for providing an alternate distance metric to the generator.""" |
|
|
|
|
|
def dist(x, y): |
|
return sum(abs(a - b) for a, b in zip(x, y)) |
|
|
|
G = nx.soft_random_geometric_graph(50, 0.25, p=1) |
|
for u, v in combinations(G, 2): |
|
|
|
if v in G[u]: |
|
assert dist(G.nodes[u]["pos"], G.nodes[v]["pos"]) <= 0.25 |
|
|
|
def test_node_names(self): |
|
"""Tests using values other than sequential numbers as node IDs.""" |
|
import string |
|
|
|
nodes = list(string.ascii_lowercase) |
|
G = nx.soft_random_geometric_graph(nodes, 0.25) |
|
assert len(G) == len(nodes) |
|
|
|
for u, v in combinations(G, 2): |
|
|
|
if v in G[u]: |
|
assert math.dist(G.nodes[u]["pos"], G.nodes[v]["pos"]) <= 0.25 |
|
|
|
def test_p_dist_default(self): |
|
"""Tests default p_dict = 0.5 returns graph with edge count <= RGG with |
|
same n, radius, dim and positions |
|
""" |
|
nodes = 50 |
|
dim = 2 |
|
pos = {v: [random.random() for i in range(dim)] for v in range(nodes)} |
|
RGG = nx.random_geometric_graph(50, 0.25, pos=pos) |
|
SRGG = nx.soft_random_geometric_graph(50, 0.25, pos=pos) |
|
assert len(SRGG.edges()) <= len(RGG.edges()) |
|
|
|
def test_p_dist_zero(self): |
|
"""Tests if p_dict = 0 returns disconnected graph with 0 edges""" |
|
|
|
def p_dist(dist): |
|
return 0 |
|
|
|
G = nx.soft_random_geometric_graph(50, 0.25, p_dist=p_dist) |
|
assert len(G.edges) == 0 |
|
|
|
def test_pos_name(self): |
|
G = nx.soft_random_geometric_graph(50, 0.25, seed=42, pos_name="coords") |
|
assert all(len(d["coords"]) == 2 for n, d in G.nodes.items()) |
|
|
|
|
|
def join(G, u, v, theta, alpha, metric): |
|
"""Returns ``True`` if and only if the nodes whose attributes are |
|
``du`` and ``dv`` should be joined, according to the threshold |
|
condition for geographical threshold graphs. |
|
|
|
``G`` is an undirected NetworkX graph, and ``u`` and ``v`` are nodes |
|
in that graph. The nodes must have node attributes ``'pos'`` and |
|
``'weight'``. |
|
|
|
``metric`` is a distance metric. |
|
""" |
|
du, dv = G.nodes[u], G.nodes[v] |
|
u_pos, v_pos = du["pos"], dv["pos"] |
|
u_weight, v_weight = du["weight"], dv["weight"] |
|
return (u_weight + v_weight) * metric(u_pos, v_pos) ** alpha >= theta |
|
|
|
|
|
class TestGeographicalThresholdGraph: |
|
"""Unit tests for :func:`~networkx.geographical_threshold_graph`""" |
|
|
|
def test_number_of_nodes(self): |
|
G = nx.geographical_threshold_graph(50, 100, seed=42) |
|
assert len(G) == 50 |
|
G = nx.geographical_threshold_graph(range(50), 100, seed=42) |
|
assert len(G) == 50 |
|
|
|
def test_distances(self): |
|
"""Tests that pairs of vertices adjacent if and only if their |
|
distances meet the given threshold. |
|
""" |
|
|
|
|
|
G = nx.geographical_threshold_graph(50, 10) |
|
for u, v in combinations(G, 2): |
|
|
|
if v in G[u]: |
|
assert join(G, u, v, 10, -2, math.dist) |
|
|
|
else: |
|
assert not join(G, u, v, 10, -2, math.dist) |
|
|
|
def test_metric(self): |
|
"""Tests for providing an alternate distance metric to the generator.""" |
|
|
|
G = nx.geographical_threshold_graph(50, 10, metric=l1dist) |
|
for u, v in combinations(G, 2): |
|
|
|
if v in G[u]: |
|
assert join(G, u, v, 10, -2, l1dist) |
|
|
|
else: |
|
assert not join(G, u, v, 10, -2, l1dist) |
|
|
|
def test_p_dist_zero(self): |
|
"""Tests if p_dict = 0 returns disconnected graph with 0 edges""" |
|
|
|
def p_dist(dist): |
|
return 0 |
|
|
|
G = nx.geographical_threshold_graph(50, 1, p_dist=p_dist) |
|
assert len(G.edges) == 0 |
|
|
|
def test_pos_weight_name(self): |
|
gtg = nx.geographical_threshold_graph |
|
G = gtg(50, 100, seed=42, pos_name="coords", weight_name="wt") |
|
assert all(len(d["coords"]) == 2 for n, d in G.nodes.items()) |
|
assert all(d["wt"] > 0 for n, d in G.nodes.items()) |
|
|
|
|
|
class TestWaxmanGraph: |
|
"""Unit tests for the :func:`~networkx.waxman_graph` function.""" |
|
|
|
def test_number_of_nodes_1(self): |
|
G = nx.waxman_graph(50, 0.5, 0.1, seed=42) |
|
assert len(G) == 50 |
|
G = nx.waxman_graph(range(50), 0.5, 0.1, seed=42) |
|
assert len(G) == 50 |
|
|
|
def test_number_of_nodes_2(self): |
|
G = nx.waxman_graph(50, 0.5, 0.1, L=1) |
|
assert len(G) == 50 |
|
G = nx.waxman_graph(range(50), 0.5, 0.1, L=1) |
|
assert len(G) == 50 |
|
|
|
def test_metric(self): |
|
"""Tests for providing an alternate distance metric to the generator.""" |
|
|
|
G = nx.waxman_graph(50, 0.5, 0.1, metric=l1dist) |
|
assert len(G) == 50 |
|
|
|
def test_pos_name(self): |
|
G = nx.waxman_graph(50, 0.5, 0.1, seed=42, pos_name="coords") |
|
assert all(len(d["coords"]) == 2 for n, d in G.nodes.items()) |
|
|
|
|
|
class TestNavigableSmallWorldGraph: |
|
def test_navigable_small_world(self): |
|
G = nx.navigable_small_world_graph(5, p=1, q=0, seed=42) |
|
gg = nx.grid_2d_graph(5, 5).to_directed() |
|
assert nx.is_isomorphic(G, gg) |
|
|
|
G = nx.navigable_small_world_graph(5, p=1, q=0, dim=3) |
|
gg = nx.grid_graph([5, 5, 5]).to_directed() |
|
assert nx.is_isomorphic(G, gg) |
|
|
|
G = nx.navigable_small_world_graph(5, p=1, q=0, dim=1) |
|
gg = nx.grid_graph([5]).to_directed() |
|
assert nx.is_isomorphic(G, gg) |
|
|
|
def test_invalid_diameter_value(self): |
|
with pytest.raises(nx.NetworkXException, match=".*p must be >= 1"): |
|
nx.navigable_small_world_graph(5, p=0, q=0, dim=1) |
|
|
|
def test_invalid_long_range_connections_value(self): |
|
with pytest.raises(nx.NetworkXException, match=".*q must be >= 0"): |
|
nx.navigable_small_world_graph(5, p=1, q=-1, dim=1) |
|
|
|
def test_invalid_exponent_for_decaying_probability_value(self): |
|
with pytest.raises(nx.NetworkXException, match=".*r must be >= 0"): |
|
nx.navigable_small_world_graph(5, p=1, q=0, r=-1, dim=1) |
|
|
|
def test_r_between_0_and_1(self): |
|
"""Smoke test for radius in range [0, 1]""" |
|
|
|
G = nx.navigable_small_world_graph(3, p=1, q=0, r=0.5, dim=2, seed=42) |
|
expected = nx.grid_2d_graph(3, 3, create_using=nx.DiGraph) |
|
assert nx.utils.graphs_equal(G, expected) |
|
|
|
@pytest.mark.parametrize("seed", range(2478, 2578, 10)) |
|
def test_r_general_scaling(self, seed): |
|
"""The probability of adding a long-range edge scales with `1 / dist**r`, |
|
so a navigable_small_world graph created with r < 1 should generally |
|
result in more edges than a navigable_small_world graph with r >= 1 |
|
(for 0 < q << n). |
|
|
|
N.B. this is probabilistic, so this test may not hold for all seeds.""" |
|
G1 = nx.navigable_small_world_graph(7, q=3, r=0.5, seed=seed) |
|
G2 = nx.navigable_small_world_graph(7, q=3, r=1, seed=seed) |
|
G3 = nx.navigable_small_world_graph(7, q=3, r=2, seed=seed) |
|
assert G1.number_of_edges() > G2.number_of_edges() |
|
assert G2.number_of_edges() > G3.number_of_edges() |
|
|
|
|
|
class TestThresholdedRandomGeometricGraph: |
|
"""Unit tests for :func:`~networkx.thresholded_random_geometric_graph`""" |
|
|
|
def test_number_of_nodes(self): |
|
G = nx.thresholded_random_geometric_graph(50, 0.2, 0.1, seed=42) |
|
assert len(G) == 50 |
|
G = nx.thresholded_random_geometric_graph(range(50), 0.2, 0.1, seed=42) |
|
assert len(G) == 50 |
|
|
|
def test_distances(self): |
|
"""Tests that pairs of vertices adjacent if and only if they are |
|
within the prescribed radius. |
|
""" |
|
|
|
|
|
G = nx.thresholded_random_geometric_graph(50, 0.25, 0.1, seed=42) |
|
for u, v in combinations(G, 2): |
|
|
|
if v in G[u]: |
|
assert math.dist(G.nodes[u]["pos"], G.nodes[v]["pos"]) <= 0.25 |
|
|
|
def test_p(self): |
|
"""Tests for providing an alternate distance metric to the generator.""" |
|
|
|
|
|
def dist(x, y): |
|
return sum(abs(a - b) for a, b in zip(x, y)) |
|
|
|
G = nx.thresholded_random_geometric_graph(50, 0.25, 0.1, p=1, seed=42) |
|
for u, v in combinations(G, 2): |
|
|
|
if v in G[u]: |
|
assert dist(G.nodes[u]["pos"], G.nodes[v]["pos"]) <= 0.25 |
|
|
|
def test_node_names(self): |
|
"""Tests using values other than sequential numbers as node IDs.""" |
|
import string |
|
|
|
nodes = list(string.ascii_lowercase) |
|
G = nx.thresholded_random_geometric_graph(nodes, 0.25, 0.1, seed=42) |
|
assert len(G) == len(nodes) |
|
|
|
for u, v in combinations(G, 2): |
|
|
|
if v in G[u]: |
|
assert math.dist(G.nodes[u]["pos"], G.nodes[v]["pos"]) <= 0.25 |
|
|
|
def test_theta(self): |
|
"""Tests that pairs of vertices adjacent if and only if their sum |
|
weights exceeds the threshold parameter theta. |
|
""" |
|
G = nx.thresholded_random_geometric_graph(50, 0.25, 0.1, seed=42) |
|
|
|
for u, v in combinations(G, 2): |
|
|
|
if v in G[u]: |
|
assert (G.nodes[u]["weight"] + G.nodes[v]["weight"]) >= 0.1 |
|
|
|
def test_pos_name(self): |
|
trgg = nx.thresholded_random_geometric_graph |
|
G = trgg(50, 0.25, 0.1, seed=42, pos_name="p", weight_name="wt") |
|
assert all(len(d["p"]) == 2 for n, d in G.nodes.items()) |
|
assert all(d["wt"] > 0 for n, d in G.nodes.items()) |
|
|
|
|
|
def test_geometric_edges_pos_attribute(): |
|
G = nx.Graph() |
|
G.add_nodes_from( |
|
[ |
|
(0, {"position": (0, 0)}), |
|
(1, {"position": (0, 1)}), |
|
(2, {"position": (1, 0)}), |
|
] |
|
) |
|
expected_edges = [(0, 1), (0, 2)] |
|
assert expected_edges == nx.geometric_edges(G, radius=1, pos_name="position") |
|
|
|
|
|
def test_geometric_edges_raises_no_pos(): |
|
G = nx.path_graph(3) |
|
msg = "all nodes. must have a '" |
|
with pytest.raises(nx.NetworkXError, match=msg): |
|
nx.geometric_edges(G, radius=1) |
|
|
|
|
|
def test_number_of_nodes_S1(): |
|
G = nx.geometric_soft_configuration_graph( |
|
beta=1.5, n=100, gamma=2.7, mean_degree=10, seed=42 |
|
) |
|
assert len(G) == 100 |
|
|
|
|
|
def test_set_attributes_S1(): |
|
G = nx.geometric_soft_configuration_graph( |
|
beta=1.5, n=100, gamma=2.7, mean_degree=10, seed=42 |
|
) |
|
kappas = nx.get_node_attributes(G, "kappa") |
|
assert len(kappas) == 100 |
|
thetas = nx.get_node_attributes(G, "theta") |
|
assert len(thetas) == 100 |
|
radii = nx.get_node_attributes(G, "radius") |
|
assert len(radii) == 100 |
|
|
|
|
|
def test_mean_kappas_mean_degree_S1(): |
|
G = nx.geometric_soft_configuration_graph( |
|
beta=2.5, n=50, gamma=2.7, mean_degree=10, seed=8023 |
|
) |
|
|
|
kappas = nx.get_node_attributes(G, "kappa") |
|
mean_kappas = sum(kappas.values()) / len(kappas) |
|
assert math.fabs(mean_kappas - 10) < 0.5 |
|
|
|
degrees = dict(G.degree()) |
|
mean_degree = sum(degrees.values()) / len(degrees) |
|
assert math.fabs(mean_degree - 10) < 1 |
|
|
|
|
|
def test_dict_kappas_S1(): |
|
kappas = {i: 10 for i in range(1000)} |
|
G = nx.geometric_soft_configuration_graph(beta=1, kappas=kappas) |
|
assert len(G) == 1000 |
|
kappas = nx.get_node_attributes(G, "kappa") |
|
assert all(kappa == 10 for kappa in kappas.values()) |
|
|
|
|
|
def test_beta_clustering_S1(): |
|
G1 = nx.geometric_soft_configuration_graph( |
|
beta=1.5, n=100, gamma=3.5, mean_degree=10, seed=42 |
|
) |
|
G2 = nx.geometric_soft_configuration_graph( |
|
beta=3.0, n=100, gamma=3.5, mean_degree=10, seed=42 |
|
) |
|
assert nx.average_clustering(G1) < nx.average_clustering(G2) |
|
|
|
|
|
def test_wrong_parameters_S1(): |
|
with pytest.raises( |
|
nx.NetworkXError, |
|
match="Please provide either kappas, or all 3 of: n, gamma and mean_degree.", |
|
): |
|
G = nx.geometric_soft_configuration_graph( |
|
beta=1.5, gamma=3.5, mean_degree=10, seed=42 |
|
) |
|
|
|
with pytest.raises( |
|
nx.NetworkXError, |
|
match="When kappas is input, n, gamma and mean_degree must not be.", |
|
): |
|
kappas = {i: 10 for i in range(1000)} |
|
G = nx.geometric_soft_configuration_graph( |
|
beta=1.5, kappas=kappas, gamma=2.3, seed=42 |
|
) |
|
|
|
with pytest.raises( |
|
nx.NetworkXError, |
|
match="Please provide either kappas, or all 3 of: n, gamma and mean_degree.", |
|
): |
|
G = nx.geometric_soft_configuration_graph(beta=1.5, seed=42) |
|
|
|
|
|
def test_negative_beta_S1(): |
|
with pytest.raises( |
|
nx.NetworkXError, match="The parameter beta cannot be smaller or equal to 0." |
|
): |
|
G = nx.geometric_soft_configuration_graph( |
|
beta=-1, n=100, gamma=2.3, mean_degree=10, seed=42 |
|
) |
|
|
|
|
|
def test_non_zero_clustering_beta_lower_one_S1(): |
|
G = nx.geometric_soft_configuration_graph( |
|
beta=0.5, n=100, gamma=3.5, mean_degree=10, seed=42 |
|
) |
|
assert nx.average_clustering(G) > 0 |
|
|
|
|
|
def test_mean_degree_influence_on_connectivity_S1(): |
|
low_mean_degree = 2 |
|
high_mean_degree = 20 |
|
G_low = nx.geometric_soft_configuration_graph( |
|
beta=1.2, n=100, gamma=2.7, mean_degree=low_mean_degree, seed=42 |
|
) |
|
G_high = nx.geometric_soft_configuration_graph( |
|
beta=1.2, n=100, gamma=2.7, mean_degree=high_mean_degree, seed=42 |
|
) |
|
assert nx.number_connected_components(G_low) > nx.number_connected_components( |
|
G_high |
|
) |
|
|
|
|
|
def test_compare_mean_kappas_different_gammas_S1(): |
|
G1 = nx.geometric_soft_configuration_graph( |
|
beta=1.5, n=20, gamma=2.7, mean_degree=5, seed=42 |
|
) |
|
G2 = nx.geometric_soft_configuration_graph( |
|
beta=1.5, n=20, gamma=3.5, mean_degree=5, seed=42 |
|
) |
|
kappas1 = nx.get_node_attributes(G1, "kappa") |
|
mean_kappas1 = sum(kappas1.values()) / len(kappas1) |
|
kappas2 = nx.get_node_attributes(G2, "kappa") |
|
mean_kappas2 = sum(kappas2.values()) / len(kappas2) |
|
assert math.fabs(mean_kappas1 - mean_kappas2) < 1 |
|
|