new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Feb 11

ReDSM5: A Reddit Dataset for DSM-5 Depression Detection

Depression is a pervasive mental health condition that affects hundreds of millions of individuals worldwide, yet many cases remain undiagnosed due to barriers in traditional clinical access and pervasive stigma. Social media platforms, and Reddit in particular, offer rich, user-generated narratives that can reveal early signs of depressive symptomatology. However, existing computational approaches often label entire posts simply as depressed or not depressed, without linking language to specific criteria from the DSM-5, the standard clinical framework for diagnosing depression. This limits both clinical relevance and interpretability. To address this gap, we introduce ReDSM5, a novel Reddit corpus comprising 1484 long-form posts, each exhaustively annotated at the sentence level by a licensed psychologist for the nine DSM-5 depression symptoms. For each label, the annotator also provides a concise clinical rationale grounded in DSM-5 methodology. We conduct an exploratory analysis of the collection, examining lexical, syntactic, and emotional patterns that characterize symptom expression in social media narratives. Compared to prior resources, ReDSM5 uniquely combines symptom-specific supervision with expert explanations, facilitating the development of models that not only detect depression but also generate human-interpretable reasoning. We establish baseline benchmarks for both multi-label symptom classification and explanation generation, providing reference results for future research on detection and interpretability.

  • 3 authors
·
Aug 5, 2025

Explainable Depression Symptom Detection in Social Media

Users of social platforms often perceive these sites as supportive spaces to post about their mental health issues. Those conversations contain important traces about individuals' health risks. Recently, researchers have exploited this online information to construct mental health detection models, which aim to identify users at risk on platforms like Twitter, Reddit or Facebook. Most of these models are centred on achieving good classification results, ignoring the explainability and interpretability of the decisions. Recent research has pointed out the importance of using clinical markers, such as the use of symptoms, to improve trust in the computational models by health professionals. In this paper, we propose using transformer-based architectures to detect and explain the appearance of depressive symptom markers in the users' writings. We present two approaches: i) train a model to classify, and another one to explain the classifier's decision separately and ii) unify the two tasks simultaneously using a single model. Additionally, for this latter manner, we also investigated the performance of recent conversational LLMs when using in-context learning. Our natural language explanations enable clinicians to interpret the models' decisions based on validated symptoms, enhancing trust in the automated process. We evaluate our approach using recent symptom-based datasets, employing both offline and expert-in-the-loop metrics to assess the quality of the explanations generated by our models. The experimental results show that it is possible to achieve good classification results while generating interpretable symptom-based explanations.

  • 3 authors
·
Oct 20, 2023

KeNet:Knowledge-enhanced Doc-Label Attention Network for Multi-label text classification

Multi-Label Text Classification (MLTC) is a fundamental task in the field of Natural Language Processing (NLP) that involves the assignment of multiple labels to a given text. MLTC has gained significant importance and has been widely applied in various domains such as topic recognition, recommendation systems, sentiment analysis, and information retrieval. However, traditional machine learning and Deep neural network have not yet addressed certain issues, such as the fact that some documents are brief but have a large number of labels and how to establish relationships between the labels. It is imperative to additionally acknowledge that the significance of knowledge is substantiated in the realm of MLTC. To address this issue, we provide a novel approach known as Knowledge-enhanced Doc-Label Attention Network (KeNet). Specifically, we design an Attention Network that incorporates external knowledge, label embedding, and a comprehensive attention mechanism. In contrast to conventional methods, we use comprehensive representation of documents, knowledge and labels to predict all labels for each single text. Our approach has been validated by comprehensive research conducted on three multi-label datasets. Experimental results demonstrate that our method outperforms state-of-the-art MLTC method. Additionally, a case study is undertaken to illustrate the practical implementation of KeNet.

  • 3 authors
·
Mar 4, 2024

A Multi-View Joint Learning Framework for Embedding Clinical Codes and Text Using Graph Neural Networks

Learning to represent free text is a core task in many clinical machine learning (ML) applications, as clinical text contains observations and plans not otherwise available for inference. State-of-the-art methods use large language models developed with immense computational resources and training data; however, applying these models is challenging because of the highly varying syntax and vocabulary in clinical free text. Structured information such as International Classification of Disease (ICD) codes often succinctly abstracts the most important facts of a clinical encounter and yields good performance, but is often not as available as clinical text in real-world scenarios. We propose a multi-view learning framework that jointly learns from codes and text to combine the availability and forward-looking nature of text and better performance of ICD codes. The learned text embeddings can be used as inputs to predictive algorithms independent of the ICD codes during inference. Our approach uses a Graph Neural Network (GNN) to process ICD codes, and Bi-LSTM to process text. We apply Deep Canonical Correlation Analysis (DCCA) to enforce the two views to learn a similar representation of each patient. In experiments using planned surgical procedure text, our model outperforms BERT models fine-tuned to clinical data, and in experiments using diverse text in MIMIC-III, our model is competitive to a fine-tuned BERT at a tiny fraction of its computational effort.

  • 4 authors
·
Jan 27, 2023

Automated speech- and text-based classification of neuropsychiatric conditions in a multidiagnostic setting

Speech patterns have been identified as potential diagnostic markers for neuropsychiatric conditions. However, most studies only compare a single clinical group to healthy controls, whereas clinical practice often requires differentiating between multiple potential diagnoses (multiclass settings). To address this, we assembled a dataset of repeated recordings from 420 participants (67 with major depressive disorder, 106 with schizophrenia and 46 with autism, as well as matched controls), and tested the performance of a range of conventional machine learning models and advanced Transformer models on both binary and multiclass classification, based on voice and text features. While binary models performed comparably to previous research (F1 scores between 0.54-0.75 for autism spectrum disorder, ASD; 0.67-0.92 for major depressive disorder, MDD; and 0.71-0.83 for schizophrenia); when differentiating between multiple diagnostic groups performance decreased markedly (F1 scores between 0.35-0.44 for ASD, 0.57-0.75 for MDD, 0.15-0.66 for schizophrenia, and 0.38-0.52 macro F1). Combining voice and text-based models yielded increased performance, suggesting that they capture complementary diagnostic information. Our results indicate that models trained on binary classification may learn to rely on markers of generic differences between clinical and non-clinical populations, or markers of clinical features that overlap across conditions, rather than identifying markers specific to individual conditions. We provide recommendations for future research in the field, suggesting increased focus on developing larger transdiagnostic datasets that include more fine-grained clinical features, and that can support the development of models that better capture the complexity of neuropsychiatric conditions and naturalistic diagnostic assessment.

  • 11 authors
·
Jan 13, 2023

Natural Language Processing in Electronic Health Records in Relation to Healthcare Decision-making: A Systematic Review

Background: Natural Language Processing (NLP) is widely used to extract clinical insights from Electronic Health Records (EHRs). However, the lack of annotated data, automated tools, and other challenges hinder the full utilisation of NLP for EHRs. Various Machine Learning (ML), Deep Learning (DL) and NLP techniques are studied and compared to understand the limitations and opportunities in this space comprehensively. Methodology: After screening 261 articles from 11 databases, we included 127 papers for full-text review covering seven categories of articles: 1) medical note classification, 2) clinical entity recognition, 3) text summarisation, 4) deep learning (DL) and transfer learning architecture, 5) information extraction, 6) Medical language translation and 7) other NLP applications. This study follows the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Result and Discussion: EHR was the most commonly used data type among the selected articles, and the datasets were primarily unstructured. Various ML and DL methods were used, with prediction or classification being the most common application of ML or DL. The most common use cases were: the International Classification of Diseases, Ninth Revision (ICD-9) classification, clinical note analysis, and named entity recognition (NER) for clinical descriptions and research on psychiatric disorders. Conclusion: We find that the adopted ML models were not adequately assessed. In addition, the data imbalance problem is quite important, yet we must find techniques to address this underlining problem. Future studies should address key limitations in studies, primarily identifying Lupus Nephritis, Suicide Attempts, perinatal self-harmed and ICD-9 classification.

  • 8 authors
·
Jun 22, 2023

Review GIDE -- Restaurant Review Gastrointestinal Illness Detection and Extraction with Large Language Models

Foodborne gastrointestinal (GI) illness is a common cause of ill health in the UK. However, many cases do not interact with the healthcare system, posing significant challenges for traditional surveillance methods. The growth of publicly available online restaurant reviews and advancements in large language models (LLMs) present potential opportunities to extend disease surveillance by identifying public reports of GI illness. In this study, we introduce a novel annotation schema, developed with experts in GI illness, applied to the Yelp Open Dataset of reviews. Our annotations extend beyond binary disease detection, to include detailed extraction of information on symptoms and foods. We evaluate the performance of open-weight LLMs across these three tasks: GI illness detection, symptom extraction, and food extraction. We compare this performance to RoBERTa-based classification models fine-tuned specifically for these tasks. Our results show that using prompt-based approaches, LLMs achieve micro-F1 scores of over 90% for all three of our tasks. Using prompting alone, we achieve micro-F1 scores that exceed those of smaller fine-tuned models. We further demonstrate the robustness of LLMs in GI illness detection across three bias-focused experiments. Our results suggest that publicly available review text and LLMs offer substantial potential for public health surveillance of GI illness by enabling highly effective extraction of key information. While LLMs appear to exhibit minimal bias in processing, the inherent limitations of restaurant review data highlight the need for cautious interpretation of results.

  • 8 authors
·
Mar 12, 2025

Automatic Differential Diagnosis using Transformer-Based Multi-Label Sequence Classification

As the field of artificial intelligence progresses, assistive technologies are becoming more widely used across all industries. The healthcare industry is no different, with numerous studies being done to develop assistive tools for healthcare professionals. Automatic diagnostic systems are one such beneficial tool that can assist with a variety of tasks, including collecting patient information, analyzing test results, and diagnosing patients. However, the idea of developing systems that can provide a differential diagnosis has been largely overlooked in most of these research studies. In this study, we propose a transformer-based approach for providing differential diagnoses based on a patient's age, sex, medical history, and symptoms. We use the DDXPlus dataset, which provides differential diagnosis information for patients based on 49 disease types. Firstly, we propose a method to process the tabular patient data from the dataset and engineer them into patient reports to make them suitable for our research. In addition, we introduce two data modification modules to diversify the training data and consequently improve the robustness of the models. We approach the task as a multi-label classification problem and conduct extensive experiments using four transformer models. All the models displayed promising results by achieving over 97% F1 score on the held-out test set. Moreover, we design additional behavioral tests to get a broader understanding of the models. In particular, for one of our test cases, we prepared a custom test set of 100 samples with the assistance of a doctor. The results on the custom set showed that our proposed data modification modules improved the model's generalization capabilities. We hope our findings will provide future researchers with valuable insights and inspire them to develop reliable systems for automatic differential diagnosis.

  • 3 authors
·
Aug 28, 2024 1

Label Dependent Attention Model for Disease Risk Prediction Using Multimodal Electronic Health Records

Disease risk prediction has attracted increasing attention in the field of modern healthcare, especially with the latest advances in artificial intelligence (AI). Electronic health records (EHRs), which contain heterogeneous patient information, are widely used in disease risk prediction tasks. One challenge of applying AI models for risk prediction lies in generating interpretable evidence to support the prediction results while retaining the prediction ability. In order to address this problem, we propose the method of jointly embedding words and labels whereby attention modules learn the weights of words from medical notes according to their relevance to the names of risk prediction labels. This approach boosts interpretability by employing an attention mechanism and including the names of prediction tasks in the model. However, its application is only limited to the handling of textual inputs such as medical notes. In this paper, we propose a label dependent attention model LDAM to 1) improve the interpretability by exploiting Clinical-BERT (a biomedical language model pre-trained on a large clinical corpus) to encode biomedically meaningful features and labels jointly; 2) extend the idea of joint embedding to the processing of time-series data, and develop a multi-modal learning framework for integrating heterogeneous information from medical notes and time-series health status indicators. To demonstrate our method, we apply LDAM to the MIMIC-III dataset to predict different disease risks. We evaluate our method both quantitatively and qualitatively. Specifically, the predictive power of LDAM will be shown, and case studies will be carried out to illustrate its interpretability.

  • 5 authors
·
Jan 18, 2022

DDXPlus: A New Dataset For Automatic Medical Diagnosis

There has been a rapidly growing interest in Automatic Symptom Detection (ASD) and Automatic Diagnosis (AD) systems in the machine learning research literature, aiming to assist doctors in telemedicine services. These systems are designed to interact with patients, collect evidence about their symptoms and relevant antecedents, and possibly make predictions about the underlying diseases. Doctors would review the interactions, including the evidence and the predictions, collect if necessary additional information from patients, before deciding on next steps. Despite recent progress in this area, an important piece of doctors' interactions with patients is missing in the design of these systems, namely the differential diagnosis. Its absence is largely due to the lack of datasets that include such information for models to train on. In this work, we present a large-scale synthetic dataset of roughly 1.3 million patients that includes a differential diagnosis, along with the ground truth pathology, symptoms and antecedents for each patient. Unlike existing datasets which only contain binary symptoms and antecedents, this dataset also contains categorical and multi-choice symptoms and antecedents useful for efficient data collection. Moreover, some symptoms are organized in a hierarchy, making it possible to design systems able to interact with patients in a logical way. As a proof-of-concept, we extend two existing AD and ASD systems to incorporate the differential diagnosis, and provide empirical evidence that using differentials as training signals is essential for the efficiency of such systems or for helping doctors better understand the reasoning of those systems.

  • 5 authors
·
May 18, 2022

Using the Tsetlin Machine to Learn Human-Interpretable Rules for High-Accuracy Text Categorization with Medical Applications

Medical applications challenge today's text categorization techniques by demanding both high accuracy and ease-of-interpretation. Although deep learning has provided a leap ahead in accuracy, this leap comes at the sacrifice of interpretability. To address this accuracy-interpretability challenge, we here introduce, for the first time, a text categorization approach that leverages the recently introduced Tsetlin Machine. In all brevity, we represent the terms of a text as propositional variables. From these, we capture categories using simple propositional formulae, such as: if "rash" and "reaction" and "penicillin" then Allergy. The Tsetlin Machine learns these formulae from a labelled text, utilizing conjunctive clauses to represent the particular facets of each category. Indeed, even the absence of terms (negated features) can be used for categorization purposes. Our empirical comparison with Na\"ive Bayes, decision trees, linear support vector machines (SVMs), random forest, long short-term memory (LSTM) neural networks, and other techniques, is quite conclusive. The Tsetlin Machine either performs on par with or outperforms all of the evaluated methods on both the 20 Newsgroups and IMDb datasets, as well as on a non-public clinical dataset. On average, the Tsetlin Machine delivers the best recall and precision scores across the datasets. Finally, our GPU implementation of the Tsetlin Machine executes 5 to 15 times faster than the CPU implementation, depending on the dataset. We thus believe that our novel approach can have a significant impact on a wide range of text analysis applications, forming a promising starting point for deeper natural language understanding with the Tsetlin Machine.

  • 6 authors
·
Sep 12, 2018

MLLM4PUE: Toward Universal Embeddings in Computational Pathology through Multimodal LLMs

Pathology plays a critical role in diagnosing a wide range of diseases, yet existing approaches often rely heavily on task-specific models trained on extensive, well-labeled datasets. These methods face sustainability challenges due to the diversity of pathologies and the labor-intensive nature of data collection. To address these limitations, we highlight the need for universal multimodal embeddings that can support multiple downstream tasks. Previous approaches often involve fine-tuning CLIP-based models, which handle images and text separately, limiting their ability to capture complex multimodal relationships. Additionally, these models are evaluated across diverse datasets without a unified benchmark for assessing multimodal embeddings in pathology. To address these challenges, we propose MLLM4PUE, a novel framework that leverages Multimodal Large Language Models (MLLMs) to generate Pathology Universal Embeddings. The MLLM4PUE framework not only facilitates robust integration of images and text but also enhances understanding and fusion capabilities across various tasks. We further introduce the Pathology Multimodal Embedding Benchmark (PMEB), a comprehensive benchmark designed to assess the quality of pathology multimodal embeddings. PMEB comprises 15 original tasks drawn from 14 datasets, organized into three meta-tasks: retrieval, classification, and composed retrieval. Experimental results demonstrate the superiority of MLLM4PUE, illustrating MLLM-based models can effectively support a wide range of downstream tasks and unify the research direction for foundation models in pathology.

  • 7 authors
·
Feb 10, 2025

MHQA: A Diverse, Knowledge Intensive Mental Health Question Answering Challenge for Language Models

Mental health remains a challenging problem all over the world, with issues like depression, anxiety becoming increasingly common. Large Language Models (LLMs) have seen a vast application in healthcare, specifically in answering medical questions. However, there is a lack of standard benchmarking datasets for question answering (QA) in mental health. Our work presents a novel multiple choice dataset, MHQA (Mental Health Question Answering), for benchmarking Language models (LMs). Previous mental health datasets have focused primarily on text classification into specific labels or disorders. MHQA, on the other hand, presents question-answering for mental health focused on four key domains: anxiety, depression, trauma, and obsessive/compulsive issues, with diverse question types, namely, factoid, diagnostic, prognostic, and preventive. We use PubMed abstracts as the primary source for QA. We develop a rigorous pipeline for LLM-based identification of information from abstracts based on various selection criteria and converting it into QA pairs. Further, valid QA pairs are extracted based on post-hoc validation criteria. Overall, our MHQA dataset consists of 2,475 expert-verified gold standard instances called MHQA-gold and ~56.1k pairs pseudo labeled using external medical references. We report F1 scores on different LLMs along with few-shot and supervised fine-tuning experiments, further discussing the insights for the scores.

  • 7 authors
·
Feb 21, 2025

Did You Really Just Have a Heart Attack? Towards Robust Detection of Personal Health Mentions in Social Media

Millions of users share their experiences on social media sites, such as Twitter, which in turn generate valuable data for public health monitoring, digital epidemiology, and other analyses of population health at global scale. The first, critical, task for these applications is classifying whether a personal health event was mentioned, which we call the (PHM) problem. This task is challenging for many reasons, including typically short length of social media posts, inventive spelling and lexicons, and figurative language, including hyperbole using diseases like "heart attack" or "cancer" for emphasis, and not as a health self-report. This problem is even more challenging for rarely reported, or frequent but ambiguously expressed conditions, such as "stroke". To address this problem, we propose a general, robust method for detecting PHMs in social media, which we call WESPAD, that combines lexical, syntactic, word embedding-based, and context-based features. WESPAD is able to generalize from few examples by automatically distorting the word embedding space to most effectively detect the true health mentions. Unlike previously proposed state-of-the-art supervised and deep-learning techniques, WESPAD requires relatively little training data, which makes it possible to adapt, with minimal effort, to each new disease and condition. We evaluate WESPAD on both an established publicly available Flu detection benchmark, and on a new dataset that we have constructed with mentions of multiple health conditions. Our experiments show that WESPAD outperforms the baselines and state-of-the-art methods, especially in cases when the number and proportion of true health mentions in the training data is small.

  • 2 authors
·
Feb 25, 2018

PMC-Patients: A Large-scale Dataset of Patient Notes and Relations Extracted from Case Reports in PubMed Central

Objective: Data unavailability has been one of the biggest barriers in clinical natural language processing. This paper is aimed at providing a large-scale and publicly available patient note dataset, named PMC-Patients, with relevant articles and similar patients annotations. The ultimate goal of PMC-Patients is to facilitate the development of retrieval-based clinical decision support systems. Materials and Methods: To collect PMC-Patients, we extract patient notes from case reports in PubMed Central by recognizing certain section patterns. Patient-article relevance and patient-patient similarity are annotated by citation relationships in PubMed. In addition, we perform three tasks with PMC-Patients to demonstrate its utility in providing clinical decision support for a given patient, including (1) classifying whether another patient is similar, (2) retrieving similar patients in PMC-Patients, and (3) retrieving relevant articles in PubMed. Results: We collect and release PMC-Patients under the CC BY-NC-SA license, which becomes the largest publicly available patient note dataset so far. PMC-Patients contains 167k patient notes that are annotated with 3.1M relevant articles and 293k similar patients. Qualitative and quantitative analyses reveal the high quality and richness of our dataset. Experiments show that classifying the similarity of patient pairs is relatively easy, but it is hard to retrieve similar patients or relevant articles for a given patient from a large set of candidates. Conclusion: We present PMC-Patients, a large-scale dataset of patient notes with high quality, easy access, diverse conditions, and rich annotations. The proposed dataset can also serve as a hard benchmark for evaluating retrieval-based clinical decision support systems.

  • 4 authors
·
Feb 28, 2022

Large language models in healthcare and medical domain: A review

The deployment of large language models (LLMs) within the healthcare sector has sparked both enthusiasm and apprehension. These models exhibit the remarkable capability to provide proficient responses to free-text queries, demonstrating a nuanced understanding of professional medical knowledge. This comprehensive survey delves into the functionalities of existing LLMs designed for healthcare applications, elucidating the trajectory of their development, starting from traditional Pretrained Language Models (PLMs) to the present state of LLMs in healthcare sector. First, we explore the potential of LLMs to amplify the efficiency and effectiveness of diverse healthcare applications, particularly focusing on clinical language understanding tasks. These tasks encompass a wide spectrum, ranging from named entity recognition and relation extraction to natural language inference, multi-modal medical applications, document classification, and question-answering. Additionally, we conduct an extensive comparison of the most recent state-of-the-art LLMs in the healthcare domain, while also assessing the utilization of various open-source LLMs and highlighting their significance in healthcare applications. Furthermore, we present the essential performance metrics employed to evaluate LLMs in the biomedical domain, shedding light on their effectiveness and limitations. Finally, we summarize the prominent challenges and constraints faced by large language models in the healthcare sector, offering a holistic perspective on their potential benefits and shortcomings. This review provides a comprehensive exploration of the current landscape of LLMs in healthcare, addressing their role in transforming medical applications and the areas that warrant further research and development.

  • 2 authors
·
Dec 12, 2023

multiMentalRoBERTa: A Fine-tuned Multiclass Classifier for Mental Health Disorder

The early detection of mental health disorders from social media text is critical for enabling timely support, risk assessment, and referral to appropriate resources. This work introduces multiMentalRoBERTa, a fine-tuned RoBERTa model designed for multiclass classification of common mental health conditions, including stress, anxiety, depression, post-traumatic stress disorder (PTSD), suicidal ideation, and neutral discourse. Drawing on multiple curated datasets, data exploration is conducted to analyze class overlaps, revealing strong correlations between depression and suicidal ideation as well as anxiety and PTSD, while stress emerges as a broad, overlapping category. Comparative experiments with traditional machine learning methods, domain-specific transformers, and prompting-based large language models demonstrate that multiMentalRoBERTa achieves superior performance, with macro F1-scores of 0.839 in the six-class setup and 0.870 in the five-class setup (excluding stress), outperforming both fine-tuned MentalBERT and baseline classifiers. Beyond predictive accuracy, explainability methods, including Layer Integrated Gradients and KeyBERT, are applied to identify lexical cues that drive classification, with a particular focus on distinguishing depression from suicidal ideation. The findings emphasize the effectiveness of fine-tuned transformers for reliable and interpretable detection in sensitive contexts, while also underscoring the importance of fairness, bias mitigation, and human-in-the-loop safety protocols. Overall, multiMentalRoBERTa is presented as a lightweight, robust, and deployable solution for enhancing support in mental health platforms.

  • 3 authors
·
Oct 31, 2025

PatchCT: Aligning Patch Set and Label Set with Conditional Transport for Multi-Label Image Classification

Multi-label image classification is a prediction task that aims to identify more than one label from a given image. This paper considers the semantic consistency of the latent space between the visual patch and linguistic label domains and introduces the conditional transport (CT) theory to bridge the acknowledged gap. While recent cross-modal attention-based studies have attempted to align such two representations and achieved impressive performance, they required carefully-designed alignment modules and extra complex operations in the attention computation. We find that by formulating the multi-label classification as a CT problem, we can exploit the interactions between the image and label efficiently by minimizing the bidirectional CT cost. Specifically, after feeding the images and textual labels into the modality-specific encoders, we view each image as a mixture of patch embeddings and a mixture of label embeddings, which capture the local region features and the class prototypes, respectively. CT is then employed to learn and align those two semantic sets by defining the forward and backward navigators. Importantly, the defined navigators in CT distance model the similarities between patches and labels, which provides an interpretable tool to visualize the learned prototypes. Extensive experiments on three public image benchmarks show that the proposed model consistently outperforms the previous methods.

  • 7 authors
·
Jul 18, 2023

Online hierarchical partitioning of the output space in extreme multi-label data stream

Mining data streams with multi-label outputs poses significant challenges due to evolving distributions, high-dimensional label spaces, sparse label occurrences, and complex label dependencies. Moreover, concept drift affects not only input distributions but also label correlations and imbalance ratios over time, complicating model adaptation. To address these challenges, structured learners are categorized into local and global methods. Local methods break down the task into simpler components, while global methods adapt the algorithm to the full output space, potentially yielding better predictions by exploiting label correlations. This work introduces iHOMER (Incremental Hierarchy Of Multi-label Classifiers), an online multi-label learning framework that incrementally partitions the label space into disjoint, correlated clusters without relying on predefined hierarchies. iHOMER leverages online divisive-agglomerative clustering based on Jaccard similarity and a global tree-based learner driven by a multivariate Bernoulli process to guide instance partitioning. To address non-stationarity, it integrates drift detection mechanisms at both global and local levels, enabling dynamic restructuring of label partitions and subtrees. Experiments across 23 real-world datasets show iHOMER outperforms 5 state-of-the-art global baselines, such as MLHAT, MLHT of Pruned Sets and iSOUPT, by 23\%, and 12 local baselines, such as binary relevance transformations of kNN, EFDT, ARF, and ADWIN bagging/boosting ensembles, by 32\%, establishing its robustness for online multi-label classification.

  • 4 authors
·
Jul 28, 2025

WellDunn: On the Robustness and Explainability of Language Models and Large Language Models in Identifying Wellness Dimensions

Language Models (LMs) are being proposed for mental health applications where the heightened risk of adverse outcomes means predictive performance may not be a sufficient litmus test of a model's utility in clinical practice. A model that can be trusted for practice should have a correspondence between explanation and clinical determination, yet no prior research has examined the attention fidelity of these models and their effect on ground truth explanations. We introduce an evaluation design that focuses on the robustness and explainability of LMs in identifying Wellness Dimensions (WDs). We focus on two existing mental health and well-being datasets: (a) Multi-label Classification-based MultiWD, and (b) WellXplain for evaluating attention mechanism veracity against expert-labeled explanations. The labels are based on Halbert Dunn's theory of wellness, which gives grounding to our evaluation. We reveal four surprising results about LMs/LLMs: (1) Despite their human-like capabilities, GPT-3.5/4 lag behind RoBERTa, and MedAlpaca, a fine-tuned LLM on WellXplain fails to deliver any remarkable improvements in performance or explanations. (2) Re-examining LMs' predictions based on a confidence-oriented loss function reveals a significant performance drop. (3) Across all LMs/LLMs, the alignment between attention and explanations remains low, with LLMs scoring a dismal 0.0. (4) Most mental health-specific LMs/LLMs overlook domain-specific knowledge and undervalue explanations, causing these discrepancies. This study highlights the need for further research into their consistency and explanations in mental health and well-being.

  • 6 authors
·
Jun 17, 2024

Multi-label Cluster Discrimination for Visual Representation Learning

Contrastive Language Image Pre-training (CLIP) has recently demonstrated success across various tasks due to superior feature representation empowered by image-text contrastive learning. However, the instance discrimination method used by CLIP can hardly encode the semantic structure of training data. To handle this limitation, cluster discrimination has been proposed through iterative cluster assignment and classification. Nevertheless, most cluster discrimination approaches only define a single pseudo-label for each image, neglecting multi-label signals in the image. In this paper, we propose a novel Multi-Label Cluster Discrimination method named MLCD to enhance representation learning. In the clustering step, we first cluster the large-scale LAION-400M dataset into one million centers based on off-the-shelf embedding features. Considering that natural images frequently contain multiple visual objects or attributes, we select the multiple closest centers as auxiliary class labels. In the discrimination step, we design a novel multi-label classification loss, which elegantly separates losses from positive classes and negative classes, and alleviates ambiguity on decision boundary. We validate the proposed multi-label cluster discrimination method with experiments on different scales of models and pre-training datasets. Experimental results show that our method achieves state-of-the-art performance on multiple downstream tasks including linear probe, zero-shot classification, and image-text retrieval.

  • 5 authors
·
Jul 24, 2024

A New Data Representation Based on Training Data Characteristics to Extract Drug Named-Entity in Medical Text

One essential task in information extraction from the medical corpus is drug name recognition. Compared with text sources come from other domains, the medical text is special and has unique characteristics. In addition, the medical text mining poses more challenges, e.g., more unstructured text, the fast growing of new terms addition, a wide range of name variation for the same drug. The mining is even more challenging due to the lack of labeled dataset sources and external knowledge, as well as multiple token representations for a single drug name that is more common in the real application setting. Although many approaches have been proposed to overwhelm the task, some problems remained with poor F-score performance (less than 0.75). This paper presents a new treatment in data representation techniques to overcome some of those challenges. We propose three data representation techniques based on the characteristics of word distribution and word similarities as a result of word embedding training. The first technique is evaluated with the standard NN model, i.e., MLP (Multi-Layer Perceptrons). The second technique involves two deep network classifiers, i.e., DBN (Deep Belief Networks), and SAE (Stacked Denoising Encoders). The third technique represents the sentence as a sequence that is evaluated with a recurrent NN model, i.e., LSTM (Long Short Term Memory). In extracting the drug name entities, the third technique gives the best F-score performance compared to the state of the art, with its average F-score being 0.8645.

  • 3 authors
·
Oct 6, 2016

Prot2Text: Multimodal Protein's Function Generation with GNNs and Transformers

The complex nature of big biological systems pushed some scientists to classify its understanding under the inconceivable missions. Different leveled challenges complicated this task, one of is the prediction of a protein's function. In recent years, significant progress has been made in this field through the development of various machine learning approaches. However, most existing methods formulate the task as a multi-classification problem, i.e assigning predefined labels to proteins. In this work, we propose a novel approach, Prot2Text, which predicts a protein function's in a free text style, moving beyond the conventional binary or categorical classifications. By combining Graph Neural Networks(GNNs) and Large Language Models(LLMs), in an encoder-decoder framework, our model effectively integrates diverse data types including proteins' sequences, structures, and textual annotations. This multimodal approach allows for a holistic representation of proteins' functions, enabling the generation of detailed and accurate descriptions. To evaluate our model, we extracted a multimodal protein dataset from SwissProt, and demonstrate empirically the effectiveness of Prot2Text. These results highlight the transformative impact of multimodal models, specifically the fusion of GNNs and LLMs, empowering researchers with powerful tools for more accurate prediction of proteins' functions. The code, the models and a demo will be publicly released.

  • 4 authors
·
Jul 25, 2023

Improving Arabic Multi-Label Emotion Classification using Stacked Embeddings and Hybrid Loss Function

In multi-label emotion classification, particularly for low-resource languages like Arabic, the challenges of class imbalance and label correlation hinder model performance, especially in accurately predicting minority emotions. To address these issues, this study proposes a novel approach that combines stacked embeddings, meta-learning, and a hybrid loss function to enhance multi-label emotion classification for the Arabic language. The study extracts contextual embeddings from three fine-tuned language models-ArabicBERT, MarBERT, and AraBERT-which are then stacked to form enriched embeddings. A meta-learner is trained on these stacked embeddings, and the resulting concatenated representations are provided as input to a Bi-LSTM model, followed by a fully connected neural network for multi-label classification. To further improve performance, a hybrid loss function is introduced, incorporating class weighting, label correlation matrix, and contrastive learning, effectively addressing class imbalances and improving the handling of label correlations. Extensive experiments validate the proposed model's performance across key metrics such as Precision, Recall, F1-Score, Jaccard Accuracy, and Hamming Loss. The class-wise performance analysis demonstrates the hybrid loss function's ability to significantly reduce disparities between majority and minority classes, resulting in a more balanced emotion classification. An ablation study highlights the contribution of each component, showing the superiority of the model compared to baseline approaches and other loss functions. This study not only advances multi-label emotion classification for Arabic but also presents a generalizable framework that can be adapted to other languages and domains, providing a significant step forward in addressing the challenges of low-resource emotion classification tasks.

  • 8 authors
·
Oct 4, 2024

Hierarchical Pretraining for Biomedical Term Embeddings

Electronic health records (EHR) contain narrative notes that provide extensive details on the medical condition and management of patients. Natural language processing (NLP) of clinical notes can use observed frequencies of clinical terms as predictive features for downstream applications such as clinical decision making and patient trajectory prediction. However, due to the vast number of highly similar and related clinical concepts, a more effective modeling strategy is to represent clinical terms as semantic embeddings via representation learning and use the low dimensional embeddings as feature vectors for predictive modeling. To achieve efficient representation, fine-tuning pretrained language models with biomedical knowledge graphs may generate better embeddings for biomedical terms than those from standard language models alone. These embeddings can effectively discriminate synonymous pairs of from those that are unrelated. However, they often fail to capture different degrees of similarity or relatedness for concepts that are hierarchical in nature. To overcome this limitation, we propose HiPrBERT, a novel biomedical term representation model trained on additionally complied data that contains hierarchical structures for various biomedical terms. We modify an existing contrastive loss function to extract information from these hierarchies. Our numerical experiments demonstrate that HiPrBERT effectively learns the pair-wise distance from hierarchical information, resulting in a substantially more informative embeddings for further biomedical applications

  • 6 authors
·
Jul 1, 2023

OIDA-QA: A Multimodal Benchmark for Analyzing the Opioid Industry Documents Archive

The opioid crisis represents a significant moment in public health that reveals systemic shortcomings across regulatory systems, healthcare practices, corporate governance, and public policy. Analyzing how these interconnected systems simultaneously failed to protect public health requires innovative analytic approaches for exploring the vast amounts of data and documents disclosed in the UCSF-JHU Opioid Industry Documents Archive (OIDA). The complexity, multimodal nature, and specialized characteristics of these healthcare-related legal and corporate documents necessitate more advanced methods and models tailored to specific data types and detailed annotations, ensuring the precision and professionalism in the analysis. In this paper, we tackle this challenge by organizing the original dataset according to document attributes and constructing a benchmark with 400k training documents and 10k for testing. From each document, we extract rich multimodal information-including textual content, visual elements, and layout structures-to capture a comprehensive range of features. Using multiple AI models, we then generate a large-scale dataset comprising 360k training QA pairs and 10k testing QA pairs. Building on this foundation, we develop domain-specific multimodal Large Language Models (LLMs) and explore the impact of multimodal inputs on task performance. To further enhance response accuracy, we incorporate historical QA pairs as contextual grounding for answering current queries. Additionally, we incorporate page references within the answers and introduce an importance-based page classifier, further improving the precision and relevance of the information provided. Preliminary results indicate the improvements with our AI assistant in document information extraction and question-answering tasks. The dataset is available at: https://huggingface.co/datasets/opioidarchive/oida-qa

  • 15 authors
·
Nov 12, 2025

An analysis of full-size Russian complexly NER labelled corpus of Internet user reviews on the drugs based on deep learning and language neural nets

We present the full-size Russian complexly NER-labeled corpus of Internet user reviews, along with an evaluation of accuracy levels reached on this corpus by a set of advanced deep learning neural networks to extract the pharmacologically meaningful entities from Russian texts. The corpus annotation includes mentions of the following entities: Medication (33005 mentions), Adverse Drug Reaction (1778), Disease (17403), and Note (4490). Two of them - Medication and Disease - comprise a set of attributes. A part of the corpus has the coreference annotation with 1560 coreference chains in 300 documents. Special multi-label model based on a language model and the set of features is developed, appropriate for presented corpus labeling. The influence of the choice of different modifications of the models: word vector representations, types of language models pre-trained for Russian, text normalization styles, and other preliminary processing are analyzed. The sufficient size of our corpus allows to study the effects of particularities of corpus labeling and balancing entities in the corpus. As a result, the state of the art for the pharmacological entity extraction problem for Russian is established on a full-size labeled corpus. In case of the adverse drug reaction (ADR) recognition, it is 61.1 by the F1-exact metric that, as our analysis shows, is on par with the accuracy level for other language corpora with similar characteristics and the ADR representativnes. The evaluated baseline precision of coreference relation extraction on the corpus is 71, that is higher the results reached on other Russian corpora.

  • 9 authors
·
Apr 30, 2021

MentalArena: Self-play Training of Language Models for Diagnosis and Treatment of Mental Health Disorders

Mental health disorders are one of the most serious diseases in the world. Most people with such a disease lack access to adequate care, which highlights the importance of training models for the diagnosis and treatment of mental health disorders. However, in the mental health domain, privacy concerns limit the accessibility of personalized treatment data, making it challenging to build powerful models. In this paper, we introduce MentalArena, a self-play framework to train language models by generating domain-specific personalized data, where we obtain a better model capable of making a personalized diagnosis and treatment (as a therapist) and providing information (as a patient). To accurately model human-like mental health patients, we devise Symptom Encoder, which simulates a real patient from both cognition and behavior perspectives. To address intent bias during patient-therapist interactions, we propose Symptom Decoder to compare diagnosed symptoms with encoded symptoms, and dynamically manage the dialogue between patient and therapist according to the identified deviations. We evaluated MentalArena against 6 benchmarks, including biomedicalQA and mental health tasks, compared to 6 advanced models. Our models, fine-tuned on both GPT-3.5 and Llama-3-8b, significantly outperform their counterparts, including GPT-4o. We hope that our work can inspire future research on personalized care. Code is available in https://github.com/Scarelette/MentalArena/tree/main

  • 7 authors
·
Oct 9, 2024 2

Question-Answering Model for Schizophrenia Symptoms and Their Impact on Daily Life using Mental Health Forums Data

In recent years, there is strong emphasis on mining medical data using machine learning techniques. A common problem is to obtain a noiseless set of textual documents, with a relevant content for the research question, and developing a Question Answering (QA) model for a specific medical field. The purpose of this paper is to present a new methodology for building a medical dataset and obtain a QA model for analysis of symptoms and impact on daily life for a specific disease domain. The ``Mental Health'' forum was used, a forum dedicated to people suffering from schizophrenia and different mental disorders. Relevant posts of active users, who regularly participate, were extrapolated providing a new method of obtaining low-bias content and without privacy issues. Furthermore, it is shown how to pre-process the dataset to convert it into a QA dataset. The Bidirectional Encoder Representations from Transformers (BERT), DistilBERT, RoBERTa, and BioBERT models were fine-tuned and evaluated via F1-Score, Exact Match, Precision and Recall. Accurate empirical experiments demonstrated the effectiveness of the proposed method for obtaining an accurate dataset for QA model implementation. By fine-tuning the BioBERT QA model, we achieved an F1 score of 0.885, showing a considerable improvement and outperforming the state-of-the-art model for mental disorders domain.

  • 2 authors
·
Sep 30, 2023

MALADE: Orchestration of LLM-powered Agents with Retrieval Augmented Generation for Pharmacovigilance

In the era of Large Language Models (LLMs), given their remarkable text understanding and generation abilities, there is an unprecedented opportunity to develop new, LLM-based methods for trustworthy medical knowledge synthesis, extraction and summarization. This paper focuses on the problem of Pharmacovigilance (PhV), where the significance and challenges lie in identifying Adverse Drug Events (ADEs) from diverse text sources, such as medical literature, clinical notes, and drug labels. Unfortunately, this task is hindered by factors including variations in the terminologies of drugs and outcomes, and ADE descriptions often being buried in large amounts of narrative text. We present MALADE, the first effective collaborative multi-agent system powered by LLM with Retrieval Augmented Generation for ADE extraction from drug label data. This technique involves augmenting a query to an LLM with relevant information extracted from text resources, and instructing the LLM to compose a response consistent with the augmented data. MALADE is a general LLM-agnostic architecture, and its unique capabilities are: (1) leveraging a variety of external sources, such as medical literature, drug labels, and FDA tools (e.g., OpenFDA drug information API), (2) extracting drug-outcome association in a structured format along with the strength of the association, and (3) providing explanations for established associations. Instantiated with GPT-4 Turbo or GPT-4o, and FDA drug label data, MALADE demonstrates its efficacy with an Area Under ROC Curve of 0.90 against the OMOP Ground Truth table of ADEs. Our implementation leverages the Langroid multi-agent LLM framework and can be found at https://github.com/jihyechoi77/malade.

  • 7 authors
·
Aug 3, 2024

Efficient Few-shot Learning for Multi-label Classification of Scientific Documents with Many Classes

Scientific document classification is a critical task and often involves many classes. However, collecting human-labeled data for many classes is expensive and usually leads to label-scarce scenarios. Moreover, recent work has shown that sentence embedding model fine-tuning for few-shot classification is efficient, robust, and effective. In this work, we propose FusionSent (Fusion-based Sentence Embedding Fine-tuning), an efficient and prompt-free approach for few-shot classification of scientific documents with many classes. FusionSent uses available training examples and their respective label texts to contrastively fine-tune two different sentence embedding models. Afterward, the parameters of both fine-tuned models are fused to combine the complementary knowledge from the separate fine-tuning steps into a single model. Finally, the resulting sentence embedding model is frozen to embed the training instances, which are then used as input features to train a classification head. Our experiments show that FusionSent significantly outperforms strong baselines by an average of 6.0 F_{1} points across multiple scientific document classification datasets. In addition, we introduce a new dataset for multi-label classification of scientific documents, which contains 183,565 scientific articles and 130 classes from the arXiv category taxonomy. Code and data are available at https://github.com/sebischair/FusionSent.

  • 4 authors
·
Oct 8, 2024

From Classification to Clinical Insights: Towards Analyzing and Reasoning About Mobile and Behavioral Health Data With Large Language Models

Passively collected behavioral health data from ubiquitous sensors holds significant promise to provide mental health professionals insights from patient's daily lives; however, developing analysis tools to use this data in clinical practice requires addressing challenges of generalization across devices and weak or ambiguous correlations between the measured signals and an individual's mental health. To address these challenges, we take a novel approach that leverages large language models (LLMs) to synthesize clinically useful insights from multi-sensor data. We develop chain of thought prompting methods that use LLMs to generate reasoning about how trends in data such as step count and sleep relate to conditions like depression and anxiety. We first demonstrate binary depression classification with LLMs achieving accuracies of 61.1% which exceed the state of the art. While it is not robust for clinical use, this leads us to our key finding: even more impactful and valued than classification is a new human-AI collaboration approach in which clinician experts interactively query these tools and combine their domain expertise and context about the patient with AI generated reasoning to support clinical decision-making. We find models like GPT-4 correctly reference numerical data 75% of the time, and clinician participants express strong interest in using this approach to interpret self-tracking data.

  • 10 authors
·
Nov 21, 2023

LaSO: Label-Set Operations networks for multi-label few-shot learning

Example synthesis is one of the leading methods to tackle the problem of few-shot learning, where only a small number of samples per class are available. However, current synthesis approaches only address the scenario of a single category label per image. In this work, we propose a novel technique for synthesizing samples with multiple labels for the (yet unhandled) multi-label few-shot classification scenario. We propose to combine pairs of given examples in feature space, so that the resulting synthesized feature vectors will correspond to examples whose label sets are obtained through certain set operations on the label sets of the corresponding input pairs. Thus, our method is capable of producing a sample containing the intersection, union or set-difference of labels present in two input samples. As we show, these set operations generalize to labels unseen during training. This enables performing augmentation on examples of novel categories, thus, facilitating multi-label few-shot classifier learning. We conduct numerous experiments showing promising results for the label-set manipulation capabilities of the proposed approach, both directly (using the classification and retrieval metrics), and in the context of performing data augmentation for multi-label few-shot learning. We propose a benchmark for this new and challenging task and show that our method compares favorably to all the common baselines.

  • 8 authors
·
Feb 26, 2019

CUPCase: Clinically Uncommon Patient Cases and Diagnoses Dataset

Medical benchmark datasets significantly contribute to developing Large Language Models (LLMs) for medical knowledge extraction, diagnosis, summarization, and other uses. Yet, current benchmarks are mainly derived from exam questions given to medical students or cases described in the medical literature, lacking the complexity of real-world patient cases that deviate from classic textbook abstractions. These include rare diseases, uncommon presentations of common diseases, and unexpected treatment responses. Here, we construct Clinically Uncommon Patient Cases and Diagnosis Dataset (CUPCase) based on 3,562 real-world case reports from BMC, including diagnoses in open-ended textual format and as multiple-choice options with distractors. Using this dataset, we evaluate the ability of state-of-the-art LLMs, including both general-purpose and Clinical LLMs, to identify and correctly diagnose a patient case, and test models' performance when only partial information about cases is available. Our findings show that general-purpose GPT-4o attains the best performance in both the multiple-choice task (average accuracy of 87.9%) and the open-ended task (BERTScore F1 of 0.764), outperforming several LLMs with a focus on the medical domain such as Meditron-70B and MedLM-Large. Moreover, GPT-4o was able to maintain 87% and 88% of its performance with only the first 20% of tokens of the case presentation in multiple-choice and free text, respectively, highlighting the potential of LLMs to aid in early diagnosis in real-world cases. CUPCase expands our ability to evaluate LLMs for clinical decision support in an open and reproducible manner.

  • 4 authors
·
Mar 8, 2025

Large Language Models Encode Clinical Knowledge

Large language models (LLMs) have demonstrated impressive capabilities in natural language understanding and generation, but the quality bar for medical and clinical applications is high. Today, attempts to assess models' clinical knowledge typically rely on automated evaluations on limited benchmarks. There is no standard to evaluate model predictions and reasoning across a breadth of tasks. To address this, we present MultiMedQA, a benchmark combining six existing open question answering datasets spanning professional medical exams, research, and consumer queries; and HealthSearchQA, a new free-response dataset of medical questions searched online. We propose a framework for human evaluation of model answers along multiple axes including factuality, precision, possible harm, and bias. In addition, we evaluate PaLM (a 540-billion parameter LLM) and its instruction-tuned variant, Flan-PaLM, on MultiMedQA. Using a combination of prompting strategies, Flan-PaLM achieves state-of-the-art accuracy on every MultiMedQA multiple-choice dataset (MedQA, MedMCQA, PubMedQA, MMLU clinical topics), including 67.6% accuracy on MedQA (US Medical License Exam questions), surpassing prior state-of-the-art by over 17%. However, human evaluation reveals key gaps in Flan-PaLM responses. To resolve this we introduce instruction prompt tuning, a parameter-efficient approach for aligning LLMs to new domains using a few exemplars. The resulting model, Med-PaLM, performs encouragingly, but remains inferior to clinicians. We show that comprehension, recall of knowledge, and medical reasoning improve with model scale and instruction prompt tuning, suggesting the potential utility of LLMs in medicine. Our human evaluations reveal important limitations of today's models, reinforcing the importance of both evaluation frameworks and method development in creating safe, helpful LLM models for clinical applications.

  • 30 authors
·
Dec 26, 2022

Multimodal Sleep Stage and Sleep Apnea Classification Using Vision Transformer: A Multitask Explainable Learning Approach

Sleep is an essential component of human physiology, contributing significantly to overall health and quality of life. Accurate sleep staging and disorder detection are crucial for assessing sleep quality. Studies in the literature have proposed PSG-based approaches and machine-learning methods utilizing single-modality signals. However, existing methods often lack multimodal, multilabel frameworks and address sleep stages and disorders classification separately. In this paper, we propose a 1D-Vision Transformer for simultaneous classification of sleep stages and sleep disorders. Our method exploits the sleep disorders' correlation with specific sleep stage patterns and performs a simultaneous identification of a sleep stage and sleep disorder. The model is trained and tested using multimodal-multilabel sensory data (including photoplethysmogram, respiratory flow, and respiratory effort signals). The proposed method shows an overall accuracy (cohen's Kappa) of 78% (0.66) for five-stage sleep classification and 74% (0.58) for sleep apnea classification. Moreover, we analyzed the encoder attention weights to clarify our models' predictions and investigate the influence different features have on the models' outputs. The result shows that identified patterns, such as respiratory troughs and peaks, make a higher contribution to the final classification process.

  • 6 authors
·
Feb 18, 2025

Well-calibrated Confidence Measures for Multi-label Text Classification with a Large Number of Labels

We extend our previous work on Inductive Conformal Prediction (ICP) for multi-label text classification and present a novel approach for addressing the computational inefficiency of the Label Powerset (LP) ICP, arrising when dealing with a high number of unique labels. We present experimental results using the original and the proposed efficient LP-ICP on two English and one Czech language data-sets. Specifically, we apply the LP-ICP on three deep Artificial Neural Network (ANN) classifiers of two types: one based on contextualised (bert) and two on non-contextualised (word2vec) word-embeddings. In the LP-ICP setting we assign nonconformity scores to label-sets from which the corresponding p-values and prediction-sets are determined. Our approach deals with the increased computational burden of LP by eliminating from consideration a significant number of label-sets that will surely have p-values below the specified significance level. This reduces dramatically the computational complexity of the approach while fully respecting the standard CP guarantees. Our experimental results show that the contextualised-based classifier surpasses the non-contextualised-based ones and obtains state-of-the-art performance for all data-sets examined. The good performance of the underlying classifiers is carried on to their ICP counterparts without any significant accuracy loss, but with the added benefits of ICP, i.e. the confidence information encapsulated in the prediction sets. We experimentally demonstrate that the resulting prediction sets can be tight enough to be practically useful even though the set of all possible label-sets contains more than 1e+16 combinations. Additionally, the empirical error rates of the obtained prediction-sets confirm that our outputs are well-calibrated.

  • 6 authors
·
Dec 14, 2023

MedTrinity-25M: A Large-scale Multimodal Dataset with Multigranular Annotations for Medicine

This paper introduces MedTrinity-25M, a comprehensive, large-scale multimodal dataset for medicine, covering over 25 million images across 10 modalities, with multigranular annotations for more than 65 diseases. These enriched annotations encompass both global textual information, such as disease/lesion type, modality, region-specific descriptions, and inter-regional relationships, as well as detailed local annotations for regions of interest (ROIs), including bounding boxes, segmentation masks. Unlike existing approach which is limited by the availability of image-text pairs, we have developed the first automated pipeline that scales up multimodal data by generating multigranular visual and texual annotations (in the form of image-ROI-description triplets) without the need for any paired text descriptions. Specifically, data from over 90 different sources have been collected, preprocessed, and grounded using domain-specific expert models to identify ROIs related to abnormal regions. We then build a comprehensive knowledge base and prompt multimodal large language models to perform retrieval-augmented generation with the identified ROIs as guidance, resulting in multigranular texual descriptions. Compared to existing datasets, MedTrinity-25M provides the most enriched annotations, supporting a comprehensive range of multimodal tasks such as captioning and report generation, as well as vision-centric tasks like classification and segmentation. Pretraining on MedTrinity-25M, our model achieves state-of-the-art performance on VQA-RAD and PathVQA, surpassing both multimodal large language models and other representative SoTA approaches. This dataset can also be utilized to support large-scale pre-training of multimodal medical AI models, contributing to the development of future foundation models in the medical domain.

  • 11 authors
·
Aug 5, 2024 2

Derm1M: A Million-scale Vision-Language Dataset Aligned with Clinical Ontology Knowledge for Dermatology

The emergence of vision-language models has transformed medical AI, enabling unprecedented advances in diagnostic capability and clinical applications. However, progress in dermatology has lagged behind other medical domains due to the lack of standard image-text pairs. Existing dermatological datasets are limited in both scale and depth, offering only single-label annotations across a narrow range of diseases instead of rich textual descriptions, and lacking the crucial clinical context needed for real-world applications. To address these limitations, we present Derm1M, the first large-scale vision-language dataset for dermatology, comprising 1,029,761 image-text pairs. Built from diverse educational resources and structured around a standard ontology collaboratively developed by experts, Derm1M provides comprehensive coverage for over 390 skin conditions across four hierarchical levels and 130 clinical concepts with rich contextual information such as medical history, symptoms, and skin tone. To demonstrate Derm1M potential in advancing both AI research and clinical application, we pretrained a series of CLIP-like models, collectively called DermLIP, on this dataset. The DermLIP family significantly outperforms state-of-the-art foundation models on eight diverse datasets across multiple tasks, including zero-shot skin disease classification, clinical and artifacts concept identification, few-shot/full-shot learning, and cross-modal retrieval. Our dataset and code will be public.

Monash University
·
Mar 19, 2025 2

A Survey of Medical Vision-and-Language Applications and Their Techniques

Medical vision-and-language models (MVLMs) have attracted substantial interest due to their capability to offer a natural language interface for interpreting complex medical data. Their applications are versatile and have the potential to improve diagnostic accuracy and decision-making for individual patients while also contributing to enhanced public health monitoring, disease surveillance, and policy-making through more efficient analysis of large data sets. MVLMS integrate natural language processing with medical images to enable a more comprehensive and contextual understanding of medical images alongside their corresponding textual information. Unlike general vision-and-language models trained on diverse, non-specialized datasets, MVLMs are purpose-built for the medical domain, automatically extracting and interpreting critical information from medical images and textual reports to support clinical decision-making. Popular clinical applications of MVLMs include automated medical report generation, medical visual question answering, medical multimodal segmentation, diagnosis and prognosis and medical image-text retrieval. Here, we provide a comprehensive overview of MVLMs and the various medical tasks to which they have been applied. We conduct a detailed analysis of various vision-and-language model architectures, focusing on their distinct strategies for cross-modal integration/exploitation of medical visual and textual features. We also examine the datasets used for these tasks and compare the performance of different models based on standardized evaluation metrics. Furthermore, we highlight potential challenges and summarize future research trends and directions. The full collection of papers and codes is available at: https://github.com/YtongXie/Medical-Vision-and-Language-Tasks-and-Methodologies-A-Survey.

  • 12 authors
·
Nov 18, 2024

Prompt Tuned Embedding Classification for Multi-Label Industry Sector Allocation

Prompt Tuning is emerging as a scalable and cost-effective method to fine-tune Pretrained Language Models (PLMs), which are often referred to as Large Language Models (LLMs). This study benchmarks the performance and computational efficiency of Prompt Tuning and baselines for multi-label text classification. This is applied to the challenging task of classifying companies into an investment firm's proprietary industry taxonomy, supporting their thematic investment strategy. Text-to-text classification is frequently reported to outperform task-specific classification heads, but has several limitations when applied to a multi-label classification problem where each label consists of multiple tokens: (a) Generated labels may not match any label in the label taxonomy; (b) The fine-tuning process lacks permutation invariance and is sensitive to the order of the provided labels; (c) The model provides binary decisions rather than appropriate confidence scores. Limitation (a) is addressed by applying constrained decoding using Trie Search, which slightly improves classification performance. All limitations (a), (b), and (c) are addressed by replacing the PLM's language head with a classification head, which is referred to as Prompt Tuned Embedding Classification (PTEC). This improves performance significantly, while also reducing computational costs during inference. In our industrial application, the training data is skewed towards well-known companies. We confirm that the model's performance is consistent across both well-known and less-known companies. Our overall results indicate the continuing need to adapt state-of-the-art methods to domain-specific tasks, even in the era of PLMs with strong generalization abilities. We release our codebase and a benchmarking dataset at https://github.com/EQTPartners/PTEC.

  • 4 authors
·
Sep 21, 2023

Retrieval-augmented in-context learning for multimodal large language models in disease classification

Objectives: We aim to dynamically retrieve informative demonstrations, enhancing in-context learning in multimodal large language models (MLLMs) for disease classification. Methods: We propose a Retrieval-Augmented In-Context Learning (RAICL) framework, which integrates retrieval-augmented generation (RAG) and in-context learning (ICL) to adaptively select demonstrations with similar disease patterns, enabling more effective ICL in MLLMs. Specifically, RAICL examines embeddings from diverse encoders, including ResNet, BERT, BioBERT, and ClinicalBERT, to retrieve appropriate demonstrations, and constructs conversational prompts optimized for ICL. We evaluated the framework on two real-world multi-modal datasets (TCGA and IU Chest X-ray), assessing its performance across multiple MLLMs (Qwen, Llava, Gemma), embedding strategies, similarity metrics, and varying numbers of demonstrations. Results: RAICL consistently improved classification performance. Accuracy increased from 0.7854 to 0.8368 on TCGA and from 0.7924 to 0.8658 on IU Chest X-ray. Multi-modal inputs outperformed single-modal ones, with text-only inputs being stronger than images alone. The richness of information embedded in each modality will determine which embedding model can be used to get better results. Few-shot experiments showed that increasing the number of retrieved examples further enhanced performance. Across different similarity metrics, Euclidean distance achieved the highest accuracy while cosine similarity yielded better macro-F1 scores. RAICL demonstrated consistent improvements across various MLLMs, confirming its robustness and versatility. Conclusions: RAICL provides an efficient and scalable approach to enhance in-context learning in MLLMs for multimodal disease classification.

  • 9 authors
·
May 4, 2025

MultiMed: Massively Multimodal and Multitask Medical Understanding

Biomedical data is inherently multimodal, consisting of electronic health records, medical imaging, digital pathology, genome sequencing, wearable sensors, and more. The application of artificial intelligence tools to these multifaceted sensing technologies has the potential to revolutionize the prognosis, diagnosis, and management of human health and disease. However, current approaches to biomedical AI typically only train and evaluate with one or a small set of medical modalities and tasks. This limitation hampers the development of comprehensive tools that can leverage the rich interconnected information across many heterogeneous biomedical sensors. To address this challenge, we present MultiMed, a benchmark designed to evaluate and enable large-scale learning across a wide spectrum of medical modalities and tasks. MultiMed consists of 2.56 million samples across ten medical modalities such as medical reports, pathology, genomics, and protein data, and is structured into eleven challenging tasks, including disease prognosis, protein structure prediction, and medical question answering. Using MultiMed, we conduct comprehensive experiments benchmarking state-of-the-art unimodal, multimodal, and multitask models. Our analysis highlights the advantages of training large-scale medical models across many related modalities and tasks. Moreover, MultiMed enables studies of generalization across related medical concepts, robustness to real-world noisy data and distribution shifts, and novel modality combinations to improve prediction performance. MultiMed will be publicly available and regularly updated and welcomes inputs from the community.

  • 2 authors
·
Aug 22, 2024

Medical Concept Representation Learning from Electronic Health Records and its Application on Heart Failure Prediction

Objective: To transform heterogeneous clinical data from electronic health records into clinically meaningful constructed features using data driven method that rely, in part, on temporal relations among data. Materials and Methods: The clinically meaningful representations of medical concepts and patients are the key for health analytic applications. Most of existing approaches directly construct features mapped to raw data (e.g., ICD or CPT codes), or utilize some ontology mapping such as SNOMED codes. However, none of the existing approaches leverage EHR data directly for learning such concept representation. We propose a new way to represent heterogeneous medical concepts (e.g., diagnoses, medications and procedures) based on co-occurrence patterns in longitudinal electronic health records. The intuition behind the method is to map medical concepts that are co-occuring closely in time to similar concept vectors so that their distance will be small. We also derive a simple method to construct patient vectors from the related medical concept vectors. Results: For qualitative evaluation, we study similar medical concepts across diagnosis, medication and procedure. In quantitative evaluation, our proposed representation significantly improves the predictive modeling performance for onset of heart failure (HF), where classification methods (e.g. logistic regression, neural network, support vector machine and K-nearest neighbors) achieve up to 23% improvement in area under the ROC curve (AUC) using this proposed representation. Conclusion: We proposed an effective method for patient and medical concept representation learning. The resulting representation can map relevant concepts together and also improves predictive modeling performance.

  • 4 authors
·
Feb 11, 2016

Reddit-Impacts: A Named Entity Recognition Dataset for Analyzing Clinical and Social Effects of Substance Use Derived from Social Media

Substance use disorders (SUDs) are a growing concern globally, necessitating enhanced understanding of the problem and its trends through data-driven research. Social media are unique and important sources of information about SUDs, particularly since the data in such sources are often generated by people with lived experiences. In this paper, we introduce Reddit-Impacts, a challenging Named Entity Recognition (NER) dataset curated from subreddits dedicated to discussions on prescription and illicit opioids, as well as medications for opioid use disorder. The dataset specifically concentrates on the lesser-studied, yet critically important, aspects of substance use--its clinical and social impacts. We collected data from chosen subreddits using the publicly available Application Programming Interface for Reddit. We manually annotated text spans representing clinical and social impacts reported by people who also reported personal nonmedical use of substances including but not limited to opioids, stimulants and benzodiazepines. Our objective is to create a resource that can enable the development of systems that can automatically detect clinical and social impacts of substance use from text-based social media data. The successful development of such systems may enable us to better understand how nonmedical use of substances affects individual health and societal dynamics, aiding the development of effective public health strategies. In addition to creating the annotated data set, we applied several machine learning models to establish baseline performances. Specifically, we experimented with transformer models like BERT, and RoBERTa, one few-shot learning model DANN by leveraging the full training dataset, and GPT-3.5 by using one-shot learning, for automatic NER of clinical and social impacts. The dataset has been made available through the 2024 SMM4H shared tasks.

  • 6 authors
·
May 9, 2024

Learning in Imperfect Environment: Multi-Label Classification with Long-Tailed Distribution and Partial Labels

Conventional multi-label classification (MLC) methods assume that all samples are fully labeled and identically distributed. Unfortunately, this assumption is unrealistic in large-scale MLC data that has long-tailed (LT) distribution and partial labels (PL). To address the problem, we introduce a novel task, Partial labeling and Long-Tailed Multi-Label Classification (PLT-MLC), to jointly consider the above two imperfect learning environments. Not surprisingly, we find that most LT-MLC and PL-MLC approaches fail to solve the PLT-MLC, resulting in significant performance degradation on the two proposed PLT-MLC benchmarks. Therefore, we propose an end-to-end learning framework: COrrection rightarrow ModificatIon rightarrow balanCe, abbreviated as \method{}. Our bootstrapping philosophy is to simultaneously correct the missing labels (Correction) with convinced prediction confidence over a class-aware threshold and to learn from these recall labels during training. We next propose a novel multi-focal modifier loss that simultaneously addresses head-tail imbalance and positive-negative imbalance to adaptively modify the attention to different samples (Modification) under the LT class distribution. In addition, we develop a balanced training strategy by distilling the model's learning effect from head and tail samples, and thus design a balanced classifier (Balance) conditioned on the head and tail learning effect to maintain stable performance for all samples. Our experimental study shows that the proposed significantly outperforms general MLC, LT-MLC and PL-MLC methods in terms of effectiveness and robustness on our newly created PLT-MLC datasets.

  • 6 authors
·
Apr 20, 2023

UniME-V2: MLLM-as-a-Judge for Universal Multimodal Embedding Learning

Universal multimodal embedding models are foundational to various tasks. Existing approaches typically employ in-batch negative mining by measuring the similarity of query-candidate pairs. However, these methods often struggle to capture subtle semantic differences among candidates and lack diversity in negative samples. Moreover, the embeddings exhibit limited discriminative ability in distinguishing false and hard negatives. In this paper, we leverage the advanced understanding capabilities of MLLMs to enhance representation learning and present a novel Universal Multimodal Embedding (UniME-V2) model. Our approach first constructs a potential hard negative set through global retrieval. We then introduce the MLLM-as-a-Judge mechanism, which utilizes MLLMs to assess the semantic alignment of query-candidate pairs and generate soft semantic matching scores. These scores serve as a foundation for hard negative mining, mitigating the impact of false negatives and enabling the identification of diverse, high-quality hard negatives. Furthermore, the semantic matching scores are used as soft labels to mitigate the rigid one-to-one mapping constraint. By aligning the similarity matrix with the soft semantic matching score matrix, the model learns semantic distinctions among candidates, significantly enhancing its discriminative capacity. To further improve performance, we propose UniME-V2-Reranker, a reranking model trained on our mined hard negatives through a joint pairwise and listwise optimization approach. We conduct comprehensive experiments on the MMEB benchmark and multiple retrieval tasks, demonstrating that our method achieves state-of-the-art performance on average across all tasks.

  • 9 authors
·
Oct 15, 2025 2

Integration of Domain Knowledge using Medical Knowledge Graph Deep Learning for Cancer Phenotyping

A key component of deep learning (DL) for natural language processing (NLP) is word embeddings. Word embeddings that effectively capture the meaning and context of the word that they represent can significantly improve the performance of downstream DL models for various NLP tasks. Many existing word embeddings techniques capture the context of words based on word co-occurrence in documents and text; however, they often cannot capture broader domain-specific relationships between concepts that may be crucial for the NLP task at hand. In this paper, we propose a method to integrate external knowledge from medical terminology ontologies into the context captured by word embeddings. Specifically, we use a medical knowledge graph, such as the unified medical language system (UMLS), to find connections between clinical terms in cancer pathology reports. This approach aims to minimize the distance between connected clinical concepts. We evaluate the proposed approach using a Multitask Convolutional Neural Network (MT-CNN) to extract six cancer characteristics -- site, subsite, laterality, behavior, histology, and grade -- from a dataset of ~900K cancer pathology reports. The results show that the MT-CNN model which uses our domain informed embeddings outperforms the same MT-CNN using standard word2vec embeddings across all tasks, with an improvement in the overall micro- and macro-F1 scores by 4.97\%and 22.5\%, respectively.

  • 12 authors
·
Jan 4, 2021

Pre-training A Neural Language Model Improves The Sample Efficiency of an Emergency Room Classification Model

To build a French national electronic injury surveillance system based on emergency room visits, we aim to develop a coding system to classify their causes from clinical notes in free-text. Supervised learning techniques have shown good results in this area but require a large amount of expert annotated dataset which is time consuming and costly to obtain. We hypothesize that the Natural Language Processing Transformer model incorporating a generative self-supervised pre-training step can significantly reduce the required number of annotated samples for supervised fine-tuning. In this preliminary study, we test our hypothesis in the simplified problem of predicting whether a visit is the consequence of a traumatic event or not from free-text clinical notes. Using fully re-trained GPT-2 models (without OpenAI pre-trained weights), we assess the gain of applying a self-supervised pre-training phase with unlabeled notes prior to the supervised learning task. Results show that the number of data required to achieve a ginve level of performance (AUC>0.95) was reduced by a factor of 10 when applying pre-training. Namely, for 16 times more data, the fully-supervised model achieved an improvement <1% in AUC. To conclude, it is possible to adapt a multi-purpose neural language model such as the GPT-2 to create a powerful tool for classification of free-text notes with only a small number of labeled samples.

  • 6 authors
·
Aug 30, 2019

PhenoTagger: A Hybrid Method for Phenotype Concept Recognition using Human Phenotype Ontology

Automatic phenotype concept recognition from unstructured text remains a challenging task in biomedical text mining research. Previous works that address the task typically use dictionary-based matching methods, which can achieve high precision but suffer from lower recall. Recently, machine learning-based methods have been proposed to identify biomedical concepts, which can recognize more unseen concept synonyms by automatic feature learning. However, most methods require large corpora of manually annotated data for model training, which is difficult to obtain due to the high cost of human annotation. In this paper, we propose PhenoTagger, a hybrid method that combines both dictionary and machine learning-based methods to recognize Human Phenotype Ontology (HPO) concepts in unstructured biomedical text. We first use all concepts and synonyms in HPO to construct a dictionary, which is then used to automatically build a distantly supervised training dataset for machine learning. Next, a cutting-edge deep learning model is trained to classify each candidate phrase (n-gram from input sentence) into a corresponding concept label. Finally, the dictionary and machine learning-based prediction results are combined for improved performance. Our method is validated with two HPO corpora, and the results show that PhenoTagger compares favorably to previous methods. In addition, to demonstrate the generalizability of our method, we retrained PhenoTagger using the disease ontology MEDIC for disease concept recognition to investigate the effect of training on different ontologies. Experimental results on the NCBI disease corpus show that PhenoTagger without requiring manually annotated training data achieves competitive performance as compared with state-of-the-art supervised methods.

  • 10 authors
·
Sep 17, 2020

Structured Spectral Graph Representation Learning for Multi-label Abnormality Analysis from 3D CT Scans

With the growing volume of CT examinations, there is an increasing demand for automated tools such as organ segmentation, abnormality detection, and report generation to support radiologists in managing their clinical workload. Multi-label classification of 3D Chest CT scans remains a critical yet challenging problem due to the complex spatial relationships inherent in volumetric data and the wide variability of abnormalities. Existing methods based on 3D convolutional neural networks struggle to capture long-range dependencies, while Vision Transformers often require extensive pre-training on large-scale, domain-specific datasets to perform competitively. In this work of academic research, we propose a 2.5D alternative by introducing a new graph-based framework that represents 3D CT volumes as structured graphs, where axial slice triplets serve as nodes processed through spectral graph convolution, enabling the model to reason over inter-slice dependencies while maintaining complexity compatible with clinical deployment. Our method, trained and evaluated on 3 datasets from independent institutions, achieves strong cross-dataset generalization, and shows competitive performance compared to state-of-the-art visual encoders. We further conduct comprehensive ablation studies to evaluate the impact of various aggregation strategies, edge-weighting schemes, and graph connectivity patterns. Additionally, we demonstrate the broader applicability of our approach through transfer experiments on automated radiology report generation and abdominal CT data.

  • 4 authors
·
Oct 12, 2025

SimSUM: Simulated Benchmark with Structured and Unstructured Medical Records

Clinical information extraction, which involves structuring clinical concepts from unstructured medical text, remains a challenging problem that could benefit from the inclusion of tabular background information available in electronic health records. Existing open-source datasets lack explicit links between structured features and clinical concepts in the text, motivating the need for a new research dataset. We introduce SimSUM, a benchmark dataset of 10,000 simulated patient records that link unstructured clinical notes with structured background variables. Each record simulates a patient encounter in the domain of respiratory diseases and includes tabular data (e.g., symptoms, diagnoses, underlying conditions) generated from a Bayesian network whose structure and parameters are defined by domain experts. A large language model (GPT-4o) is prompted to generate a clinical note describing the encounter, including symptoms and relevant context. These notes are annotated with span-level symptom mentions. We conduct an expert evaluation to assess note quality and run baseline predictive models on both the tabular and textual data. The SimSUM dataset is primarily designed to support research on clinical information extraction in the presence of tabular background variables, which can be linked through domain knowledge to concepts of interest to be extracted from the text -- namely, symptoms in the case of SimSUM. Secondary uses include research on the automation of clinical reasoning over both tabular data and text, causal effect estimation in the presence of tabular and/or textual confounders, and multi-modal synthetic data generation. SimSUM is not intended for training clinical decision support systems or production-grade models, but rather to facilitate reproducible research in a simplified and controlled setting.

  • 3 authors
·
Sep 13, 2024

Towards Unified Music Emotion Recognition across Dimensional and Categorical Models

One of the most significant challenges in Music Emotion Recognition (MER) comes from the fact that emotion labels can be heterogeneous across datasets with regard to the emotion representation, including categorical (e.g., happy, sad) versus dimensional labels (e.g., valence-arousal). In this paper, we present a unified multitask learning framework that combines these two types of labels and is thus able to be trained on multiple datasets. This framework uses an effective input representation that combines musical features (i.e., key and chords) and MERT embeddings. Moreover, knowledge distillation is employed to transfer the knowledge of teacher models trained on individual datasets to a student model, enhancing its ability to generalize across multiple tasks. To validate our proposed framework, we conducted extensive experiments on a variety of datasets, including MTG-Jamendo, DEAM, PMEmo, and EmoMusic. According to our experimental results, the inclusion of musical features, multitask learning, and knowledge distillation significantly enhances performance. In particular, our model outperforms the state-of-the-art models, including the best-performing model from the MediaEval 2021 competition on the MTG-Jamendo dataset. Our work makes a significant contribution to MER by allowing the combination of categorical and dimensional emotion labels in one unified framework, thus enabling training across datasets.

  • 2 authors
·
Feb 6, 2025

CLIPSyntel: CLIP and LLM Synergy for Multimodal Question Summarization in Healthcare

In the era of modern healthcare, swiftly generating medical question summaries is crucial for informed and timely patient care. Despite the increasing complexity and volume of medical data, existing studies have focused solely on text-based summarization, neglecting the integration of visual information. Recognizing the untapped potential of combining textual queries with visual representations of medical conditions, we introduce the Multimodal Medical Question Summarization (MMQS) Dataset. This dataset, a major contribution to our work, pairs medical queries with visual aids, facilitating a richer and more nuanced understanding of patient needs. We also propose a framework, utilizing the power of Contrastive Language Image Pretraining(CLIP) and Large Language Models(LLMs), consisting of four modules that identify medical disorders, generate relevant context, filter medical concepts, and craft visually aware summaries. Our comprehensive framework harnesses the power of CLIP, a multimodal foundation model, and various general-purpose LLMs, comprising four main modules: the medical disorder identification module, the relevant context generation module, the context filtration module for distilling relevant medical concepts and knowledge, and finally, a general-purpose LLM to generate visually aware medical question summaries. Leveraging our MMQS dataset, we showcase how visual cues from images enhance the generation of medically nuanced summaries. This multimodal approach not only enhances the decision-making process in healthcare but also fosters a more nuanced understanding of patient queries, laying the groundwork for future research in personalized and responsive medical care

  • 6 authors
·
Dec 15, 2023

Comparing Rule-Based and Deep Learning Models for Patient Phenotyping

Objective: We investigate whether deep learning techniques for natural language processing (NLP) can be used efficiently for patient phenotyping. Patient phenotyping is a classification task for determining whether a patient has a medical condition, and is a crucial part of secondary analysis of healthcare data. We assess the performance of deep learning algorithms and compare them with classical NLP approaches. Materials and Methods: We compare convolutional neural networks (CNNs), n-gram models, and approaches based on cTAKES that extract pre-defined medical concepts from clinical notes and use them to predict patient phenotypes. The performance is tested on 10 different phenotyping tasks using 1,610 discharge summaries extracted from the MIMIC-III database. Results: CNNs outperform other phenotyping algorithms in all 10 tasks. The average F1-score of our model is 76 (PPV of 83, and sensitivity of 71) with our model having an F1-score up to 37 points higher than alternative approaches. We additionally assess the interpretability of our model by presenting a method that extracts the most salient phrases for a particular prediction. Conclusion: We show that NLP methods based on deep learning improve the performance of patient phenotyping. Our CNN-based algorithm automatically learns the phrases associated with each patient phenotype. As such, it reduces the annotation complexity for clinical domain experts, who are normally required to develop task-specific annotation rules and identify relevant phrases. Our method performs well in terms of both performance and interpretability, which indicates that deep learning is an effective approach to patient phenotyping based on clinicians' notes.

  • 11 authors
·
Mar 25, 2017