File size: 5,540 Bytes
57db94b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 |
"""Unit tests for the :mod:`networkx.algorithms.structuralholes` module."""
import math
import pytest
import networkx as nx
from networkx.classes.tests import dispatch_interface
class TestStructuralHoles:
"""Unit tests for computing measures of structural holes.
The expected values for these functions were originally computed using the
proprietary software `UCINET`_ and the free software `IGraph`_ , and then
computed by hand to make sure that the results are correct.
.. _UCINET: https://sites.google.com/site/ucinetsoftware/home
.. _IGraph: http://igraph.org/
"""
def setup_method(self):
self.D = nx.DiGraph()
self.D.add_edges_from([(0, 1), (0, 2), (1, 0), (2, 1)])
self.D_weights = {(0, 1): 2, (0, 2): 2, (1, 0): 1, (2, 1): 1}
# Example from http://www.analytictech.com/connections/v20(1)/holes.htm
self.G = nx.Graph()
self.G.add_edges_from(
[
("A", "B"),
("A", "F"),
("A", "G"),
("A", "E"),
("E", "G"),
("F", "G"),
("B", "G"),
("B", "D"),
("D", "G"),
("G", "C"),
]
)
self.G_weights = {
("A", "B"): 2,
("A", "F"): 3,
("A", "G"): 5,
("A", "E"): 2,
("E", "G"): 8,
("F", "G"): 3,
("B", "G"): 4,
("B", "D"): 1,
("D", "G"): 3,
("G", "C"): 10,
}
# This additionally tests the @nx._dispatchable mechanism, treating
# nx.mutual_weight as if it were a re-implementation from another package
@pytest.mark.parametrize("wrapper", [lambda x: x, dispatch_interface.convert])
def test_constraint_directed(self, wrapper):
constraint = nx.constraint(wrapper(self.D))
assert constraint[0] == pytest.approx(1.003, abs=1e-3)
assert constraint[1] == pytest.approx(1.003, abs=1e-3)
assert constraint[2] == pytest.approx(1.389, abs=1e-3)
def test_effective_size_directed(self):
effective_size = nx.effective_size(self.D)
assert effective_size[0] == pytest.approx(1.167, abs=1e-3)
assert effective_size[1] == pytest.approx(1.167, abs=1e-3)
assert effective_size[2] == pytest.approx(1, abs=1e-3)
def test_constraint_weighted_directed(self):
D = self.D.copy()
nx.set_edge_attributes(D, self.D_weights, "weight")
constraint = nx.constraint(D, weight="weight")
assert constraint[0] == pytest.approx(0.840, abs=1e-3)
assert constraint[1] == pytest.approx(1.143, abs=1e-3)
assert constraint[2] == pytest.approx(1.378, abs=1e-3)
def test_effective_size_weighted_directed(self):
D = self.D.copy()
nx.set_edge_attributes(D, self.D_weights, "weight")
effective_size = nx.effective_size(D, weight="weight")
assert effective_size[0] == pytest.approx(1.567, abs=1e-3)
assert effective_size[1] == pytest.approx(1.083, abs=1e-3)
assert effective_size[2] == pytest.approx(1, abs=1e-3)
def test_constraint_undirected(self):
constraint = nx.constraint(self.G)
assert constraint["G"] == pytest.approx(0.400, abs=1e-3)
assert constraint["A"] == pytest.approx(0.595, abs=1e-3)
assert constraint["C"] == pytest.approx(1, abs=1e-3)
def test_effective_size_undirected_borgatti(self):
effective_size = nx.effective_size(self.G)
assert effective_size["G"] == pytest.approx(4.67, abs=1e-2)
assert effective_size["A"] == pytest.approx(2.50, abs=1e-2)
assert effective_size["C"] == pytest.approx(1, abs=1e-2)
def test_effective_size_undirected(self):
G = self.G.copy()
nx.set_edge_attributes(G, 1, "weight")
effective_size = nx.effective_size(G, weight="weight")
assert effective_size["G"] == pytest.approx(4.67, abs=1e-2)
assert effective_size["A"] == pytest.approx(2.50, abs=1e-2)
assert effective_size["C"] == pytest.approx(1, abs=1e-2)
def test_constraint_weighted_undirected(self):
G = self.G.copy()
nx.set_edge_attributes(G, self.G_weights, "weight")
constraint = nx.constraint(G, weight="weight")
assert constraint["G"] == pytest.approx(0.299, abs=1e-3)
assert constraint["A"] == pytest.approx(0.795, abs=1e-3)
assert constraint["C"] == pytest.approx(1, abs=1e-3)
def test_effective_size_weighted_undirected(self):
G = self.G.copy()
nx.set_edge_attributes(G, self.G_weights, "weight")
effective_size = nx.effective_size(G, weight="weight")
assert effective_size["G"] == pytest.approx(5.47, abs=1e-2)
assert effective_size["A"] == pytest.approx(2.47, abs=1e-2)
assert effective_size["C"] == pytest.approx(1, abs=1e-2)
def test_constraint_isolated(self):
G = self.G.copy()
G.add_node(1)
constraint = nx.constraint(G)
assert math.isnan(constraint[1])
def test_effective_size_isolated(self):
G = self.G.copy()
G.add_node(1)
nx.set_edge_attributes(G, self.G_weights, "weight")
effective_size = nx.effective_size(G, weight="weight")
assert math.isnan(effective_size[1])
def test_effective_size_borgatti_isolated(self):
G = self.G.copy()
G.add_node(1)
effective_size = nx.effective_size(G)
assert math.isnan(effective_size[1])
|