File size: 17,485 Bytes
57db94b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 |
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.utils.data import DataLoader, Dataset
from torchvision import transforms
import os
import cv2
import numpy as np
# Device configuration
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Warping module
backwarp_tenGrid = {}
def warp(tenInput, tenFlow):
# Ensure tenFlow has the correct shape (batch_size, 2, height, width)
if tenFlow.dim() == 3:
tenFlow = tenFlow.unsqueeze(1) # Add channel dimension if missing
if tenFlow.size(1) != 2:
raise ValueError(f"tenFlow must have 2 channels (horizontal and vertical flow). Got {tenFlow.size(1)} channels.")
k = (str(tenFlow.device), str(tenFlow.size()))
if k not in backwarp_tenGrid:
tenHorizontal = torch.linspace(-1.0, 1.0, tenFlow.shape[3], device=device).view(
1, 1, 1, tenFlow.shape[3]).expand(tenFlow.shape[0], -1, tenFlow.shape[2], -1)
tenVertical = torch.linspace(-1.0, 1.0, tenFlow.shape[2], device=device).view(
1, 1, tenFlow.shape[2], 1).expand(tenFlow.shape[0], -1, -1, tenFlow.shape[3])
backwarp_tenGrid[k] = torch.cat(
[tenHorizontal, tenVertical], 1).to(device)
tenFlow = torch.cat([tenFlow[:, 0:1, :, :] / ((tenInput.shape[3] - 1.0) / 2.0),
tenFlow[:, 1:2, :, :] / ((tenInput.shape[2] - 1.0) / 2.0)], 1)
g = (backwarp_tenGrid[k] + tenFlow).permute(0, 2, 3, 1)
return torch.nn.functional.grid_sample(input=tenInput, grid=g, mode='bilinear', padding_mode='border', align_corners=True)
# Convolution and deconvolution helpers
def conv(in_planes, out_planes, kernel_size=3, stride=1, padding=1, dilation=1):
return nn.Sequential(
nn.Conv2d(in_planes, out_planes, kernel_size=kernel_size, stride=stride,
padding=padding, dilation=dilation, bias=True),
nn.PReLU(out_planes)
)
def deconv(in_planes, out_planes, kernel_size=4, stride=2, padding=1):
return nn.Sequential(
torch.nn.ConvTranspose2d(in_channels=in_planes, out_channels=out_planes, kernel_size=4, stride=2, padding=1, bias=True),
nn.PReLU(out_planes)
)
# IFBlock module
class IFBlock(nn.Module):
def __init__(self, in_planes, c=64):
super(IFBlock, self).__init__()
self.conv0 = nn.Sequential(
conv(in_planes, c//2, 3, 2, 1),
conv(c//2, c, 3, 2, 1),
)
self.convblock = nn.Sequential(
conv(c, c),
conv(c, c),
conv(c, c),
conv(c, c),
conv(c, c),
conv(c, c),
conv(c, c),
conv(c, c),
)
self.lastconv = nn.ConvTranspose2d(c, 5, 4, 2, 1)
def forward(self, x, flow=None, scale=1): # Ensure `scale` is a default argument
if scale != 1:
x = F.interpolate(x, scale_factor=1. / scale, mode="bilinear", align_corners=False)
if flow is not None:
flow = F.interpolate(flow, scale_factor=1. / scale, mode="bilinear", align_corners=False) * 1. / scale
x = torch.cat((x, flow), 1)
x = self.conv0(x)
x = self.convblock(x) + x
tmp = self.lastconv(x)
tmp = F.interpolate(tmp, scale_factor=scale * 2, mode="bilinear", align_corners=False)
flow = tmp[:, :4] * scale * 2
mask = tmp[:, 4:5]
return flow, mask
# Contextnet module
c = 16
class Contextnet(nn.Module):
def __init__(self):
super(Contextnet, self).__init__()
self.conv1 = conv(3, c)
self.conv2 = conv(c, 2*c)
self.conv3 = conv(2*c, 4*c)
self.conv4 = conv(4*c, 8*c)
def forward(self, x, flow):
x = self.conv1(x) # Output: (batch, c, H/2, W/2)
flow = F.interpolate(flow, scale_factor=0.5, mode="bilinear", align_corners=False) * 0.5
f1 = warp(x, flow) # Output: (batch, c, H/2, W/2)
x = self.conv2(x) # Output: (batch, 2*c, H/4, W/4)
flow = F.interpolate(flow, scale_factor=0.5, mode="bilinear", align_corners=False) * 0.5
f2 = warp(x, flow) # Output: (batch, 2*c, H/4, W/4)
x = self.conv3(x) # Output: (batch, 4*c, H/8, W/8)
flow = F.interpolate(flow, scale_factor=0.5, mode="bilinear", align_corners=False) * 0.5
f3 = warp(x, flow) # Output: (batch, 4*c, H/8, W/8)
x = self.conv4(x) # Output: (batch, 8*c, H/16, W/16)
flow = F.interpolate(flow, scale_factor=0.5, mode="bilinear", align_corners=False) * 0.5
f4 = warp(x, flow) # Output: (batch, 8*c, H/16, W/16)
return [f1, f2, f3, f4]
# Unet module
class Unet(nn.Module):
def __init__(self):
super(Unet, self).__init__()
self.down0 = conv(17, 2*c) # Input: (batch, 17, H, W) -> Output: (batch, 2*c, H/2, W/2)
self.down1 = conv(4*c, 4*c) # Input: (batch, 4*c, H/2, W/2) -> Output: (batch, 4*c, H/4, W/4)
self.down2 = conv(8*c, 8*c) # Input: (batch, 8*c, H/4, W/4) -> Output: (batch, 8*c, H/8, W/8)
self.down3 = conv(16*c, 16*c) # Input: (batch, 16*c, H/8, W/8) -> Output: (batch, 16*c, H/16, W/16)
self.up0 = deconv(32*c, 8*c) # Input: (batch, 32*c, H/16, W/16) -> Output: (batch, 8*c, H/8, W/8)
self.up1 = deconv(16*c, 4*c) # Input: (batch, 16*c, H/8, W/8) -> Output: (batch, 4*c, H/4, W/4)
self.up2 = deconv(8*c, 2*c) # Input: (batch, 8*c, H/4, W/4) -> Output: (batch, 2*c, H/2, W/2)
self.up3 = deconv(4*c, c) # Input: (batch, 4*c, H/2, W/2) -> Output: (batch, c, H, W)
self.conv = nn.Conv2d(c, 3, 3, 1, 1) # Input: (batch, c, H, W) -> Output: (batch, 3, H, W)
def forward(self, img0, img1, warped_img0, warped_img1, mask, flow, c0, c1):
# Downsample
s0 = self.down0(torch.cat((img0, img1, warped_img0, warped_img1, mask, flow), 1)) # Output: (batch, 2*c, H/2, W/2)
# Ensure c0[0] and c1[0] match the spatial dimensions of s0
c0_0_resized = F.interpolate(c0[0], size=(s0.size(2), s0.size(3)), mode="bilinear", align_corners=False)
c1_0_resized = F.interpolate(c1[0], size=(s0.size(2), s0.size(3)), mode="bilinear", align_corners=False)
s1 = self.down1(torch.cat((s0, c0_0_resized, c1_0_resized), 1)) # Output: (batch, 4*c, H/4, W/4)
# Ensure c0[1] and c1[1] match the spatial dimensions of s1
c0_1_resized = F.interpolate(c0[1], size=(s1.size(2), s1.size(3)), mode="bilinear", align_corners=False)
c1_1_resized = F.interpolate(c1[1], size=(s1.size(2), s1.size(3)), mode="bilinear", align_corners=False)
s2 = self.down2(torch.cat((s1, c0_1_resized, c1_1_resized), 1)) # Output: (batch, 8*c, H/8, W/8)
# Ensure c0[2] and c1[2] match the spatial dimensions of s2
c0_2_resized = F.interpolate(c0[2], size=(s2.size(2), s2.size(3)), mode="bilinear", align_corners=False)
c1_2_resized = F.interpolate(c1[2], size=(s2.size(2), s2.size(3)), mode="bilinear", align_corners=False)
s3 = self.down3(torch.cat((s2, c0_2_resized, c1_2_resized), 1)) # Output: (batch, 16*c, H/16, W/16)
# Upsample
# Ensure c0[3] and c1[3] match the spatial dimensions of s3
c0_3_resized = F.interpolate(c0[3], size=(s3.size(2), s3.size(3)), mode="bilinear", align_corners=False)
c1_3_resized = F.interpolate(c1[3], size=(s3.size(2), s3.size(3)), mode="bilinear", align_corners=False)
x = self.up0(torch.cat((s3, c0_3_resized, c1_3_resized), 1)) # Output: (batch, 8*c, H/8, W/8)
# Upsample and concatenate
# Ensure s2 matches the spatial dimensions of x
s2_resized = F.interpolate(s2, size=(x.size(2), x.size(3)), mode="bilinear", align_corners=False)
x = self.up1(torch.cat((x, s2_resized), 1)) # Output: (batch, 4*c, H/4, W/4)
# Ensure s1 matches the spatial dimensions of x
s1_resized = F.interpolate(s1, size=(x.size(2), x.size(3)), mode="bilinear", align_corners=False)
x = self.up2(torch.cat((x, s1_resized), 1)) # Output: (batch, 2*c, H/2, W/2)
s0_resized = F.interpolate(s0, size=(x.size(2), x.size(3)), mode="bilinear", align_corners=False)
x = self.up3(torch.cat((x, s0_resized), 1)) # Output: (batch, c, H, W)
x = self.conv(x)
# StrokeLevelModel module
class StrokeLevelModel(nn.Module):
def __init__(self):
super(StrokeLevelModel, self).__init__()
c = 24
self.fuse_block = nn.Sequential(
nn.Conv2d(7, 2 * c, 3, 1, 1), # Expects 7 input channels
nn.LeakyReLU(negative_slope=0.2, inplace=True),
nn.Conv2d(2 * c, 2 * c, 3, 1, 1),
nn.LeakyReLU(negative_slope=0.2, inplace=True)
)
self.fuse_block1 = nn.Sequential(
nn.Conv2d(6, 2 * c, 3, 1, 1),
nn.LeakyReLU(negative_slope=0.2, inplace=True),
nn.Conv2d(2 * c, 2 * c, 3, 1, 1),
nn.LeakyReLU(negative_slope=0.2, inplace=True)
)
self.fuse_block2 = nn.Sequential(
nn.Conv2d(6, 2 * c, 3, 1, 1),
nn.LeakyReLU(negative_slope=0.2, inplace=True),
nn.Conv2d(2 * c, 2 * c, 3, 1, 1),
nn.LeakyReLU(negative_slope=0.2, inplace=True)
)
# Add a channel reduction layer
self.channel_reduction = nn.Conv2d(144, 9, 1, 1, 0) # Reduce 144 channels to 9
self.final_fuse_block = nn.Sequential(
nn.Conv2d(9, 2 * c, 3, 1, 1), # Expects 9 input channels
nn.LeakyReLU(negative_slope=0.2, inplace=True),
nn.Conv2d(2 * c, 3, 3, 1, 1),
nn.LeakyReLU(negative_slope=0.2, inplace=True)
)
self.points_fuse = nn.Sequential(
nn.Conv2d(1, 2 * c, 3, 1, 1),
nn.LeakyReLU(negative_slope=0.2, inplace=True),
nn.Conv2d(2 * c, 1, 3, 1, 1), # Output 1 channel
nn.LeakyReLU(negative_slope=0.2, inplace=True)
)
def forward(self, img0, img1, points, region_flow):
B, _, H, W = img0.size()
# Ensure region_flow has 2 channels (horizontal and vertical flow)
if region_flow.size(1) == 4:
region_flow = region_flow[:, :2] # Use only the first 2 channels
elif region_flow.size(1) != 2:
raise ValueError(f"region_flow must have 2 channels (horizontal and vertical flow). Got {region_flow.size(1)} channels.")
# Warp the images using the flow
warped_img0 = warp(img0, region_flow[:, :2]) # Use the first 2 channels for flow
warped_img1 = warp(img1, region_flow[:, :2]) # Use the first 2 channels for flow
# Process points
points = self.points_fuse(points)
# Fuse features
fused_img0 = self.fuse_block1(torch.cat([warped_img0, warped_img1], dim=1))
fused_img1 = self.fuse_block2(torch.cat([warped_img0, warped_img1], dim=1))
# Final fusion
x = self.fuse_block(torch.cat([warped_img0, warped_img1, points], dim=1))
# Concatenate fused_img0, fused_img1, and x
concat_features = torch.cat([fused_img0, fused_img1, x], dim=1)
# Reduce the number of channels to 9
concat_features = self.channel_reduction(concat_features)
# Generate the final output
pred = self.final_fuse_block(concat_features)
pred = torch.sigmoid(pred)
return pred
# IFNet module with StrokeLevelModel
class IFNet(nn.Module):
def __init__(self):
super(IFNet, self).__init__()
self.block0 = IFBlock(6, c=90)
self.block1 = IFBlock(13+4, c=90)
self.block2 = IFBlock(13+4, c=90)
self.block_tea = IFBlock(16+4, c=90)
self.contextnet = Contextnet()
self.unet = Unet()
self.stroke_level_model = StrokeLevelModel() # Add StrokeLevelModel
def forward(self, x, scale=[4, 2, 1], timestep=0.5): # Ensure `scale` is a default argument
img0 = x[:, :3]
img1 = x[:, 3:6]
gt = x[:, 6:] # In inference time, gt is None
flow_list = []
merged = []
mask_list = []
warped_img0 = img0
warped_img1 = img1
flow = None
loss_distill = 0
stu = [self.block0, self.block1, self.block2]
for i in range(3):
if flow is not None:
flow_d, mask_d = stu[i](torch.cat((img0, img1, warped_img0, warped_img1, mask), 1), flow, scale=scale[i])
flow = flow + flow_d
mask = mask + mask_d
else:
flow, mask = stu[i](torch.cat((img0, img1), 1), None, scale=scale[i])
mask_list.append(torch.sigmoid(mask))
flow_list.append(flow)
warped_img0 = warp(img0, flow[:, :2])
warped_img1 = warp(img1, flow[:, 2:4])
merged_student = (warped_img0, warped_img1)
merged.append(merged_student)
if gt.shape[1] == 3:
flow_d, mask_d = self.block_tea(torch.cat((img0, img1, warped_img0, warped_img1, mask, gt), 1), flow, scale=1)
flow_teacher = flow + flow_d
warped_img0_teacher = warp(img0, flow_teacher[:, :2])
warped_img1_teacher = warp(img1, flow_teacher[:, 2:4])
mask_teacher = torch.sigmoid(mask + mask_d)
merged_teacher = warped_img0_teacher * mask_teacher + warped_img1_teacher * (1 - mask_teacher)
else:
flow_teacher = None
merged_teacher = None
for i in range(3):
merged[i] = merged[i][0] * mask_list[i] + merged[i][1] * (1 - mask_list[i])
if gt.shape[1] == 3:
loss_mask = ((merged[i] - gt).abs().mean(1, True) > (merged_teacher - gt).abs().mean(1, True) + 0.01).float().detach()
loss_distill += (((flow_teacher.detach() - flow_list[i]) ** 2).mean(1, True) ** 0.5 * loss_mask).mean()
c0 = self.contextnet(img0, flow[:, :2])
c1 = self.contextnet(img1, flow[:, 2:4])
tmp = self.unet(img0, img1, warped_img0, warped_img1, mask, flow, c0, c1)
# Resize `tmp` to match the spatial dimensions of `merged[2]`
res = F.interpolate(tmp, size=(merged[2].size(2), merged[2].size(3)), mode="bilinear", align_corners=False)
res = res[:, :3] * 2 - 1
# Add `res` to `merged[2]`
merged[2] = torch.clamp(merged[2] + res, 0, 1)
# Pass the output through the StrokeLevelModel
points = torch.zeros_like(img0[:, :1]) # Dummy points tensor (replace with actual points if available)
stroke_output = self.stroke_level_model(img0, img1, points, flow)
return flow_list, mask_list[2], merged, flow_teacher, merged_teacher, loss_distill, stroke_output
# Dataset class
class FrameInterpolationDataset(Dataset):
def __init__(self, data_dir, transform=None):
self.data_dir = data_dir
self.transform = transform
self.frame_pairs = self._load_frame_pairs()
def _load_frame_pairs(self):
frame_pairs = []
for seq in os.listdir(self.data_dir):
seq_dir = os.path.join(self.data_dir, seq)
frames = sorted(os.listdir(seq_dir))
for i in range(len(frames) - 2):
frame_pairs.append((os.path.join(seq_dir, frames[i]), os.path.join(seq_dir, frames[i+2]), os.path.join(seq_dir, frames[i+1])))
return frame_pairs
def __len__(self):
return len(self.frame_pairs)
def __getitem__(self, idx):
img0_path, img1_path, gt_path = self.frame_pairs[idx]
img0 = cv2.imread(img0_path)
img1 = cv2.imread(img1_path)
gt = cv2.imread(gt_path)
if self.transform:
img0 = self.transform(img0)
img1 = self.transform(img1)
gt = self.transform(gt)
return torch.cat((img0, img1, gt), 0)
# Training loop
def train(model, dataloader, optimizer, criterion, num_epochs=10):
model.train()
for epoch in range(num_epochs):
for i, data in enumerate(dataloader):
data = data.to(device)
optimizer.zero_grad()
flow_list, mask, merged, flow_teacher, merged_teacher, loss_distill, stroke_output = model(data)
loss = criterion(merged[2], data[:, 6:9]) + criterion(stroke_output, data[:, 6:9]) # Add stroke_output loss
loss.backward()
optimizer.step()
if i % 10 == 0:
print(f"Epoch [{epoch+1}/{num_epochs}], Step [{i}/{len(dataloader)}], Loss: {loss.item()}")
# Main script
if __name__ == "__main__":
# Hyperparameters
batch_size = 2
learning_rate = 1e-4
num_epochs = 4
# Dataset and DataLoader
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
])
dataset = FrameInterpolationDataset(data_dir="datasets/train_10k", transform=transform)
dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True)
# Model, optimizer, and loss function
model = IFNet().to(device)
optimizer = optim.AdamW(model.parameters(), lr=learning_rate)
criterion = nn.L1Loss()
# Train the model
train(model, dataloader, optimizer, criterion, num_epochs=num_epochs)
#change loss function to the original papers
#early stopping
#save the best model
#hyperparameter tuning
#generate images
#draw the model
#make an animation sw (optional)
|