update model card README.md
Browse files
README.md
ADDED
|
@@ -0,0 +1,126 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: apache-2.0
|
| 3 |
+
tags:
|
| 4 |
+
- generated_from_trainer
|
| 5 |
+
datasets:
|
| 6 |
+
- rotten_tomatoes
|
| 7 |
+
metrics:
|
| 8 |
+
- accuracy
|
| 9 |
+
model-index:
|
| 10 |
+
- name: rtm_DistilBERT_5E
|
| 11 |
+
results:
|
| 12 |
+
- task:
|
| 13 |
+
name: Text Classification
|
| 14 |
+
type: text-classification
|
| 15 |
+
dataset:
|
| 16 |
+
name: rotten_tomatoes
|
| 17 |
+
type: rotten_tomatoes
|
| 18 |
+
config: default
|
| 19 |
+
split: train
|
| 20 |
+
args: default
|
| 21 |
+
metrics:
|
| 22 |
+
- name: Accuracy
|
| 23 |
+
type: accuracy
|
| 24 |
+
value: 0.82
|
| 25 |
+
---
|
| 26 |
+
|
| 27 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
| 28 |
+
should probably proofread and complete it, then remove this comment. -->
|
| 29 |
+
|
| 30 |
+
# rtm_DistilBERT_5E
|
| 31 |
+
|
| 32 |
+
This model is a fine-tuned version of [distilbert-base-cased](https://huggingface.co/distilbert-base-cased) on the rotten_tomatoes dataset.
|
| 33 |
+
It achieves the following results on the evaluation set:
|
| 34 |
+
- Loss: 0.6835
|
| 35 |
+
- Accuracy: 0.82
|
| 36 |
+
|
| 37 |
+
## Model description
|
| 38 |
+
|
| 39 |
+
More information needed
|
| 40 |
+
|
| 41 |
+
## Intended uses & limitations
|
| 42 |
+
|
| 43 |
+
More information needed
|
| 44 |
+
|
| 45 |
+
## Training and evaluation data
|
| 46 |
+
|
| 47 |
+
More information needed
|
| 48 |
+
|
| 49 |
+
## Training procedure
|
| 50 |
+
|
| 51 |
+
### Training hyperparameters
|
| 52 |
+
|
| 53 |
+
The following hyperparameters were used during training:
|
| 54 |
+
- learning_rate: 1e-05
|
| 55 |
+
- train_batch_size: 16
|
| 56 |
+
- eval_batch_size: 8
|
| 57 |
+
- seed: 42
|
| 58 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
| 59 |
+
- lr_scheduler_type: linear
|
| 60 |
+
- num_epochs: 5
|
| 61 |
+
|
| 62 |
+
### Training results
|
| 63 |
+
|
| 64 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
| 65 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
| 66 |
+
| 0.6822 | 0.09 | 50 | 0.6391 | 0.76 |
|
| 67 |
+
| 0.5531 | 0.19 | 100 | 0.4684 | 0.7667 |
|
| 68 |
+
| 0.4546 | 0.28 | 150 | 0.4479 | 0.7733 |
|
| 69 |
+
| 0.4495 | 0.37 | 200 | 0.3953 | 0.8067 |
|
| 70 |
+
| 0.4239 | 0.47 | 250 | 0.4211 | 0.7933 |
|
| 71 |
+
| 0.3951 | 0.56 | 300 | 0.4126 | 0.7933 |
|
| 72 |
+
| 0.3861 | 0.66 | 350 | 0.3950 | 0.7933 |
|
| 73 |
+
| 0.4108 | 0.75 | 400 | 0.4091 | 0.82 |
|
| 74 |
+
| 0.3778 | 0.84 | 450 | 0.4107 | 0.7933 |
|
| 75 |
+
| 0.3627 | 0.94 | 500 | 0.4203 | 0.7933 |
|
| 76 |
+
| 0.3648 | 1.03 | 550 | 0.4190 | 0.8 |
|
| 77 |
+
| 0.2899 | 1.12 | 600 | 0.4436 | 0.8 |
|
| 78 |
+
| 0.2637 | 1.22 | 650 | 0.4504 | 0.82 |
|
| 79 |
+
| 0.2885 | 1.31 | 700 | 0.4406 | 0.82 |
|
| 80 |
+
| 0.3226 | 1.4 | 750 | 0.4398 | 0.8333 |
|
| 81 |
+
| 0.3147 | 1.5 | 800 | 0.4239 | 0.82 |
|
| 82 |
+
| 0.2937 | 1.59 | 850 | 0.4227 | 0.8133 |
|
| 83 |
+
| 0.3149 | 1.69 | 900 | 0.3791 | 0.82 |
|
| 84 |
+
| 0.3227 | 1.78 | 950 | 0.3888 | 0.8133 |
|
| 85 |
+
| 0.2727 | 1.87 | 1000 | 0.4215 | 0.82 |
|
| 86 |
+
| 0.2722 | 1.97 | 1050 | 0.4099 | 0.8333 |
|
| 87 |
+
| 0.1908 | 2.06 | 1100 | 0.4595 | 0.82 |
|
| 88 |
+
| 0.2276 | 2.15 | 1150 | 0.4572 | 0.84 |
|
| 89 |
+
| 0.2239 | 2.25 | 1200 | 0.4545 | 0.8333 |
|
| 90 |
+
| 0.1986 | 2.34 | 1250 | 0.4895 | 0.82 |
|
| 91 |
+
| 0.2388 | 2.43 | 1300 | 0.4352 | 0.86 |
|
| 92 |
+
| 0.1901 | 2.53 | 1350 | 0.4806 | 0.84 |
|
| 93 |
+
| 0.2227 | 2.62 | 1400 | 0.5473 | 0.8067 |
|
| 94 |
+
| 0.2221 | 2.72 | 1450 | 0.5010 | 0.84 |
|
| 95 |
+
| 0.1955 | 2.81 | 1500 | 0.5315 | 0.8267 |
|
| 96 |
+
| 0.2114 | 2.9 | 1550 | 0.5410 | 0.8133 |
|
| 97 |
+
| 0.1827 | 3.0 | 1600 | 0.5721 | 0.8133 |
|
| 98 |
+
| 0.1527 | 3.09 | 1650 | 0.5616 | 0.8133 |
|
| 99 |
+
| 0.1464 | 3.18 | 1700 | 0.5935 | 0.8067 |
|
| 100 |
+
| 0.135 | 3.28 | 1750 | 0.6145 | 0.82 |
|
| 101 |
+
| 0.1668 | 3.37 | 1800 | 0.6901 | 0.8067 |
|
| 102 |
+
| 0.1702 | 3.46 | 1850 | 0.6067 | 0.8133 |
|
| 103 |
+
| 0.1738 | 3.56 | 1900 | 0.5981 | 0.82 |
|
| 104 |
+
| 0.1506 | 3.65 | 1950 | 0.6073 | 0.8267 |
|
| 105 |
+
| 0.1584 | 3.75 | 2000 | 0.6549 | 0.8133 |
|
| 106 |
+
| 0.1698 | 3.84 | 2050 | 0.6660 | 0.8267 |
|
| 107 |
+
| 0.1626 | 3.93 | 2100 | 0.6645 | 0.8267 |
|
| 108 |
+
| 0.1483 | 4.03 | 2150 | 0.6497 | 0.82 |
|
| 109 |
+
| 0.1342 | 4.12 | 2200 | 0.6643 | 0.82 |
|
| 110 |
+
| 0.1064 | 4.21 | 2250 | 0.6775 | 0.82 |
|
| 111 |
+
| 0.1302 | 4.31 | 2300 | 0.6876 | 0.82 |
|
| 112 |
+
| 0.1847 | 4.4 | 2350 | 0.6821 | 0.8133 |
|
| 113 |
+
| 0.1055 | 4.49 | 2400 | 0.6928 | 0.8133 |
|
| 114 |
+
| 0.1372 | 4.59 | 2450 | 0.6877 | 0.8133 |
|
| 115 |
+
| 0.131 | 4.68 | 2500 | 0.6769 | 0.8267 |
|
| 116 |
+
| 0.1242 | 4.78 | 2550 | 0.6769 | 0.8267 |
|
| 117 |
+
| 0.1289 | 4.87 | 2600 | 0.6810 | 0.82 |
|
| 118 |
+
| 0.1488 | 4.96 | 2650 | 0.6835 | 0.82 |
|
| 119 |
+
|
| 120 |
+
|
| 121 |
+
### Framework versions
|
| 122 |
+
|
| 123 |
+
- Transformers 4.24.0
|
| 124 |
+
- Pytorch 1.13.0
|
| 125 |
+
- Datasets 2.7.1
|
| 126 |
+
- Tokenizers 0.13.2
|