File size: 6,419 Bytes
57db94b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 |
import torch
import torch.nn.functional as F
import cv2
import numpy as np
from torchvision import transforms
import os
import matplotlib.pyplot as plt
from PIL import Image
import time
from skimage.metrics import structural_similarity as ssim
from skimage.color import rgb2lab
from combined import IFNet, warp
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")
model = IFNet().to(device)
checkpoint_path = "save_checkpoints/model_epoch_50.pth"
checkpoint = torch.load(checkpoint_path, weights_only=False, map_location=device)
model.load_state_dict(checkpoint['model_state_dict'])
model.eval()
print(f"Loaded model from epoch {checkpoint['epoch']} with PSNR: {checkpoint.get('psnr', 'N/A')} dB")
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
])
def preprocess_images(img0_path, img1_path, gt_path=None):
# Read images
img0 = cv2.imread(img0_path)
img1 = cv2.imread(img1_path)
if img0 is None or img1 is None:
raise ValueError(f"Could not read images: {img0_path}, {img1_path}")
gt = None
if gt_path and os.path.exists(gt_path):
gt = cv2.imread(gt_path)
if gt is None:
print(f"Warning: Could not read ground truth image: {gt_path}")
gt = None
else:
gt = cv2.cvtColor(gt, cv2.COLOR_BGR2RGB)
img0 = cv2.cvtColor(img0, cv2.COLOR_BGR2RGB)
img1 = cv2.cvtColor(img1, cv2.COLOR_BGR2RGB)
original_size = (img0.shape[0], img0.shape[1])
orig_img0 = img0.copy()
orig_img1 = img1.copy()
img0_resized = cv2.resize(img0, (256, 256))
img1_resized = cv2.resize(img1, (256, 256))
img0_tensor = transform(img0_resized)
img1_tensor = transform(img1_resized)
input_tensor = torch.cat((img0_tensor, img1_tensor), 0).unsqueeze(0).to(device)
return input_tensor, original_size, orig_img0, orig_img1, gt
def tensor_to_image(tensor):
tensor = tensor.cpu()
tensor = tensor * 0.5 + 0.5
tensor = tensor.clamp(0, 1)
img = tensor.numpy().transpose(1, 2, 0) * 255
return img.astype(np.uint8)
def calculate_psnr(img1, img2):
mse = np.mean((img1.astype(np.float32) - img2.astype(np.float32)) ** 2)
if mse == 0:
return float('inf')
return 10 * np.log10(255.0 ** 2 / mse)
def calculate_ssim(img1, img2):
if img1.ndim == 3 and img1.shape[2] == 3:
gray1 = cv2.cvtColor(img1, cv2.COLOR_RGB2GRAY)
gray2 = cv2.cvtColor(img2, cv2.COLOR_RGB2GRAY)
return ssim(gray1, gray2)
return ssim(img1, img2)
def calculate_cd(img1, img2):
lab1 = rgb2lab(img1 / 255.0)
lab2 = rgb2lab(img2 / 255.0)
delta_e = np.sqrt(np.sum((lab1 - lab2) ** 2, axis=2))
return np.mean(delta_e)
def calculate_ie(interpolated, gt):
return np.mean(np.abs(interpolated.astype(np.float32) - gt.astype(np.float32)))
def interpolate_frames(img0_path, img1_path, output_path, gt_path=None):
input_tensor, original_size, img0, img1, gt = preprocess_images(img0_path, img1_path, gt_path)
start_time = time.time()
with torch.no_grad():
flow, mask, interpolated = model(input_tensor)
inference_time = time.time() - start_time
print(f"Inference time: {inference_time:.4f} seconds")
interpolated_img = tensor_to_image(interpolated[0])
interpolated_img = cv2.resize(interpolated_img, (original_size[1], original_size[0]))
interpolated_img_bgr = cv2.cvtColor(interpolated_img, cv2.COLOR_RGB2BGR)
cv2.imwrite(output_path, interpolated_img_bgr)
metrics = {}
if gt is not None:
metrics['psnr'] = calculate_psnr(interpolated_img, gt)
metrics['ssim'] = calculate_ssim(interpolated_img, gt)
metrics['cd'] = calculate_cd(interpolated_img, gt)
metrics['ie'] = calculate_ie(interpolated_img, gt)
print(f"Metrics (compared to ground truth):")
print(f" PSNR: {metrics['psnr']:.4f} dB")
print(f" SSIM: {metrics['ssim']:.4f}")
print(f" Color Difference (CD): {metrics['cd']:.4f}")
print(f" Interpolation Error (IE): {metrics['ie']:.4f}")
return img0, img1, interpolated_img, gt, metrics
def display_results(img0, img1, interpolated, gt, metrics, output_path):
has_gt = gt is not None
plt.figure(figsize=(15, 5 if not has_gt else 10))
plt.subplot(2 if has_gt else 1, 3, 1)
plt.imshow(img0)
plt.title('Frame 1')
plt.axis('off')
plt.subplot(2 if has_gt else 1, 3, 2)
plt.imshow(interpolated)
plt.title('Interpolated Frame')
plt.axis('off')
plt.subplot(2 if has_gt else 1, 3, 3)
plt.imshow(img1)
plt.title('Frame 2')
plt.axis('off')
if has_gt:
plt.subplot(2, 3, 4)
plt.imshow(gt)
plt.title('Ground Truth')
plt.axis('off')
plt.subplot(2, 3, 5)
diff = np.abs(interpolated.astype(np.float32) - gt.astype(np.float32))
plt.imshow(diff.astype(np.uint8))
plt.title('Difference')
plt.axis('off')
plt.subplot(2, 3, 6)
plt.axis('off')
metrics_text = "\n".join([
f"PSNR: {metrics['psnr']:.2f} dB",
f"SSIM: {metrics['ssim']:.4f}",
f"CD: {metrics['cd']:.2f}",
f"IE: {metrics['ie']:.2f}"
])
plt.text(0.1, 0.5, metrics_text, fontsize=12)
plt.title('Metrics')
plt.tight_layout()
plt.savefig(output_path.replace('.png', '_comparison.png'))
plt.show()
#CHANGE FILE PATH
test_pairs = [
("test_frames/frame1.png", "test_frames/frame3.png", "results/scene1_interpolated.png", "test_frames/frame2.png"),
]
os.makedirs("results", exist_ok=True)
for test_item in test_pairs:
img0_path, img1_path, output_path = test_item[0], test_item[1], test_item[2]
gt_path = test_item[3] if len(test_item) > 3 else None
print(f"Processing: {img0_path} and {img1_path}")
try:
img0, img1, interpolated, gt, metrics = interpolate_frames(img0_path, img1_path, output_path, gt_path)
display_results(img0, img1, interpolated, gt, metrics, output_path)
except Exception as e:
print(f"Error processing frames: {e}")
import traceback
traceback.print_exc() |