File size: 8,340 Bytes
57db94b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 |
"""
Dinitz' algorithm for maximum flow problems.
"""
from collections import deque
import networkx as nx
from networkx.algorithms.flow.utils import build_residual_network
from networkx.utils import pairwise
__all__ = ["dinitz"]
@nx._dispatchable(edge_attrs={"capacity": float("inf")}, returns_graph=True)
def dinitz(G, s, t, capacity="capacity", residual=None, value_only=False, cutoff=None):
"""Find a maximum single-commodity flow using Dinitz' algorithm.
This function returns the residual network resulting after computing
the maximum flow. See below for details about the conventions
NetworkX uses for defining residual networks.
This algorithm has a running time of $O(n^2 m)$ for $n$ nodes and $m$
edges [1]_.
Parameters
----------
G : NetworkX graph
Edges of the graph are expected to have an attribute called
'capacity'. If this attribute is not present, the edge is
considered to have infinite capacity.
s : node
Source node for the flow.
t : node
Sink node for the flow.
capacity : string
Edges of the graph G are expected to have an attribute capacity
that indicates how much flow the edge can support. If this
attribute is not present, the edge is considered to have
infinite capacity. Default value: 'capacity'.
residual : NetworkX graph
Residual network on which the algorithm is to be executed. If None, a
new residual network is created. Default value: None.
value_only : bool
If True compute only the value of the maximum flow. This parameter
will be ignored by this algorithm because it is not applicable.
cutoff : integer, float
If specified, the algorithm will terminate when the flow value reaches
or exceeds the cutoff. In this case, it may be unable to immediately
determine a minimum cut. Default value: None.
Returns
-------
R : NetworkX DiGraph
Residual network after computing the maximum flow.
Raises
------
NetworkXError
The algorithm does not support MultiGraph and MultiDiGraph. If
the input graph is an instance of one of these two classes, a
NetworkXError is raised.
NetworkXUnbounded
If the graph has a path of infinite capacity, the value of a
feasible flow on the graph is unbounded above and the function
raises a NetworkXUnbounded.
See also
--------
:meth:`maximum_flow`
:meth:`minimum_cut`
:meth:`preflow_push`
:meth:`shortest_augmenting_path`
Notes
-----
The residual network :samp:`R` from an input graph :samp:`G` has the
same nodes as :samp:`G`. :samp:`R` is a DiGraph that contains a pair
of edges :samp:`(u, v)` and :samp:`(v, u)` iff :samp:`(u, v)` is not a
self-loop, and at least one of :samp:`(u, v)` and :samp:`(v, u)` exists
in :samp:`G`.
For each edge :samp:`(u, v)` in :samp:`R`, :samp:`R[u][v]['capacity']`
is equal to the capacity of :samp:`(u, v)` in :samp:`G` if it exists
in :samp:`G` or zero otherwise. If the capacity is infinite,
:samp:`R[u][v]['capacity']` will have a high arbitrary finite value
that does not affect the solution of the problem. This value is stored in
:samp:`R.graph['inf']`. For each edge :samp:`(u, v)` in :samp:`R`,
:samp:`R[u][v]['flow']` represents the flow function of :samp:`(u, v)` and
satisfies :samp:`R[u][v]['flow'] == -R[v][u]['flow']`.
The flow value, defined as the total flow into :samp:`t`, the sink, is
stored in :samp:`R.graph['flow_value']`. If :samp:`cutoff` is not
specified, reachability to :samp:`t` using only edges :samp:`(u, v)` such
that :samp:`R[u][v]['flow'] < R[u][v]['capacity']` induces a minimum
:samp:`s`-:samp:`t` cut.
Examples
--------
>>> from networkx.algorithms.flow import dinitz
The functions that implement flow algorithms and output a residual
network, such as this one, are not imported to the base NetworkX
namespace, so you have to explicitly import them from the flow package.
>>> G = nx.DiGraph()
>>> G.add_edge("x", "a", capacity=3.0)
>>> G.add_edge("x", "b", capacity=1.0)
>>> G.add_edge("a", "c", capacity=3.0)
>>> G.add_edge("b", "c", capacity=5.0)
>>> G.add_edge("b", "d", capacity=4.0)
>>> G.add_edge("d", "e", capacity=2.0)
>>> G.add_edge("c", "y", capacity=2.0)
>>> G.add_edge("e", "y", capacity=3.0)
>>> R = dinitz(G, "x", "y")
>>> flow_value = nx.maximum_flow_value(G, "x", "y")
>>> flow_value
3.0
>>> flow_value == R.graph["flow_value"]
True
References
----------
.. [1] Dinitz' Algorithm: The Original Version and Even's Version.
2006. Yefim Dinitz. In Theoretical Computer Science. Lecture
Notes in Computer Science. Volume 3895. pp 218-240.
https://doi.org/10.1007/11685654_10
"""
R = dinitz_impl(G, s, t, capacity, residual, cutoff)
R.graph["algorithm"] = "dinitz"
nx._clear_cache(R)
return R
def dinitz_impl(G, s, t, capacity, residual, cutoff):
if s not in G:
raise nx.NetworkXError(f"node {str(s)} not in graph")
if t not in G:
raise nx.NetworkXError(f"node {str(t)} not in graph")
if s == t:
raise nx.NetworkXError("source and sink are the same node")
if residual is None:
R = build_residual_network(G, capacity)
else:
R = residual
# Initialize/reset the residual network.
for u in R:
for e in R[u].values():
e["flow"] = 0
# Use an arbitrary high value as infinite. It is computed
# when building the residual network.
INF = R.graph["inf"]
if cutoff is None:
cutoff = INF
R_succ = R.succ
R_pred = R.pred
def breath_first_search():
parents = {}
vertex_dist = {s: 0}
queue = deque([(s, 0)])
# Record all the potential edges of shortest augmenting paths
while queue:
if t in parents:
break
u, dist = queue.popleft()
for v, attr in R_succ[u].items():
if attr["capacity"] - attr["flow"] > 0:
if v in parents:
if vertex_dist[v] == dist + 1:
parents[v].append(u)
else:
parents[v] = deque([u])
vertex_dist[v] = dist + 1
queue.append((v, dist + 1))
return parents
def depth_first_search(parents):
# DFS to find all the shortest augmenting paths
"""Build a path using DFS starting from the sink"""
total_flow = 0
u = t
# path also functions as a stack
path = [u]
# The loop ends with no augmenting path left in the layered graph
while True:
if len(parents[u]) > 0:
v = parents[u][0]
path.append(v)
else:
path.pop()
if len(path) == 0:
break
v = path[-1]
parents[v].popleft()
# Augment the flow along the path found
if v == s:
flow = INF
for u, v in pairwise(path):
flow = min(flow, R_pred[u][v]["capacity"] - R_pred[u][v]["flow"])
for u, v in pairwise(reversed(path)):
R_pred[v][u]["flow"] += flow
R_pred[u][v]["flow"] -= flow
# Find the proper node to continue the search
if R_pred[v][u]["capacity"] - R_pred[v][u]["flow"] == 0:
parents[v].popleft()
while path[-1] != v:
path.pop()
total_flow += flow
v = path[-1]
u = v
return total_flow
flow_value = 0
while flow_value < cutoff:
parents = breath_first_search()
if t not in parents:
break
this_flow = depth_first_search(parents)
if this_flow * 2 > INF:
raise nx.NetworkXUnbounded("Infinite capacity path, flow unbounded above.")
flow_value += this_flow
R.graph["flow_value"] = flow_value
return R
|