|
"""Unit tests for the :mod:`networkx.algorithms.boundary` module.""" |
|
|
|
from itertools import combinations |
|
|
|
import pytest |
|
|
|
import networkx as nx |
|
from networkx import convert_node_labels_to_integers as cnlti |
|
from networkx.utils import edges_equal |
|
|
|
|
|
class TestNodeBoundary: |
|
"""Unit tests for the :func:`~networkx.node_boundary` function.""" |
|
|
|
def test_null_graph(self): |
|
"""Tests that the null graph has empty node boundaries.""" |
|
null = nx.null_graph() |
|
assert nx.node_boundary(null, []) == set() |
|
assert nx.node_boundary(null, [], []) == set() |
|
assert nx.node_boundary(null, [1, 2, 3]) == set() |
|
assert nx.node_boundary(null, [1, 2, 3], [4, 5, 6]) == set() |
|
assert nx.node_boundary(null, [1, 2, 3], [3, 4, 5]) == set() |
|
|
|
def test_path_graph(self): |
|
P10 = cnlti(nx.path_graph(10), first_label=1) |
|
assert nx.node_boundary(P10, []) == set() |
|
assert nx.node_boundary(P10, [], []) == set() |
|
assert nx.node_boundary(P10, [1, 2, 3]) == {4} |
|
assert nx.node_boundary(P10, [4, 5, 6]) == {3, 7} |
|
assert nx.node_boundary(P10, [3, 4, 5, 6, 7]) == {2, 8} |
|
assert nx.node_boundary(P10, [8, 9, 10]) == {7} |
|
assert nx.node_boundary(P10, [4, 5, 6], [9, 10]) == set() |
|
|
|
def test_complete_graph(self): |
|
K10 = cnlti(nx.complete_graph(10), first_label=1) |
|
assert nx.node_boundary(K10, []) == set() |
|
assert nx.node_boundary(K10, [], []) == set() |
|
assert nx.node_boundary(K10, [1, 2, 3]) == {4, 5, 6, 7, 8, 9, 10} |
|
assert nx.node_boundary(K10, [4, 5, 6]) == {1, 2, 3, 7, 8, 9, 10} |
|
assert nx.node_boundary(K10, [3, 4, 5, 6, 7]) == {1, 2, 8, 9, 10} |
|
assert nx.node_boundary(K10, [4, 5, 6], []) == set() |
|
assert nx.node_boundary(K10, K10) == set() |
|
assert nx.node_boundary(K10, [1, 2, 3], [3, 4, 5]) == {4, 5} |
|
|
|
def test_petersen(self): |
|
"""Check boundaries in the petersen graph |
|
|
|
cheeger(G,k)=min(|bdy(S)|/|S| for |S|=k, 0<k<=|V(G)|/2) |
|
|
|
""" |
|
|
|
def cheeger(G, k): |
|
return min(len(nx.node_boundary(G, nn)) / k for nn in combinations(G, k)) |
|
|
|
P = nx.petersen_graph() |
|
assert cheeger(P, 1) == pytest.approx(3.00, abs=1e-2) |
|
assert cheeger(P, 2) == pytest.approx(2.00, abs=1e-2) |
|
assert cheeger(P, 3) == pytest.approx(1.67, abs=1e-2) |
|
assert cheeger(P, 4) == pytest.approx(1.00, abs=1e-2) |
|
assert cheeger(P, 5) == pytest.approx(0.80, abs=1e-2) |
|
|
|
def test_directed(self): |
|
"""Tests the node boundary of a directed graph.""" |
|
G = nx.DiGraph([(0, 1), (1, 2), (2, 3), (3, 4), (4, 0)]) |
|
S = {0, 1} |
|
boundary = nx.node_boundary(G, S) |
|
expected = {2} |
|
assert boundary == expected |
|
|
|
def test_multigraph(self): |
|
"""Tests the node boundary of a multigraph.""" |
|
G = nx.MultiGraph(list(nx.cycle_graph(5).edges()) * 2) |
|
S = {0, 1} |
|
boundary = nx.node_boundary(G, S) |
|
expected = {2, 4} |
|
assert boundary == expected |
|
|
|
def test_multidigraph(self): |
|
"""Tests the edge boundary of a multidigraph.""" |
|
edges = [(0, 1), (1, 2), (2, 3), (3, 4), (4, 0)] |
|
G = nx.MultiDiGraph(edges * 2) |
|
S = {0, 1} |
|
boundary = nx.node_boundary(G, S) |
|
expected = {2} |
|
assert boundary == expected |
|
|
|
|
|
class TestEdgeBoundary: |
|
"""Unit tests for the :func:`~networkx.edge_boundary` function.""" |
|
|
|
def test_null_graph(self): |
|
null = nx.null_graph() |
|
assert list(nx.edge_boundary(null, [])) == [] |
|
assert list(nx.edge_boundary(null, [], [])) == [] |
|
assert list(nx.edge_boundary(null, [1, 2, 3])) == [] |
|
assert list(nx.edge_boundary(null, [1, 2, 3], [4, 5, 6])) == [] |
|
assert list(nx.edge_boundary(null, [1, 2, 3], [3, 4, 5])) == [] |
|
|
|
def test_path_graph(self): |
|
P10 = cnlti(nx.path_graph(10), first_label=1) |
|
assert list(nx.edge_boundary(P10, [])) == [] |
|
assert list(nx.edge_boundary(P10, [], [])) == [] |
|
assert list(nx.edge_boundary(P10, [1, 2, 3])) == [(3, 4)] |
|
assert sorted(nx.edge_boundary(P10, [4, 5, 6])) == [(4, 3), (6, 7)] |
|
assert sorted(nx.edge_boundary(P10, [3, 4, 5, 6, 7])) == [(3, 2), (7, 8)] |
|
assert list(nx.edge_boundary(P10, [8, 9, 10])) == [(8, 7)] |
|
assert sorted(nx.edge_boundary(P10, [4, 5, 6], [9, 10])) == [] |
|
assert list(nx.edge_boundary(P10, [1, 2, 3], [3, 4, 5])) == [(2, 3), (3, 4)] |
|
|
|
def test_complete_graph(self): |
|
K10 = cnlti(nx.complete_graph(10), first_label=1) |
|
|
|
def ilen(iterable): |
|
return sum(1 for i in iterable) |
|
|
|
assert list(nx.edge_boundary(K10, [])) == [] |
|
assert list(nx.edge_boundary(K10, [], [])) == [] |
|
assert ilen(nx.edge_boundary(K10, [1, 2, 3])) == 21 |
|
assert ilen(nx.edge_boundary(K10, [4, 5, 6, 7])) == 24 |
|
assert ilen(nx.edge_boundary(K10, [3, 4, 5, 6, 7])) == 25 |
|
assert ilen(nx.edge_boundary(K10, [8, 9, 10])) == 21 |
|
assert edges_equal( |
|
nx.edge_boundary(K10, [4, 5, 6], [9, 10]), |
|
[(4, 9), (4, 10), (5, 9), (5, 10), (6, 9), (6, 10)], |
|
) |
|
assert edges_equal( |
|
nx.edge_boundary(K10, [1, 2, 3], [3, 4, 5]), |
|
[(1, 3), (1, 4), (1, 5), (2, 3), (2, 4), (2, 5), (3, 4), (3, 5)], |
|
) |
|
|
|
def test_directed(self): |
|
"""Tests the edge boundary of a directed graph.""" |
|
G = nx.DiGraph([(0, 1), (1, 2), (2, 3), (3, 4), (4, 0)]) |
|
S = {0, 1} |
|
boundary = list(nx.edge_boundary(G, S)) |
|
expected = [(1, 2)] |
|
assert boundary == expected |
|
|
|
def test_multigraph(self): |
|
"""Tests the edge boundary of a multigraph.""" |
|
G = nx.MultiGraph(list(nx.cycle_graph(5).edges()) * 2) |
|
S = {0, 1} |
|
boundary = list(nx.edge_boundary(G, S)) |
|
expected = [(0, 4), (0, 4), (1, 2), (1, 2)] |
|
assert boundary == expected |
|
|
|
def test_multidigraph(self): |
|
"""Tests the edge boundary of a multidigraph.""" |
|
edges = [(0, 1), (1, 2), (2, 3), (3, 4), (4, 0)] |
|
G = nx.MultiDiGraph(edges * 2) |
|
S = {0, 1} |
|
boundary = list(nx.edge_boundary(G, S)) |
|
expected = [(1, 2), (1, 2)] |
|
assert boundary == expected |
|
|