--- license: cc tags: - image-to-image datasets: - peter-sushko/RealEdit pipeline_tag: image-to-image --- # REALEDIT: Reddit Edits As a Large-scale Empirical Dataset for Image Transformations Project page: https://peter-sushko.github.io/RealEdit/ Data: https://huggingface.co/datasets/peter-sushko/RealEdit Paper: https://arxiv.org/pdf/2502.03629 **There are 2 ways to run inference: either via Diffusers or original InstructPix2Pix pipeline.** ## Option 1: With 🧨Diffusers: Install necessary libraries: ```bash pip install torch==2.7.0 diffusers==0.33.1 transformers==4.51.3 accelerate==1.6.0 pillow==11.2.1 requests==2.32.3 ``` Then run: ```python import torch import requests import PIL from diffusers import StableDiffusionInstructPix2PixPipeline, EulerAncestralDiscreteScheduler model_id = "peter-sushko/RealEdit" pipe = StableDiffusionInstructPix2PixPipeline.from_pretrained( model_id, torch_dtype=torch.float16, safety_checker=None ) pipe.to("cuda") pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) url = "https://raw.githubusercontent.com/AyanaBharadwaj/RealEdit/refs/heads/main/example_imgs/simba.jpg" def download_image(url): image = PIL.Image.open(requests.get(url, stream=True).raw) image = PIL.ImageOps.exif_transpose(image) image = image.convert("RGB") return image image = download_image(url) prompt = "give him a crown" result = pipe(prompt, image=image, num_inference_steps=50, image_guidance_scale=2).images[0] result.save("output.png") ``` ## Option 2: via InstructPix2Pix pipeline: Clone the repository and set up the directory structure: ```bash git clone https://github.com/timothybrooks/instruct-pix2pix.git cd instruct-pix2pix mkdir checkpoints ``` Download the fine-tuned checkpoint into the `checkpoints` directory: ```bash cd checkpoints # wget https://huggingface.co/peter-sushko/RealEdit/resolve/main/realedit_model.ckpt ``` Return to the repo root and follow the [InstructPix2Pix installation guide](https://github.com/timothybrooks/instruct-pix2pix) to set up the environment. Edit a single image ```bash python edit_cli.py \ --input [YOUR_IMG_PATH] \ --output imgs/output.jpg \ --edit "YOUR EDIT INSTRUCTION" \ --ckpt checkpoints/realedit_model.ckpt ``` ## Citation If you find this checkpoint helpful, please cite: ``` @misc{sushko2025realeditredditeditslargescale, title={REALEDIT: Reddit Edits As a Large-scale Empirical Dataset for Image Transformations}, author={Peter Sushko and Ayana Bharadwaj and Zhi Yang Lim and Vasily Ilin and Ben Caffee and Dongping Chen and Mohammadreza Salehi and Cheng-Yu Hsieh and Ranjay Krishna}, year={2025}, eprint={2502.03629}, archivePrefix={arXiv}, primaryClass={cs.CV}, url={https://arxiv.org/abs/2502.03629}, } ```