|
__all__: list[str] = []
|
|
|
|
import cv2.typing
|
|
import typing as _typing
|
|
|
|
|
|
from cv2.gapi.ie import detail as detail
|
|
|
|
|
|
# Enumerations
|
|
TraitAs_TENSOR: int
|
|
TRAIT_AS_TENSOR: int
|
|
TraitAs_IMAGE: int
|
|
TRAIT_AS_IMAGE: int
|
|
TraitAs = int
|
|
"""One of [TraitAs_TENSOR, TRAIT_AS_TENSOR, TraitAs_IMAGE, TRAIT_AS_IMAGE]"""
|
|
|
|
Sync: int
|
|
SYNC: int
|
|
Async: int
|
|
ASYNC: int
|
|
InferMode = int
|
|
"""One of [Sync, SYNC, Async, ASYNC]"""
|
|
|
|
|
|
|
|
# Classes
|
|
class PyParams:
|
|
# Functions
|
|
@_typing.overload
|
|
def __init__(self) -> None: ...
|
|
@_typing.overload
|
|
def __init__(self, tag: str, model: str, weights: str, device: str) -> None: ...
|
|
@_typing.overload
|
|
def __init__(self, tag: str, model: str, device: str) -> None: ...
|
|
|
|
def constInput(self, layer_name: str, data: cv2.typing.MatLike, hint: TraitAs = ...) -> PyParams: ...
|
|
|
|
def cfgNumRequests(self, nireq: int) -> PyParams: ...
|
|
|
|
def cfgBatchSize(self, size: int) -> PyParams: ...
|
|
|
|
|
|
|
|
# Functions
|
|
@_typing.overload
|
|
def params(tag: str, model: str, weights: str, device: str) -> PyParams: ...
|
|
@_typing.overload
|
|
def params(tag: str, model: str, device: str) -> PyParams: ...
|
|
|
|
|
|
|