File size: 34,416 Bytes
57db94b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 |
from itertools import chain, islice, tee
from math import inf
from random import shuffle
import pytest
import networkx as nx
from networkx.algorithms.traversal.edgedfs import FORWARD, REVERSE
def check_independent(basis):
if len(basis) == 0:
return
np = pytest.importorskip("numpy")
sp = pytest.importorskip("scipy") # Required by incidence_matrix
H = nx.Graph()
for b in basis:
nx.add_cycle(H, b)
inc = nx.incidence_matrix(H, oriented=True)
rank = np.linalg.matrix_rank(inc.toarray(), tol=None, hermitian=False)
assert inc.shape[1] - rank == len(basis)
class TestCycles:
@classmethod
def setup_class(cls):
G = nx.Graph()
nx.add_cycle(G, [0, 1, 2, 3])
nx.add_cycle(G, [0, 3, 4, 5])
nx.add_cycle(G, [0, 1, 6, 7, 8])
G.add_edge(8, 9)
cls.G = G
def is_cyclic_permutation(self, a, b):
n = len(a)
if len(b) != n:
return False
l = a + a
return any(l[i : i + n] == b for i in range(n))
def test_cycle_basis(self):
G = self.G
cy = nx.cycle_basis(G, 0)
sort_cy = sorted(sorted(c) for c in cy)
assert sort_cy == [[0, 1, 2, 3], [0, 1, 6, 7, 8], [0, 3, 4, 5]]
cy = nx.cycle_basis(G, 1)
sort_cy = sorted(sorted(c) for c in cy)
assert sort_cy == [[0, 1, 2, 3], [0, 1, 6, 7, 8], [0, 3, 4, 5]]
cy = nx.cycle_basis(G, 9)
sort_cy = sorted(sorted(c) for c in cy)
assert sort_cy == [[0, 1, 2, 3], [0, 1, 6, 7, 8], [0, 3, 4, 5]]
# test disconnected graphs
nx.add_cycle(G, "ABC")
cy = nx.cycle_basis(G, 9)
sort_cy = sorted(sorted(c) for c in cy[:-1]) + [sorted(cy[-1])]
assert sort_cy == [[0, 1, 2, 3], [0, 1, 6, 7, 8], [0, 3, 4, 5], ["A", "B", "C"]]
def test_cycle_basis2(self):
with pytest.raises(nx.NetworkXNotImplemented):
G = nx.DiGraph()
cy = nx.cycle_basis(G, 0)
def test_cycle_basis3(self):
with pytest.raises(nx.NetworkXNotImplemented):
G = nx.MultiGraph()
cy = nx.cycle_basis(G, 0)
def test_cycle_basis_ordered(self):
# see gh-6654 replace sets with (ordered) dicts
G = nx.cycle_graph(5)
G.update(nx.cycle_graph(range(3, 8)))
cbG = nx.cycle_basis(G)
perm = {1: 0, 0: 1} # switch 0 and 1
H = nx.relabel_nodes(G, perm)
cbH = [[perm.get(n, n) for n in cyc] for cyc in nx.cycle_basis(H)]
assert cbG == cbH
def test_cycle_basis_self_loop(self):
"""Tests the function for graphs with self loops"""
G = nx.Graph()
nx.add_cycle(G, [0, 1, 2, 3])
nx.add_cycle(G, [0, 0, 6, 2])
cy = nx.cycle_basis(G)
sort_cy = sorted(sorted(c) for c in cy)
assert sort_cy == [[0], [0, 1, 2], [0, 2, 3], [0, 2, 6]]
def test_simple_cycles(self):
edges = [(0, 0), (0, 1), (0, 2), (1, 2), (2, 0), (2, 1), (2, 2)]
G = nx.DiGraph(edges)
cc = sorted(nx.simple_cycles(G))
ca = [[0], [0, 1, 2], [0, 2], [1, 2], [2]]
assert len(cc) == len(ca)
for c in cc:
assert any(self.is_cyclic_permutation(c, rc) for rc in ca)
def test_simple_cycles_singleton(self):
G = nx.Graph([(0, 0)]) # self-loop
assert list(nx.simple_cycles(G)) == [[0]]
def test_unsortable(self):
# this test ensures that graphs whose nodes without an intrinsic
# ordering do not cause issues
G = nx.DiGraph()
nx.add_cycle(G, ["a", 1])
c = list(nx.simple_cycles(G))
assert len(c) == 1
def test_simple_cycles_small(self):
G = nx.DiGraph()
nx.add_cycle(G, [1, 2, 3])
c = sorted(nx.simple_cycles(G))
assert len(c) == 1
assert self.is_cyclic_permutation(c[0], [1, 2, 3])
nx.add_cycle(G, [10, 20, 30])
cc = sorted(nx.simple_cycles(G))
assert len(cc) == 2
ca = [[1, 2, 3], [10, 20, 30]]
for c in cc:
assert any(self.is_cyclic_permutation(c, rc) for rc in ca)
def test_simple_cycles_empty(self):
G = nx.DiGraph()
assert list(nx.simple_cycles(G)) == []
def worst_case_graph(self, k):
# see figure 1 in Johnson's paper
# this graph has exactly 3k simple cycles
G = nx.DiGraph()
for n in range(2, k + 2):
G.add_edge(1, n)
G.add_edge(n, k + 2)
G.add_edge(2 * k + 1, 1)
for n in range(k + 2, 2 * k + 2):
G.add_edge(n, 2 * k + 2)
G.add_edge(n, n + 1)
G.add_edge(2 * k + 3, k + 2)
for n in range(2 * k + 3, 3 * k + 3):
G.add_edge(2 * k + 2, n)
G.add_edge(n, 3 * k + 3)
G.add_edge(3 * k + 3, 2 * k + 2)
return G
def test_worst_case_graph(self):
# see figure 1 in Johnson's paper
for k in range(3, 10):
G = self.worst_case_graph(k)
l = len(list(nx.simple_cycles(G)))
assert l == 3 * k
def test_recursive_simple_and_not(self):
for k in range(2, 10):
G = self.worst_case_graph(k)
cc = sorted(nx.simple_cycles(G))
rcc = sorted(nx.recursive_simple_cycles(G))
assert len(cc) == len(rcc)
for c in cc:
assert any(self.is_cyclic_permutation(c, r) for r in rcc)
for rc in rcc:
assert any(self.is_cyclic_permutation(rc, c) for c in cc)
def test_simple_graph_with_reported_bug(self):
G = nx.DiGraph()
edges = [
(0, 2),
(0, 3),
(1, 0),
(1, 3),
(2, 1),
(2, 4),
(3, 2),
(3, 4),
(4, 0),
(4, 1),
(4, 5),
(5, 0),
(5, 1),
(5, 2),
(5, 3),
]
G.add_edges_from(edges)
cc = sorted(nx.simple_cycles(G))
assert len(cc) == 26
rcc = sorted(nx.recursive_simple_cycles(G))
assert len(cc) == len(rcc)
for c in cc:
assert any(self.is_cyclic_permutation(c, rc) for rc in rcc)
for rc in rcc:
assert any(self.is_cyclic_permutation(rc, c) for c in cc)
def pairwise(iterable):
a, b = tee(iterable)
next(b, None)
return zip(a, b)
def cycle_edges(c):
return pairwise(chain(c, islice(c, 1)))
def directed_cycle_edgeset(c):
return frozenset(cycle_edges(c))
def undirected_cycle_edgeset(c):
if len(c) == 1:
return frozenset(cycle_edges(c))
return frozenset(map(frozenset, cycle_edges(c)))
def multigraph_cycle_edgeset(c):
if len(c) <= 2:
return frozenset(cycle_edges(c))
else:
return frozenset(map(frozenset, cycle_edges(c)))
class TestCycleEnumeration:
@staticmethod
def K(n):
return nx.complete_graph(n)
@staticmethod
def D(n):
return nx.complete_graph(n).to_directed()
@staticmethod
def edgeset_function(g):
if g.is_directed():
return directed_cycle_edgeset
elif g.is_multigraph():
return multigraph_cycle_edgeset
else:
return undirected_cycle_edgeset
def check_cycle(self, g, c, es, cache, source, original_c, length_bound, chordless):
if length_bound is not None and len(c) > length_bound:
raise RuntimeError(
f"computed cycle {original_c} exceeds length bound {length_bound}"
)
if source == "computed":
if es in cache:
raise RuntimeError(
f"computed cycle {original_c} has already been found!"
)
else:
cache[es] = tuple(original_c)
else:
if es in cache:
cache.pop(es)
else:
raise RuntimeError(f"expected cycle {original_c} was not computed")
if not all(g.has_edge(*e) for e in es):
raise RuntimeError(
f"{source} claimed cycle {original_c} is not a cycle of g"
)
if chordless and len(g.subgraph(c).edges) > len(c):
raise RuntimeError(f"{source} cycle {original_c} is not chordless")
def check_cycle_algorithm(
self,
g,
expected_cycles,
length_bound=None,
chordless=False,
algorithm=None,
):
if algorithm is None:
algorithm = nx.chordless_cycles if chordless else nx.simple_cycles
# note: we shuffle the labels of g to rule out accidentally-correct
# behavior which occurred during the development of chordless cycle
# enumeration algorithms
relabel = list(range(len(g)))
shuffle(relabel)
label = dict(zip(g, relabel))
unlabel = dict(zip(relabel, g))
h = nx.relabel_nodes(g, label, copy=True)
edgeset = self.edgeset_function(h)
params = {}
if length_bound is not None:
params["length_bound"] = length_bound
cycle_cache = {}
for c in algorithm(h, **params):
original_c = [unlabel[x] for x in c]
es = edgeset(c)
self.check_cycle(
h, c, es, cycle_cache, "computed", original_c, length_bound, chordless
)
if isinstance(expected_cycles, int):
if len(cycle_cache) != expected_cycles:
raise RuntimeError(
f"expected {expected_cycles} cycles, got {len(cycle_cache)}"
)
return
for original_c in expected_cycles:
c = [label[x] for x in original_c]
es = edgeset(c)
self.check_cycle(
h, c, es, cycle_cache, "expected", original_c, length_bound, chordless
)
if len(cycle_cache):
for c in cycle_cache.values():
raise RuntimeError(
f"computed cycle {c} is valid but not in the expected cycle set!"
)
def check_cycle_enumeration_integer_sequence(
self,
g_family,
cycle_counts,
length_bound=None,
chordless=False,
algorithm=None,
):
for g, num_cycles in zip(g_family, cycle_counts):
self.check_cycle_algorithm(
g,
num_cycles,
length_bound=length_bound,
chordless=chordless,
algorithm=algorithm,
)
def test_directed_chordless_cycle_digons(self):
g = nx.DiGraph()
nx.add_cycle(g, range(5))
nx.add_cycle(g, range(5)[::-1])
g.add_edge(0, 0)
expected_cycles = [(0,), (1, 2), (2, 3), (3, 4)]
self.check_cycle_algorithm(g, expected_cycles, chordless=True)
self.check_cycle_algorithm(g, expected_cycles, chordless=True, length_bound=2)
expected_cycles = [c for c in expected_cycles if len(c) < 2]
self.check_cycle_algorithm(g, expected_cycles, chordless=True, length_bound=1)
def test_directed_chordless_cycle_undirected(self):
g = nx.DiGraph([(1, 2), (2, 3), (3, 4), (4, 5), (5, 0), (5, 1), (0, 2)])
expected_cycles = [(0, 2, 3, 4, 5), (1, 2, 3, 4, 5)]
self.check_cycle_algorithm(g, expected_cycles, chordless=True)
g = nx.DiGraph()
nx.add_cycle(g, range(5))
nx.add_cycle(g, range(4, 9))
g.add_edge(7, 3)
expected_cycles = [(0, 1, 2, 3, 4), (3, 4, 5, 6, 7), (4, 5, 6, 7, 8)]
self.check_cycle_algorithm(g, expected_cycles, chordless=True)
g.add_edge(3, 7)
expected_cycles = [(0, 1, 2, 3, 4), (3, 7), (4, 5, 6, 7, 8)]
self.check_cycle_algorithm(g, expected_cycles, chordless=True)
expected_cycles = [(3, 7)]
self.check_cycle_algorithm(g, expected_cycles, chordless=True, length_bound=4)
g.remove_edge(7, 3)
expected_cycles = [(0, 1, 2, 3, 4), (4, 5, 6, 7, 8)]
self.check_cycle_algorithm(g, expected_cycles, chordless=True)
g = nx.DiGraph((i, j) for i in range(10) for j in range(i))
expected_cycles = []
self.check_cycle_algorithm(g, expected_cycles, chordless=True)
def test_chordless_cycles_directed(self):
G = nx.DiGraph()
nx.add_cycle(G, range(5))
nx.add_cycle(G, range(4, 12))
expected = [[*range(5)], [*range(4, 12)]]
self.check_cycle_algorithm(G, expected, chordless=True)
self.check_cycle_algorithm(
G, [c for c in expected if len(c) <= 5], length_bound=5, chordless=True
)
G.add_edge(7, 3)
expected.append([*range(3, 8)])
self.check_cycle_algorithm(G, expected, chordless=True)
self.check_cycle_algorithm(
G, [c for c in expected if len(c) <= 5], length_bound=5, chordless=True
)
G.add_edge(3, 7)
expected[-1] = [7, 3]
self.check_cycle_algorithm(G, expected, chordless=True)
self.check_cycle_algorithm(
G, [c for c in expected if len(c) <= 5], length_bound=5, chordless=True
)
expected.pop()
G.remove_edge(7, 3)
self.check_cycle_algorithm(G, expected, chordless=True)
self.check_cycle_algorithm(
G, [c for c in expected if len(c) <= 5], length_bound=5, chordless=True
)
def test_directed_chordless_cycle_diclique(self):
g_family = [self.D(n) for n in range(10)]
expected_cycles = [(n * n - n) // 2 for n in range(10)]
self.check_cycle_enumeration_integer_sequence(
g_family, expected_cycles, chordless=True
)
expected_cycles = [(n * n - n) // 2 for n in range(10)]
self.check_cycle_enumeration_integer_sequence(
g_family, expected_cycles, length_bound=2
)
def test_directed_chordless_loop_blockade(self):
g = nx.DiGraph((i, i) for i in range(10))
nx.add_cycle(g, range(10))
expected_cycles = [(i,) for i in range(10)]
self.check_cycle_algorithm(g, expected_cycles, chordless=True)
self.check_cycle_algorithm(g, expected_cycles, length_bound=1)
g = nx.MultiDiGraph(g)
g.add_edges_from((i, i) for i in range(0, 10, 2))
expected_cycles = [(i,) for i in range(1, 10, 2)]
self.check_cycle_algorithm(g, expected_cycles, chordless=True)
def test_simple_cycles_notable_clique_sequences(self):
# A000292: Number of labeled graphs on n+3 nodes that are triangles.
g_family = [self.K(n) for n in range(2, 12)]
expected = [0, 1, 4, 10, 20, 35, 56, 84, 120, 165, 220]
self.check_cycle_enumeration_integer_sequence(
g_family, expected, length_bound=3
)
def triangles(g, **kwargs):
yield from (c for c in nx.simple_cycles(g, **kwargs) if len(c) == 3)
# directed complete graphs have twice as many triangles thanks to reversal
g_family = [self.D(n) for n in range(2, 12)]
expected = [2 * e for e in expected]
self.check_cycle_enumeration_integer_sequence(
g_family, expected, length_bound=3, algorithm=triangles
)
def four_cycles(g, **kwargs):
yield from (c for c in nx.simple_cycles(g, **kwargs) if len(c) == 4)
# A050534: the number of 4-cycles in the complete graph K_{n+1}
expected = [0, 0, 0, 3, 15, 45, 105, 210, 378, 630, 990]
g_family = [self.K(n) for n in range(1, 12)]
self.check_cycle_enumeration_integer_sequence(
g_family, expected, length_bound=4, algorithm=four_cycles
)
# directed complete graphs have twice as many 4-cycles thanks to reversal
expected = [2 * e for e in expected]
g_family = [self.D(n) for n in range(1, 15)]
self.check_cycle_enumeration_integer_sequence(
g_family, expected, length_bound=4, algorithm=four_cycles
)
# A006231: the number of elementary circuits in a complete directed graph with n nodes
expected = [0, 1, 5, 20, 84, 409, 2365]
g_family = [self.D(n) for n in range(1, 8)]
self.check_cycle_enumeration_integer_sequence(g_family, expected)
# A002807: Number of cycles in the complete graph on n nodes K_{n}.
expected = [0, 0, 0, 1, 7, 37, 197, 1172]
g_family = [self.K(n) for n in range(8)]
self.check_cycle_enumeration_integer_sequence(g_family, expected)
def test_directed_chordless_cycle_parallel_multiedges(self):
g = nx.MultiGraph()
nx.add_cycle(g, range(5))
expected = [[*range(5)]]
self.check_cycle_algorithm(g, expected, chordless=True)
nx.add_cycle(g, range(5))
expected = [*cycle_edges(range(5))]
self.check_cycle_algorithm(g, expected, chordless=True)
nx.add_cycle(g, range(5))
expected = []
self.check_cycle_algorithm(g, expected, chordless=True)
g = nx.MultiDiGraph()
nx.add_cycle(g, range(5))
expected = [[*range(5)]]
self.check_cycle_algorithm(g, expected, chordless=True)
nx.add_cycle(g, range(5))
self.check_cycle_algorithm(g, [], chordless=True)
nx.add_cycle(g, range(5))
self.check_cycle_algorithm(g, [], chordless=True)
g = nx.MultiDiGraph()
nx.add_cycle(g, range(5))
nx.add_cycle(g, range(5)[::-1])
expected = [*cycle_edges(range(5))]
self.check_cycle_algorithm(g, expected, chordless=True)
nx.add_cycle(g, range(5))
self.check_cycle_algorithm(g, [], chordless=True)
def test_chordless_cycles_graph(self):
G = nx.Graph()
nx.add_cycle(G, range(5))
nx.add_cycle(G, range(4, 12))
expected = [[*range(5)], [*range(4, 12)]]
self.check_cycle_algorithm(G, expected, chordless=True)
self.check_cycle_algorithm(
G, [c for c in expected if len(c) <= 5], length_bound=5, chordless=True
)
G.add_edge(7, 3)
expected.append([*range(3, 8)])
expected.append([4, 3, 7, 8, 9, 10, 11])
self.check_cycle_algorithm(G, expected, chordless=True)
self.check_cycle_algorithm(
G, [c for c in expected if len(c) <= 5], length_bound=5, chordless=True
)
def test_chordless_cycles_giant_hamiltonian(self):
# ... o - e - o - e - o ... # o = odd, e = even
# ... ---/ \-----/ \--- ... # <-- "long" edges
#
# each long edge belongs to exactly one triangle, and one giant cycle
# of length n/2. The remaining edges each belong to a triangle
n = 1000
assert n % 2 == 0
G = nx.Graph()
for v in range(n):
if not v % 2:
G.add_edge(v, (v + 2) % n)
G.add_edge(v, (v + 1) % n)
expected = [[*range(0, n, 2)]] + [
[x % n for x in range(i, i + 3)] for i in range(0, n, 2)
]
self.check_cycle_algorithm(G, expected, chordless=True)
self.check_cycle_algorithm(
G, [c for c in expected if len(c) <= 3], length_bound=3, chordless=True
)
# ... o -> e -> o -> e -> o ... # o = odd, e = even
# ... <---/ \---<---/ \---< ... # <-- "long" edges
#
# this time, we orient the short and long edges in opposition
# the cycle structure of this graph is the same, but we need to reverse
# the long one in our representation. Also, we need to drop the size
# because our partitioning algorithm uses strongly connected components
# instead of separating graphs by their strong articulation points
n = 100
assert n % 2 == 0
G = nx.DiGraph()
for v in range(n):
G.add_edge(v, (v + 1) % n)
if not v % 2:
G.add_edge((v + 2) % n, v)
expected = [[*range(n - 2, -2, -2)]] + [
[x % n for x in range(i, i + 3)] for i in range(0, n, 2)
]
self.check_cycle_algorithm(G, expected, chordless=True)
self.check_cycle_algorithm(
G, [c for c in expected if len(c) <= 3], length_bound=3, chordless=True
)
def test_simple_cycles_acyclic_tournament(self):
n = 10
G = nx.DiGraph((x, y) for x in range(n) for y in range(x))
self.check_cycle_algorithm(G, [])
self.check_cycle_algorithm(G, [], chordless=True)
for k in range(n + 1):
self.check_cycle_algorithm(G, [], length_bound=k)
self.check_cycle_algorithm(G, [], length_bound=k, chordless=True)
def test_simple_cycles_graph(self):
testG = nx.cycle_graph(8)
cyc1 = tuple(range(8))
self.check_cycle_algorithm(testG, [cyc1])
testG.add_edge(4, -1)
nx.add_path(testG, [3, -2, -3, -4])
self.check_cycle_algorithm(testG, [cyc1])
testG.update(nx.cycle_graph(range(8, 16)))
cyc2 = tuple(range(8, 16))
self.check_cycle_algorithm(testG, [cyc1, cyc2])
testG.update(nx.cycle_graph(range(4, 12)))
cyc3 = tuple(range(4, 12))
expected = {
(0, 1, 2, 3, 4, 5, 6, 7), # cyc1
(8, 9, 10, 11, 12, 13, 14, 15), # cyc2
(4, 5, 6, 7, 8, 9, 10, 11), # cyc3
(4, 5, 6, 7, 8, 15, 14, 13, 12, 11), # cyc2 + cyc3
(0, 1, 2, 3, 4, 11, 10, 9, 8, 7), # cyc1 + cyc3
(0, 1, 2, 3, 4, 11, 12, 13, 14, 15, 8, 7), # cyc1 + cyc2 + cyc3
}
self.check_cycle_algorithm(testG, expected)
assert len(expected) == (2**3 - 1) - 1 # 1 disjoint comb: cyc1 + cyc2
# Basis size = 5 (2 loops overlapping gives 5 small loops
# E
# / \ Note: A-F = 10-15
# 1-2-3-4-5
# / | | \ cyc1=012DAB -- left
# 0 D F 6 cyc2=234E -- top
# \ | | / cyc3=45678F -- right
# B-A-9-8-7 cyc4=89AC -- bottom
# \ / cyc5=234F89AD -- middle
# C
#
# combinations of 5 basis elements: 2^5 - 1 (one includes no cycles)
#
# disjoint combs: (11 total) not simple cycles
# Any pair not including cyc5 => choose(4, 2) = 6
# Any triple not including cyc5 => choose(4, 3) = 4
# Any quad not including cyc5 => choose(4, 4) = 1
#
# we expect 31 - 11 = 20 simple cycles
#
testG = nx.cycle_graph(12)
testG.update(nx.cycle_graph([12, 10, 13, 2, 14, 4, 15, 8]).edges)
expected = (2**5 - 1) - 11 # 11 disjoint combinations
self.check_cycle_algorithm(testG, expected)
def test_simple_cycles_bounded(self):
# iteratively construct a cluster of nested cycles running in the same direction
# there should be one cycle of every length
d = nx.DiGraph()
expected = []
for n in range(10):
nx.add_cycle(d, range(n))
expected.append(n)
for k, e in enumerate(expected):
self.check_cycle_algorithm(d, e, length_bound=k)
# iteratively construct a path of undirected cycles, connected at articulation
# points. there should be one cycle of every length except 2: no digons
g = nx.Graph()
top = 0
expected = []
for n in range(10):
expected.append(n if n < 2 else n - 1)
if n == 2:
# no digons in undirected graphs
continue
nx.add_cycle(g, range(top, top + n))
top += n
for k, e in enumerate(expected):
self.check_cycle_algorithm(g, e, length_bound=k)
def test_simple_cycles_bound_corner_cases(self):
G = nx.cycle_graph(4)
DG = nx.cycle_graph(4, create_using=nx.DiGraph)
assert list(nx.simple_cycles(G, length_bound=0)) == []
assert list(nx.simple_cycles(DG, length_bound=0)) == []
assert list(nx.chordless_cycles(G, length_bound=0)) == []
assert list(nx.chordless_cycles(DG, length_bound=0)) == []
def test_simple_cycles_bound_error(self):
with pytest.raises(ValueError):
G = nx.DiGraph()
for c in nx.simple_cycles(G, -1):
assert False
with pytest.raises(ValueError):
G = nx.Graph()
for c in nx.simple_cycles(G, -1):
assert False
with pytest.raises(ValueError):
G = nx.Graph()
for c in nx.chordless_cycles(G, -1):
assert False
with pytest.raises(ValueError):
G = nx.DiGraph()
for c in nx.chordless_cycles(G, -1):
assert False
def test_chordless_cycles_clique(self):
g_family = [self.K(n) for n in range(2, 15)]
expected = [0, 1, 4, 10, 20, 35, 56, 84, 120, 165, 220, 286, 364]
self.check_cycle_enumeration_integer_sequence(
g_family, expected, chordless=True
)
# directed cliques have as many digons as undirected graphs have edges
expected = [(n * n - n) // 2 for n in range(15)]
g_family = [self.D(n) for n in range(15)]
self.check_cycle_enumeration_integer_sequence(
g_family, expected, chordless=True
)
# These tests might fail with hash randomization since they depend on
# edge_dfs. For more information, see the comments in:
# networkx/algorithms/traversal/tests/test_edgedfs.py
class TestFindCycle:
@classmethod
def setup_class(cls):
cls.nodes = [0, 1, 2, 3]
cls.edges = [(-1, 0), (0, 1), (1, 0), (1, 0), (2, 1), (3, 1)]
def test_graph_nocycle(self):
G = nx.Graph(self.edges)
pytest.raises(nx.exception.NetworkXNoCycle, nx.find_cycle, G, self.nodes)
def test_graph_cycle(self):
G = nx.Graph(self.edges)
G.add_edge(2, 0)
x = list(nx.find_cycle(G, self.nodes))
x_ = [(0, 1), (1, 2), (2, 0)]
assert x == x_
def test_graph_orientation_none(self):
G = nx.Graph(self.edges)
G.add_edge(2, 0)
x = list(nx.find_cycle(G, self.nodes, orientation=None))
x_ = [(0, 1), (1, 2), (2, 0)]
assert x == x_
def test_graph_orientation_original(self):
G = nx.Graph(self.edges)
G.add_edge(2, 0)
x = list(nx.find_cycle(G, self.nodes, orientation="original"))
x_ = [(0, 1, FORWARD), (1, 2, FORWARD), (2, 0, FORWARD)]
assert x == x_
def test_digraph(self):
G = nx.DiGraph(self.edges)
x = list(nx.find_cycle(G, self.nodes))
x_ = [(0, 1), (1, 0)]
assert x == x_
def test_digraph_orientation_none(self):
G = nx.DiGraph(self.edges)
x = list(nx.find_cycle(G, self.nodes, orientation=None))
x_ = [(0, 1), (1, 0)]
assert x == x_
def test_digraph_orientation_original(self):
G = nx.DiGraph(self.edges)
x = list(nx.find_cycle(G, self.nodes, orientation="original"))
x_ = [(0, 1, FORWARD), (1, 0, FORWARD)]
assert x == x_
def test_multigraph(self):
G = nx.MultiGraph(self.edges)
x = list(nx.find_cycle(G, self.nodes))
x_ = [(0, 1, 0), (1, 0, 1)] # or (1, 0, 2)
# Hash randomization...could be any edge.
assert x[0] == x_[0]
assert x[1][:2] == x_[1][:2]
def test_multidigraph(self):
G = nx.MultiDiGraph(self.edges)
x = list(nx.find_cycle(G, self.nodes))
x_ = [(0, 1, 0), (1, 0, 0)] # (1, 0, 1)
assert x[0] == x_[0]
assert x[1][:2] == x_[1][:2]
def test_digraph_ignore(self):
G = nx.DiGraph(self.edges)
x = list(nx.find_cycle(G, self.nodes, orientation="ignore"))
x_ = [(0, 1, FORWARD), (1, 0, FORWARD)]
assert x == x_
def test_digraph_reverse(self):
G = nx.DiGraph(self.edges)
x = list(nx.find_cycle(G, self.nodes, orientation="reverse"))
x_ = [(1, 0, REVERSE), (0, 1, REVERSE)]
assert x == x_
def test_multidigraph_ignore(self):
G = nx.MultiDiGraph(self.edges)
x = list(nx.find_cycle(G, self.nodes, orientation="ignore"))
x_ = [(0, 1, 0, FORWARD), (1, 0, 0, FORWARD)] # or (1, 0, 1, 1)
assert x[0] == x_[0]
assert x[1][:2] == x_[1][:2]
assert x[1][3] == x_[1][3]
def test_multidigraph_ignore2(self):
# Loop traversed an edge while ignoring its orientation.
G = nx.MultiDiGraph([(0, 1), (1, 2), (1, 2)])
x = list(nx.find_cycle(G, [0, 1, 2], orientation="ignore"))
x_ = [(1, 2, 0, FORWARD), (1, 2, 1, REVERSE)]
assert x == x_
def test_multidigraph_original(self):
# Node 2 doesn't need to be searched again from visited from 4.
# The goal here is to cover the case when 2 to be researched from 4,
# when 4 is visited from the first time (so we must make sure that 4
# is not visited from 2, and hence, we respect the edge orientation).
G = nx.MultiDiGraph([(0, 1), (1, 2), (2, 3), (4, 2)])
pytest.raises(
nx.exception.NetworkXNoCycle,
nx.find_cycle,
G,
[0, 1, 2, 3, 4],
orientation="original",
)
def test_dag(self):
G = nx.DiGraph([(0, 1), (0, 2), (1, 2)])
pytest.raises(
nx.exception.NetworkXNoCycle, nx.find_cycle, G, orientation="original"
)
x = list(nx.find_cycle(G, orientation="ignore"))
assert x == [(0, 1, FORWARD), (1, 2, FORWARD), (0, 2, REVERSE)]
def test_prev_explored(self):
# https://github.com/networkx/networkx/issues/2323
G = nx.DiGraph()
G.add_edges_from([(1, 0), (2, 0), (1, 2), (2, 1)])
pytest.raises(nx.NetworkXNoCycle, nx.find_cycle, G, source=0)
x = list(nx.find_cycle(G, 1))
x_ = [(1, 2), (2, 1)]
assert x == x_
x = list(nx.find_cycle(G, 2))
x_ = [(2, 1), (1, 2)]
assert x == x_
x = list(nx.find_cycle(G))
x_ = [(1, 2), (2, 1)]
assert x == x_
def test_no_cycle(self):
# https://github.com/networkx/networkx/issues/2439
G = nx.DiGraph()
G.add_edges_from([(1, 2), (2, 0), (3, 1), (3, 2)])
pytest.raises(nx.NetworkXNoCycle, nx.find_cycle, G, source=0)
pytest.raises(nx.NetworkXNoCycle, nx.find_cycle, G)
def assert_basis_equal(a, b):
assert sorted(a) == sorted(b)
class TestMinimumCycleBasis:
@classmethod
def setup_class(cls):
T = nx.Graph()
nx.add_cycle(T, [1, 2, 3, 4], weight=1)
T.add_edge(2, 4, weight=5)
cls.diamond_graph = T
def test_unweighted_diamond(self):
mcb = nx.minimum_cycle_basis(self.diamond_graph)
assert_basis_equal(mcb, [[2, 4, 1], [3, 4, 2]])
def test_weighted_diamond(self):
mcb = nx.minimum_cycle_basis(self.diamond_graph, weight="weight")
assert_basis_equal(mcb, [[2, 4, 1], [4, 3, 2, 1]])
def test_dimensionality(self):
# checks |MCB|=|E|-|V|+|NC|
ntrial = 10
for seed in range(1234, 1234 + ntrial):
rg = nx.erdos_renyi_graph(10, 0.3, seed=seed)
nnodes = rg.number_of_nodes()
nedges = rg.number_of_edges()
ncomp = nx.number_connected_components(rg)
mcb = nx.minimum_cycle_basis(rg)
assert len(mcb) == nedges - nnodes + ncomp
check_independent(mcb)
def test_complete_graph(self):
cg = nx.complete_graph(5)
mcb = nx.minimum_cycle_basis(cg)
assert all(len(cycle) == 3 for cycle in mcb)
check_independent(mcb)
def test_tree_graph(self):
tg = nx.balanced_tree(3, 3)
assert not nx.minimum_cycle_basis(tg)
def test_petersen_graph(self):
G = nx.petersen_graph()
mcb = list(nx.minimum_cycle_basis(G))
expected = [
[4, 9, 7, 5, 0],
[1, 2, 3, 4, 0],
[1, 6, 8, 5, 0],
[4, 3, 8, 5, 0],
[1, 6, 9, 4, 0],
[1, 2, 7, 5, 0],
]
assert len(mcb) == len(expected)
assert all(c in expected for c in mcb)
# check that order of the nodes is a path
for c in mcb:
assert all(G.has_edge(u, v) for u, v in nx.utils.pairwise(c, cyclic=True))
# check independence of the basis
check_independent(mcb)
def test_gh6787_variable_weighted_complete_graph(self):
N = 8
cg = nx.complete_graph(N)
cg.add_weighted_edges_from([(u, v, 9) for u, v in cg.edges])
cg.add_weighted_edges_from([(u, v, 1) for u, v in nx.cycle_graph(N).edges])
mcb = nx.minimum_cycle_basis(cg, weight="weight")
check_independent(mcb)
def test_gh6787_and_edge_attribute_names(self):
G = nx.cycle_graph(4)
G.add_weighted_edges_from([(0, 2, 10), (1, 3, 10)], weight="dist")
expected = [[1, 3, 0], [3, 2, 1, 0], [1, 2, 0]]
mcb = list(nx.minimum_cycle_basis(G, weight="dist"))
assert len(mcb) == len(expected)
assert all(c in expected for c in mcb)
# test not using a weight with weight attributes
expected = [[1, 3, 0], [1, 2, 0], [3, 2, 0]]
mcb = list(nx.minimum_cycle_basis(G))
assert len(mcb) == len(expected)
assert all(c in expected for c in mcb)
class TestGirth:
@pytest.mark.parametrize(
("G", "expected"),
(
(nx.chvatal_graph(), 4),
(nx.tutte_graph(), 4),
(nx.petersen_graph(), 5),
(nx.heawood_graph(), 6),
(nx.pappus_graph(), 6),
(nx.random_tree(10, seed=42), inf),
(nx.empty_graph(10), inf),
(nx.Graph(chain(cycle_edges(range(5)), cycle_edges(range(6, 10)))), 4),
(
nx.Graph(
[
(0, 6),
(0, 8),
(0, 9),
(1, 8),
(2, 8),
(2, 9),
(4, 9),
(5, 9),
(6, 8),
(6, 9),
(7, 8),
]
),
3,
),
),
)
def test_girth(self, G, expected):
assert nx.girth(G) == expected
|