File size: 13,333 Bytes
57db94b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 |
"""
Boykov-Kolmogorov algorithm for maximum flow problems.
"""
from collections import deque
from operator import itemgetter
import networkx as nx
from networkx.algorithms.flow.utils import build_residual_network
__all__ = ["boykov_kolmogorov"]
@nx._dispatchable(edge_attrs={"capacity": float("inf")}, returns_graph=True)
def boykov_kolmogorov(
G, s, t, capacity="capacity", residual=None, value_only=False, cutoff=None
):
r"""Find a maximum single-commodity flow using Boykov-Kolmogorov algorithm.
This function returns the residual network resulting after computing
the maximum flow. See below for details about the conventions
NetworkX uses for defining residual networks.
This algorithm has worse case complexity $O(n^2 m |C|)$ for $n$ nodes, $m$
edges, and $|C|$ the cost of the minimum cut [1]_. This implementation
uses the marking heuristic defined in [2]_ which improves its running
time in many practical problems.
Parameters
----------
G : NetworkX graph
Edges of the graph are expected to have an attribute called
'capacity'. If this attribute is not present, the edge is
considered to have infinite capacity.
s : node
Source node for the flow.
t : node
Sink node for the flow.
capacity : string
Edges of the graph G are expected to have an attribute capacity
that indicates how much flow the edge can support. If this
attribute is not present, the edge is considered to have
infinite capacity. Default value: 'capacity'.
residual : NetworkX graph
Residual network on which the algorithm is to be executed. If None, a
new residual network is created. Default value: None.
value_only : bool
If True compute only the value of the maximum flow. This parameter
will be ignored by this algorithm because it is not applicable.
cutoff : integer, float
If specified, the algorithm will terminate when the flow value reaches
or exceeds the cutoff. In this case, it may be unable to immediately
determine a minimum cut. Default value: None.
Returns
-------
R : NetworkX DiGraph
Residual network after computing the maximum flow.
Raises
------
NetworkXError
The algorithm does not support MultiGraph and MultiDiGraph. If
the input graph is an instance of one of these two classes, a
NetworkXError is raised.
NetworkXUnbounded
If the graph has a path of infinite capacity, the value of a
feasible flow on the graph is unbounded above and the function
raises a NetworkXUnbounded.
See also
--------
:meth:`maximum_flow`
:meth:`minimum_cut`
:meth:`preflow_push`
:meth:`shortest_augmenting_path`
Notes
-----
The residual network :samp:`R` from an input graph :samp:`G` has the
same nodes as :samp:`G`. :samp:`R` is a DiGraph that contains a pair
of edges :samp:`(u, v)` and :samp:`(v, u)` iff :samp:`(u, v)` is not a
self-loop, and at least one of :samp:`(u, v)` and :samp:`(v, u)` exists
in :samp:`G`.
For each edge :samp:`(u, v)` in :samp:`R`, :samp:`R[u][v]['capacity']`
is equal to the capacity of :samp:`(u, v)` in :samp:`G` if it exists
in :samp:`G` or zero otherwise. If the capacity is infinite,
:samp:`R[u][v]['capacity']` will have a high arbitrary finite value
that does not affect the solution of the problem. This value is stored in
:samp:`R.graph['inf']`. For each edge :samp:`(u, v)` in :samp:`R`,
:samp:`R[u][v]['flow']` represents the flow function of :samp:`(u, v)` and
satisfies :samp:`R[u][v]['flow'] == -R[v][u]['flow']`.
The flow value, defined as the total flow into :samp:`t`, the sink, is
stored in :samp:`R.graph['flow_value']`. If :samp:`cutoff` is not
specified, reachability to :samp:`t` using only edges :samp:`(u, v)` such
that :samp:`R[u][v]['flow'] < R[u][v]['capacity']` induces a minimum
:samp:`s`-:samp:`t` cut.
Examples
--------
>>> from networkx.algorithms.flow import boykov_kolmogorov
The functions that implement flow algorithms and output a residual
network, such as this one, are not imported to the base NetworkX
namespace, so you have to explicitly import them from the flow package.
>>> G = nx.DiGraph()
>>> G.add_edge("x", "a", capacity=3.0)
>>> G.add_edge("x", "b", capacity=1.0)
>>> G.add_edge("a", "c", capacity=3.0)
>>> G.add_edge("b", "c", capacity=5.0)
>>> G.add_edge("b", "d", capacity=4.0)
>>> G.add_edge("d", "e", capacity=2.0)
>>> G.add_edge("c", "y", capacity=2.0)
>>> G.add_edge("e", "y", capacity=3.0)
>>> R = boykov_kolmogorov(G, "x", "y")
>>> flow_value = nx.maximum_flow_value(G, "x", "y")
>>> flow_value
3.0
>>> flow_value == R.graph["flow_value"]
True
A nice feature of the Boykov-Kolmogorov algorithm is that a partition
of the nodes that defines a minimum cut can be easily computed based
on the search trees used during the algorithm. These trees are stored
in the graph attribute `trees` of the residual network.
>>> source_tree, target_tree = R.graph["trees"]
>>> partition = (set(source_tree), set(G) - set(source_tree))
Or equivalently:
>>> partition = (set(G) - set(target_tree), set(target_tree))
References
----------
.. [1] Boykov, Y., & Kolmogorov, V. (2004). An experimental comparison
of min-cut/max-flow algorithms for energy minimization in vision.
Pattern Analysis and Machine Intelligence, IEEE Transactions on,
26(9), 1124-1137.
https://doi.org/10.1109/TPAMI.2004.60
.. [2] Vladimir Kolmogorov. Graph-based Algorithms for Multi-camera
Reconstruction Problem. PhD thesis, Cornell University, CS Department,
2003. pp. 109-114.
https://web.archive.org/web/20170809091249/https://pub.ist.ac.at/~vnk/papers/thesis.pdf
"""
R = boykov_kolmogorov_impl(G, s, t, capacity, residual, cutoff)
R.graph["algorithm"] = "boykov_kolmogorov"
nx._clear_cache(R)
return R
def boykov_kolmogorov_impl(G, s, t, capacity, residual, cutoff):
if s not in G:
raise nx.NetworkXError(f"node {str(s)} not in graph")
if t not in G:
raise nx.NetworkXError(f"node {str(t)} not in graph")
if s == t:
raise nx.NetworkXError("source and sink are the same node")
if residual is None:
R = build_residual_network(G, capacity)
else:
R = residual
# Initialize/reset the residual network.
# This is way too slow
# nx.set_edge_attributes(R, 0, 'flow')
for u in R:
for e in R[u].values():
e["flow"] = 0
# Use an arbitrary high value as infinite. It is computed
# when building the residual network.
INF = R.graph["inf"]
if cutoff is None:
cutoff = INF
R_succ = R.succ
R_pred = R.pred
def grow():
"""Bidirectional breadth-first search for the growth stage.
Returns a connecting edge, that is and edge that connects
a node from the source search tree with a node from the
target search tree.
The first node in the connecting edge is always from the
source tree and the last node from the target tree.
"""
while active:
u = active[0]
if u in source_tree:
this_tree = source_tree
other_tree = target_tree
neighbors = R_succ
else:
this_tree = target_tree
other_tree = source_tree
neighbors = R_pred
for v, attr in neighbors[u].items():
if attr["capacity"] - attr["flow"] > 0:
if v not in this_tree:
if v in other_tree:
return (u, v) if this_tree is source_tree else (v, u)
this_tree[v] = u
dist[v] = dist[u] + 1
timestamp[v] = timestamp[u]
active.append(v)
elif v in this_tree and _is_closer(u, v):
this_tree[v] = u
dist[v] = dist[u] + 1
timestamp[v] = timestamp[u]
_ = active.popleft()
return None, None
def augment(u, v):
"""Augmentation stage.
Reconstruct path and determine its residual capacity.
We start from a connecting edge, which links a node
from the source tree to a node from the target tree.
The connecting edge is the output of the grow function
and the input of this function.
"""
attr = R_succ[u][v]
flow = min(INF, attr["capacity"] - attr["flow"])
path = [u]
# Trace a path from u to s in source_tree.
w = u
while w != s:
n = w
w = source_tree[n]
attr = R_pred[n][w]
flow = min(flow, attr["capacity"] - attr["flow"])
path.append(w)
path.reverse()
# Trace a path from v to t in target_tree.
path.append(v)
w = v
while w != t:
n = w
w = target_tree[n]
attr = R_succ[n][w]
flow = min(flow, attr["capacity"] - attr["flow"])
path.append(w)
# Augment flow along the path and check for saturated edges.
it = iter(path)
u = next(it)
these_orphans = []
for v in it:
R_succ[u][v]["flow"] += flow
R_succ[v][u]["flow"] -= flow
if R_succ[u][v]["flow"] == R_succ[u][v]["capacity"]:
if v in source_tree:
source_tree[v] = None
these_orphans.append(v)
if u in target_tree:
target_tree[u] = None
these_orphans.append(u)
u = v
orphans.extend(sorted(these_orphans, key=dist.get))
return flow
def adopt():
"""Adoption stage.
Reconstruct search trees by adopting or discarding orphans.
During augmentation stage some edges got saturated and thus
the source and target search trees broke down to forests, with
orphans as roots of some of its trees. We have to reconstruct
the search trees rooted to source and target before we can grow
them again.
"""
while orphans:
u = orphans.popleft()
if u in source_tree:
tree = source_tree
neighbors = R_pred
else:
tree = target_tree
neighbors = R_succ
nbrs = ((n, attr, dist[n]) for n, attr in neighbors[u].items() if n in tree)
for v, attr, d in sorted(nbrs, key=itemgetter(2)):
if attr["capacity"] - attr["flow"] > 0:
if _has_valid_root(v, tree):
tree[u] = v
dist[u] = dist[v] + 1
timestamp[u] = time
break
else:
nbrs = (
(n, attr, dist[n]) for n, attr in neighbors[u].items() if n in tree
)
for v, attr, d in sorted(nbrs, key=itemgetter(2)):
if attr["capacity"] - attr["flow"] > 0:
if v not in active:
active.append(v)
if tree[v] == u:
tree[v] = None
orphans.appendleft(v)
if u in active:
active.remove(u)
del tree[u]
def _has_valid_root(n, tree):
path = []
v = n
while v is not None:
path.append(v)
if v in (s, t):
base_dist = 0
break
elif timestamp[v] == time:
base_dist = dist[v]
break
v = tree[v]
else:
return False
length = len(path)
for i, u in enumerate(path, 1):
dist[u] = base_dist + length - i
timestamp[u] = time
return True
def _is_closer(u, v):
return timestamp[v] <= timestamp[u] and dist[v] > dist[u] + 1
source_tree = {s: None}
target_tree = {t: None}
active = deque([s, t])
orphans = deque()
flow_value = 0
# data structures for the marking heuristic
time = 1
timestamp = {s: time, t: time}
dist = {s: 0, t: 0}
while flow_value < cutoff:
# Growth stage
u, v = grow()
if u is None:
break
time += 1
# Augmentation stage
flow_value += augment(u, v)
# Adoption stage
adopt()
if flow_value * 2 > INF:
raise nx.NetworkXUnbounded("Infinite capacity path, flow unbounded above.")
# Add source and target tree in a graph attribute.
# A partition that defines a minimum cut can be directly
# computed from the search trees as explained in the docstrings.
R.graph["trees"] = (source_tree, target_tree)
# Add the standard flow_value graph attribute.
R.graph["flow_value"] = flow_value
return R
|