new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Aug 25

Decoder-Only or Encoder-Decoder? Interpreting Language Model as a Regularized Encoder-Decoder

The sequence-to-sequence (seq2seq) task aims at generating the target sequence based on the given input source sequence. Traditionally, most of the seq2seq task is resolved by the Encoder-Decoder framework which requires an encoder to encode the source sequence and a decoder to generate the target text. Recently, a bunch of new approaches have emerged that apply decoder-only language models directly to the seq2seq task. Despite the significant advancements in applying language models to the seq2seq task, there is still a lack of thorough analysis on the effectiveness of the decoder-only language model architecture. This paper aims to address this gap by conducting a detailed comparison between the encoder-decoder architecture and the decoder-only language model framework through the analysis of a regularized encoder-decoder structure. This structure is designed to replicate all behaviors in the classical decoder-only language model but has an encoder and a decoder making it easier to be compared with the classical encoder-decoder structure. Based on the analysis, we unveil the attention degeneration problem in the language model, namely, as the generation step number grows, less and less attention is focused on the source sequence. To give a quantitative understanding of this problem, we conduct a theoretical sensitivity analysis of the attention output with respect to the source input. Grounded on our analysis, we propose a novel partial attention language model to solve the attention degeneration problem. Experimental results on machine translation, summarization, and data-to-text generation tasks support our analysis and demonstrate the effectiveness of our proposed model.

Shall We Pretrain Autoregressive Language Models with Retrieval? A Comprehensive Study

Large decoder-only language models (LMs) can be largely improved in terms of perplexity by retrieval (e.g., RETRO), but its impact on text generation quality and downstream task accuracy is unclear. Thus, it is still an open question: shall we pretrain large autoregressive LMs with retrieval? To answer it, we perform a comprehensive study on a scalable pre-trained retrieval-augmented LM (i.e., RETRO) compared with standard GPT and retrieval-augmented GPT incorporated at fine-tuning or inference stages. We first provide the recipe to reproduce RETRO up to 9.5B parameters while retrieving a text corpus with 330B tokens. Based on that, we have the following novel findings: i) RETRO outperforms GPT on text generation with much less degeneration (i.e., repetition), moderately higher factual accuracy, and slightly lower toxicity with a nontoxic retrieval database. ii) On the LM Evaluation Harness benchmark, RETRO largely outperforms GPT on knowledge-intensive tasks, but is on par with GPT on other tasks. Furthermore, we introduce a simple variant of the model, RETRO++, which largely improves open-domain QA results of original RETRO (e.g., EM score +8.6 on Natural Question) and significantly outperforms retrieval-augmented GPT in both fine-tuning and zero-shot evaluation settings. Our findings highlight the promising direction of pretraining autoregressive LMs with retrieval as future foundation models. We release our implementation at: https://github.com/NVIDIA/Megatron-LM#retro.

ReAGent: Towards A Model-agnostic Feature Attribution Method for Generative Language Models

Feature attribution methods (FAs), such as gradients and attention, are widely employed approaches to derive the importance of all input features to the model predictions. Existing work in natural language processing has mostly focused on developing and testing FAs for encoder-only language models (LMs) in classification tasks. However, it is unknown if it is faithful to use these FAs for decoder-only models on text generation, due to the inherent differences between model architectures and task settings respectively. Moreover, previous work has demonstrated that there is no `one-wins-all' FA across models and tasks. This makes the selection of a FA computationally expensive for large LMs since input importance derivation often requires multiple forward and backward passes including gradient computations that might be prohibitive even with access to large compute. To address these issues, we present a model-agnostic FA for generative LMs called Recursive Attribution Generator (ReAGent). Our method updates the token importance distribution in a recursive manner. For each update, we compute the difference in the probability distribution over the vocabulary for predicting the next token between using the original input and using a modified version where a part of the input is replaced with RoBERTa predictions. Our intuition is that replacing an important token in the context should have resulted in a larger change in the model's confidence in predicting the token than replacing an unimportant token. Our method can be universally applied to any generative LM without accessing internal model weights or additional training and fine-tuning, as most other FAs require. We extensively compare the faithfulness of ReAGent with seven popular FAs across six decoder-only LMs of various sizes. The results show that our method consistently provides more faithful token importance distributions.

RedPajama: an Open Dataset for Training Large Language Models

Large language models are increasingly becoming a cornerstone technology in artificial intelligence, the sciences, and society as a whole, yet the optimal strategies for dataset composition and filtering remain largely elusive. Many of the top-performing models lack transparency in their dataset curation and model development processes, posing an obstacle to the development of fully open language models. In this paper, we identify three core data-related challenges that must be addressed to advance open-source language models. These include (1) transparency in model development, including the data curation process, (2) access to large quantities of high-quality data, and (3) availability of artifacts and metadata for dataset curation and analysis. To address these challenges, we release RedPajama-V1, an open reproduction of the LLaMA training dataset. In addition, we release RedPajama-V2, a massive web-only dataset consisting of raw, unfiltered text data together with quality signals and metadata. Together, the RedPajama datasets comprise over 100 trillion tokens spanning multiple domains and with their quality signals facilitate the filtering of data, aiming to inspire the development of numerous new datasets. To date, these datasets have already been used in the training of strong language models used in production, such as Snowflake Arctic, Salesforce's XGen and AI2's OLMo. To provide insight into the quality of RedPajama, we present a series of analyses and ablation studies with decoder-only language models with up to 1.6B parameters. Our findings demonstrate how quality signals for web data can be effectively leveraged to curate high-quality subsets of the dataset, underscoring the potential of RedPajama to advance the development of transparent and high-performing language models at scale.

GEM: Empowering LLM for both Embedding Generation and Language Understanding

Large decoder-only language models (LLMs) have achieved remarkable success in generation and reasoning tasks, where they generate text responses given instructions. However, many applications, e.g., retrieval augmented generation (RAG), still rely on separate embedding models to generate text embeddings, which can complicate the system and introduce discrepancies in understanding of the query between the embedding model and LLMs. To address this limitation, we propose a simple self-supervised approach, Generative Embedding large language Model (GEM), that enables any large decoder-only LLM to generate high-quality text embeddings while maintaining its original text generation and reasoning capabilities. Our method inserts new special token(s) into a text body, and generates summarization embedding of the text by manipulating the attention mask. This method could be easily integrated into post-training or fine tuning stages of any existing LLMs. We demonstrate the effectiveness of our approach by applying it to two popular LLM families, ranging from 1B to 8B parameters, and evaluating the transformed models on both text embedding benchmarks (MTEB) and NLP benchmarks (MMLU). The results show that our proposed method significantly improves the original LLMs on MTEB while having a minimal impact on MMLU. Our strong results indicate that our approach can empower LLMs with state-of-the-art text embedding capabilities while maintaining their original NLP performance

Return of the Encoder: Maximizing Parameter Efficiency for SLMs

The dominance of large decoder-only language models has overshadowed encoder-decoder architectures, despite their fundamental efficiency advantages in sequence processing. For small language models (SLMs) - those with 1 billion parameters or fewer - our systematic analysis across GPU, CPU, and NPU platforms reveals that encoder-decoder architectures achieve 47% lower first-token latency and 4.7x higher throughput compared to decoder-only models on edge devices. These gains may be attributed to encoder-decoder's one-time input processing and efficient separation of understanding and generation phases. We introduce a novel knowledge distillation framework that enables encoder-decoder models to leverage capabilities from large scalable decoder-only teachers while preserving their architectural advantages, achieving up to 6 average performance points improvement across diverse tasks, with significant gains in asymmetric sequence tasks where input and output distributions can benefit from different processing approaches. When combined with modern advances like Rotary Positional Embeddings (RoPE) and Vision encoders, our systematic investigation demonstrates that encoder-decoder architectures provide a more practical path toward deploying capable language models in resource-constrained environments. Our findings challenge the prevailing trend toward decoder-only scaling, showing that architectural choices become increasingly crucial as parameter budgets decrease, particularly for on-device and edge deployments where computational efficiency is paramount.

Seq vs Seq: An Open Suite of Paired Encoders and Decoders

The large language model (LLM) community focuses almost exclusively on decoder-only language models, since they are easier to use for text generation. However, a large subset of the community still uses encoder-only models for tasks such as classification or retrieval. Previous work has attempted to compare these architectures, but is forced to make comparisons with models that have different numbers of parameters, training techniques, and datasets. We introduce the SOTA open-data Ettin suite of models: paired encoder-only and decoder-only models ranging from 17 million parameters to 1 billion, trained on up to 2 trillion tokens. Using the same recipe for both encoder-only and decoder-only models produces SOTA recipes in both categories for their respective sizes, beating ModernBERT as an encoder and Llama 3.2 and SmolLM2 as decoders. Like previous work, we find that encoder-only models excel at classification and retrieval tasks while decoders excel at generative tasks. However, we show that adapting a decoder model to encoder tasks (and vice versa) through continued training is subpar compared to using only the reverse objective (i.e. a 400M encoder outperforms a 1B decoder on MNLI, and vice versa for generative tasks). We open-source all artifacts of this study including training data, training order segmented by checkpoint, and 200+ checkpoints to allow future work to analyze or extend all aspects of training.

Entropy-Guided Attention for Private LLMs

The pervasiveness of proprietary language models has raised critical privacy concerns, necessitating advancements in private inference (PI), where computations are performed directly on encrypted data without revealing users' sensitive information. While PI offers a promising solution, its practical deployment is hindered by substantial communication and latency overheads, primarily stemming from nonlinear operations. To address this, we introduce an information-theoretic framework to characterize the role of nonlinearities in decoder-only language models, laying a principled foundation for optimizing transformer-architectures tailored to the demands of PI. By leveraging Shannon's entropy as a quantitative measure, we uncover the previously unexplored dual significance of nonlinearities: beyond ensuring training stability, they are crucial for maintaining attention head diversity. Specifically, we find that their removal triggers two critical failure modes: {\em entropy collapse} in deeper layers that destabilizes training, and {\em entropic overload} in earlier layers that leads to under-utilization of Multi-Head Attention's (MHA) representational capacity. We propose an entropy-guided attention mechanism paired with a novel entropy regularization technique to mitigate entropic overload. Additionally, we explore PI-friendly alternatives to layer normalization for preventing entropy collapse and stabilizing the training of LLMs with reduced-nonlinearities. Our study bridges the gap between information theory and architectural design, establishing entropy dynamics as a principled guide for developing efficient PI architectures. The code and implementation are available at https://github.com/Nandan91/entropy-guided-attention-llm{entropy-guided-llm}.

Re-Reading Improves Reasoning in Language Models

Reasoning presents a significant and challenging issue for Large Language Models (LLMs). The predominant focus of research has revolved around developing diverse prompting strategies to guide and structure the reasoning processes of LLMs. However, these approaches based on decoder-only causal language models often operate the input question in a single forward pass, potentially missing the rich, back-and-forth interactions inherent in human reasoning. Scant attention has been paid to a critical dimension, i.e., the input question itself embedded within the prompts. In response, we introduce a deceptively simple yet highly effective prompting strategy, termed question "re-reading". Drawing inspiration from human learning and problem-solving, re-reading entails revisiting the question information embedded within input prompts. This approach aligns seamlessly with the cognitive principle of reinforcement, enabling LLMs to extract deeper insights, identify intricate patterns, establish more nuanced connections, and ultimately enhance their reasoning capabilities across various tasks. Experiments conducted on a series of reasoning benchmarks serve to underscore the effectiveness and generality of our method. Moreover, our findings demonstrate that our approach seamlessly integrates with various language models, though-eliciting prompting methods, and ensemble techniques, further underscoring its versatility and compatibility in the realm of LLMs.

Encoder-Decoder Gemma: Improving the Quality-Efficiency Trade-Off via Adaptation

While decoder-only large language models (LLMs) have shown impressive results, encoder-decoder models are still widely adopted in real-world applications for their inference efficiency and richer encoder representation. In this paper, we study a novel problem: adapting pretrained decoder-only LLMs to encoder-decoder, with the goal of leveraging the strengths of both approaches to achieve a more favorable quality-efficiency trade-off. We argue that adaptation not only enables inheriting the capability of decoder-only LLMs but also reduces the demand for computation compared to pretraining from scratch. We rigorously explore different pretraining objectives and parameter initialization/optimization techniques. Through extensive experiments based on Gemma 2 (2B and 9B) and a suite of newly pretrained mT5-sized models (up to 1.6B), we demonstrate the effectiveness of adaptation and the advantage of encoder-decoder LLMs. Under similar inference budget, encoder-decoder LLMs achieve comparable (often better) pretraining performance but substantially better finetuning performance than their decoder-only counterpart. For example, Gemma 2B-2B outperforms Gemma 2B by sim7\% after instruction tuning. Encoder-decoder adaptation also allows for flexible combination of different-sized models, where Gemma 9B-2B significantly surpasses Gemma 2B-2B by >3\%. The adapted encoder representation also yields better results on SuperGLUE. We will release our checkpoints to facilitate future research.

Bridging Code Semantic and LLMs: Semantic Chain-of-Thought Prompting for Code Generation

Large language models (LLMs) have showcased remarkable prowess in code generation. However, automated code generation is still challenging since it requires a high-level semantic mapping between natural language requirements and codes. Most existing LLMs-based approaches for code generation rely on decoder-only causal language models often treate codes merely as plain text tokens, i.e., feeding the requirements as a prompt input, and outputing code as flat sequence of tokens, potentially missing the rich semantic features inherent in source code. To bridge this gap, this paper proposes the "Semantic Chain-of-Thought" approach to intruduce semantic information of code, named SeCoT. Our motivation is that the semantic information of the source code (\eg data flow and control flow) describes more precise program execution behavior, intention and function. By guiding LLM consider and integrate semantic information, we can achieve a more granular understanding and representation of code, enhancing code generation accuracy. Meanwhile, while traditional techniques leveraging such semantic information require complex static or dynamic code analysis to obtain features such as data flow and control flow, SeCoT demonstrates that this process can be fully automated via the intrinsic capabilities of LLMs (i.e., in-context learning), while being generalizable and applicable to challenging domains. While SeCoT can be applied with different LLMs, this paper focuses on the powerful GPT-style models: ChatGPT(close-source model) and WizardCoder(open-source model). The experimental study on three popular DL benchmarks (i.e., HumanEval, HumanEval-ET and MBPP) shows that SeCoT can achieves state-of-the-art performance, greatly improving the potential for large models and code generation.

Salamandra Technical Report

This work introduces Salamandra, a suite of open-source decoder-only large language models available in three different sizes: 2, 7, and 40 billion parameters. The models were trained from scratch on highly multilingual data that comprises text in 35 European languages and code. Our carefully curated corpus is made exclusively from open-access data compiled from a wide variety of sources. Along with the base models, supplementary checkpoints that were fine-tuned on public-domain instruction data are also released for chat applications. Additionally, we also share our preliminary experiments on multimodality, which serve as proof-of-concept to showcase potential applications for the Salamandra family. Our extensive evaluations on multilingual benchmarks reveal that Salamandra has strong capabilities, achieving competitive performance when compared to similarly sized open-source models. We provide comprehensive evaluation results both on standard downstream tasks as well as key aspects related to bias and safety.With this technical report, we intend to promote open science by sharing all the details behind our design choices, data curation strategy and evaluation methodology. In addition to that, we deviate from the usual practice by making our training and evaluation scripts publicly accessible. We release all models under a permissive Apache 2.0 license in order to foster future research and facilitate commercial use, thereby contributing to the open-source ecosystem of large language models.

Multimodal Mamba: Decoder-only Multimodal State Space Model via Quadratic to Linear Distillation

Recent Multimodal Large Language Models (MLLMs) have achieved remarkable performance but face deployment challenges due to their quadratic computational complexity, growing Key-Value cache requirements, and reliance on separate vision encoders. We propose mmMamba, a framework for developing linear-complexity native multimodal state space models through progressive distillation from existing MLLMs using moderate academic computational resources. Our approach enables the direct conversion of trained decoder-only MLLMs to linear-complexity architectures without requiring pre-trained RNN-based LLM or vision encoders. We propose an seeding strategy to carve Mamba from trained Transformer and a three-stage distillation recipe, which can effectively transfer the knowledge from Transformer to Mamba while preserving multimodal capabilities. Our method also supports flexible hybrid architectures that combine Transformer and Mamba layers for customizable efficiency-performance trade-offs. Distilled from the Transformer-based decoder-only HoVLE, mmMamba-linear achieves competitive performance against existing linear and quadratic-complexity VLMs, while mmMamba-hybrid further improves performance significantly, approaching HoVLE's capabilities. At 103K tokens, mmMamba-linear demonstrates 20.6times speedup and 75.8% GPU memory reduction compared to HoVLE, while mmMamba-hybrid achieves 13.5times speedup and 60.2% memory savings. Code and models are released at https://github.com/hustvl/mmMamba

Decoder-Only LLMs are Better Controllers for Diffusion Models

Groundbreaking advancements in text-to-image generation have recently been achieved with the emergence of diffusion models. These models exhibit a remarkable ability to generate highly artistic and intricately detailed images based on textual prompts. However, obtaining desired generation outcomes often necessitates repetitive trials of manipulating text prompts just like casting spells on a magic mirror, and the reason behind that is the limited capability of semantic understanding inherent in current image generation models. Specifically, existing diffusion models encode the text prompt input with a pre-trained encoder structure, which is usually trained on a limited number of image-caption pairs. The state-of-the-art large language models (LLMs) based on the decoder-only structure have shown a powerful semantic understanding capability as their architectures are more suitable for training on very large-scale unlabeled data. In this work, we propose to enhance text-to-image diffusion models by borrowing the strength of semantic understanding from large language models, and devise a simple yet effective adapter to allow the diffusion models to be compatible with the decoder-only structure. Meanwhile, we also provide a supporting theoretical analysis with various architectures (e.g., encoder-only, encoder-decoder, and decoder-only), and conduct extensive empirical evaluations to verify its effectiveness. The experimental results show that the enhanced models with our adapter module are superior to the stat-of-the-art models in terms of text-to-image generation quality and reliability.

SteloCoder: a Decoder-Only LLM for Multi-Language to Python Code Translation

With the recent focus on Large Language Models (LLMs), both StarCoder (Li et al., 2023) and Code Llama (Rozi\`ere et al., 2023) have demonstrated remarkable performance in code generation. However, there is still a need for improvement in code translation functionality with efficient training techniques. In response to this, we introduce SteloCoder, a decoder-only StarCoder-based LLM designed specifically for multi-programming language-to-Python code translation. In particular, SteloCoder achieves C++, C#, JavaScript, Java, or PHP-to-Python code translation without specifying the input programming language. We modified StarCoder model architecture by incorporating a Mixture-of-Experts (MoE) technique featuring five experts and a gating network for multi-task handling. Experts are obtained by StarCoder fine-tuning. Specifically, we use a Low-Rank Adaptive Method (LoRA) technique, limiting each expert size as only 0.06% of number of StarCoder's parameters. At the same time, to enhance training efficiency in terms of time, we adopt curriculum learning strategy and use self-instruct data for efficient fine-tuning. As a result, each expert takes only 6 hours to train on one single 80Gb A100 HBM. With experiments on XLCoST datasets, SteloCoder achieves an average of 73.76 CodeBLEU score in multi-programming language-to-Python translation, surpassing the top performance from the leaderboard by at least 3.5. This accomplishment is attributed to only 45M extra parameters with StarCoder as the backbone and 32 hours of valid training on one 80GB A100 HBM. The source code is release here: https://github.com/sade-adrien/SteloCoder.

Exploring the Role of Large Language Models in Prompt Encoding for Diffusion Models

Large language models (LLMs) based on decoder-only transformers have demonstrated superior text understanding capabilities compared to CLIP and T5-series models. However, the paradigm for utilizing current advanced LLMs in text-to-image diffusion models remains to be explored. We observed an unusual phenomenon: directly using a large language model as the prompt encoder significantly degrades the prompt-following ability in image generation. We identified two main obstacles behind this issue. One is the misalignment between the next token prediction training in LLM and the requirement for discriminative prompt features in diffusion models. The other is the intrinsic positional bias introduced by the decoder-only architecture. To deal with this issue, we propose a novel framework to fully harness the capabilities of LLMs. Through the carefully designed usage guidance, we effectively enhance the text representation capability for prompt encoding and eliminate its inherent positional bias. This allows us to integrate state-of-the-art LLMs into the text-to-image generation model flexibly. Furthermore, we also provide an effective manner to fuse multiple LLMs into our framework. Considering the excellent performance and scaling capabilities demonstrated by the transformer architecture, we further design an LLM-Infused Diffusion Transformer (LI-DiT) based on the framework. We conduct extensive experiments to validate LI-DiT across model size and data size. Benefiting from the inherent ability of the LLMs and our innovative designs, the prompt understanding performance of LI-DiT easily surpasses state-of-the-art open-source models as well as mainstream closed-source commercial models including Stable Diffusion 3, DALL-E 3, and Midjourney V6. The powerful LI-DiT-10B will be available after further optimization and security checks.

Masking in Multi-hop QA: An Analysis of How Language Models Perform with Context Permutation

Multi-hop Question Answering (MHQA) adds layers of complexity to question answering, making it more challenging. When Language Models (LMs) are prompted with multiple search results, they are tasked not only with retrieving relevant information but also employing multi-hop reasoning across the information sources. Although LMs perform well on traditional question-answering tasks, the causal mask can hinder their capacity to reason across complex contexts. In this paper, we explore how LMs respond to multi-hop questions by permuting search results (retrieved documents) under various configurations. Our study reveals interesting findings as follows: 1) Encoder-decoder models, such as the ones in the Flan-T5 family, generally outperform causal decoder-only LMs in MHQA tasks, despite being significantly smaller in size; 2) altering the order of gold documents reveals distinct trends in both Flan T5 models and fine-tuned decoder-only models, with optimal performance observed when the document order aligns with the reasoning chain order; 3) enhancing causal decoder-only models with bi-directional attention by modifying the causal mask can effectively boost their end performance. In addition to the above, we conduct a thorough investigation of the distribution of LM attention weights in the context of MHQA. Our experiments reveal that attention weights tend to peak at higher values when the resulting answer is correct. We leverage this finding to heuristically improve LMs' performance on this task. Our code is publicly available at https://github.com/hwy9855/MultiHopQA-Reasoning.

Sparsing Law: Towards Large Language Models with Greater Activation Sparsity

Activation sparsity denotes the existence of substantial weakly-contributed elements within activation outputs that can be eliminated, benefiting many important applications concerned with large language models (LLMs). Although promoting greater activation sparsity within LLMs deserves deep studies, existing works lack comprehensive and quantitative research on the correlation between activation sparsity and potentially influential factors. In this paper, we present a comprehensive study on the quantitative scaling properties and influential factors of the activation sparsity within decoder-only Transformer-based LLMs. Specifically, we propose PPL-p% sparsity, a precise and performance-aware activation sparsity metric that is applicable to any activation function. Through extensive experiments, we find several important phenomena. Firstly, different activation functions exhibit comparable performance but opposite training-time sparsity trends. The activation ratio (i.e., 1-sparsity ratio) evolves as a convergent increasing power-law and decreasing logspace power-law with the amount of training data for SiLU-activated and ReLU-activated LLMs, respectively. These demonstrate that ReLU is more efficient as the activation function than SiLU and can leverage more training data to improve activation sparsity. Secondly, the activation ratio linearly increases with the width-depth ratio below a certain bottleneck point, indicating the potential advantage of a deeper architecture at a fixed parameter scale. Finally, at similar width-depth ratios, we surprisingly find that the limit value of activation sparsity varies weakly with the parameter scale, i.e., the activation patterns within LLMs are insensitive to the parameter scale. These empirical laws towards LLMs with greater activation sparsity have important implications for making LLMs more efficient and interpretable.

AutoTimes: Autoregressive Time Series Forecasters via Large Language Models

Foundation models of time series have not been fully developed due to the limited availability of time series corpora and the underexploration of scalable pre-training. Based on the similar sequential formulation of time series and natural language, increasing research demonstrates the feasibility of leveraging large language models (LLM) for time series. Nevertheless, the inherent autoregressive property and decoder-only architecture of LLMs have not been fully considered, resulting in insufficient utilization of LLM abilities. To fully revitalize the general-purpose token transition and multi-step generation capability of large language models, we propose AutoTimes to repurpose LLMs as autoregressive time series forecasters, which projects time series into the embedding space of language tokens and autoregressively generates future predictions with arbitrary lengths. Compatible with any decoder-only LLMs, the consequent forecaster exhibits the flexibility of the lookback length and scalability with larger LLMs. Further, we formulate time series as prompts, extending the context for prediction beyond the lookback window, termed in-context forecasting. By introducing LLM-embedded textual timestamps, AutoTimes can utilize chronological information to align multivariate time series. Empirically, AutoTimes achieves state-of-the-art with 0.1% trainable parameters and over 5times training/inference speedup compared to advanced LLM-based forecasters. Code is available at this repository: https://github.com/thuml/AutoTimes.

Improving the Language Understanding Capabilities of Large Language Models Using Reinforcement Learning

Large language models (LLMs), built on decoder-only transformers, excel in natural language generation and adapt to diverse tasks using zero-shot and few-shot prompting. However, these prompting methods often struggle on natural language understanding (NLU) tasks, where encoder-only models like BERT-base outperform LLMs on benchmarks like GLUE and SuperGLUE. This paper explores two approaches-supervised fine-tuning (SFT) and proximal policy optimization (PPO)-to enhance LLMs' NLU abilities. To reduce the cost of full-model fine-tuning, we integrate low-rank adaptation (LoRA) layers, limiting updates to these layers during both SFT and PPO. In SFT, task-specific prompts are concatenated with input queries and ground-truth labels, optimizing with next-token prediction. Despite this, LLMs still underperform compared to models like BERT-base on several NLU tasks. To close this gap, we apply PPO, a reinforcement learning technique that treats each token generation as an action and uses a reward function based on alignment with ground-truth answers. PPO then updates the model to maximize these rewards, aligning outputs with correct labels. Our experiments with LLAMA2-7B show that PPO improves performance, with a 6.3-point gain over SFT on GLUE. PPO exceeds zero-shot by 38.7 points and few-shot by 26.1 points on GLUE, while surpassing these by 28.8 and 28.5 points on SuperGLUE. Additionally, PPO outperforms BERT-large by 2.7 points on GLUE and 9.3 points on SuperGLUE. The improvements are consistent across models like Qwen2.5-7B and MPT-7B, highlighting PPO's robustness in enhancing LLMs' NLU capabilities.

Large Language Models and Control Mechanisms Improve Text Readability of Biomedical Abstracts

Biomedical literature often uses complex language and inaccessible professional terminologies. That is why simplification plays an important role in improving public health literacy. Applying Natural Language Processing (NLP) models to automate such tasks allows for quick and direct accessibility for lay readers. In this work, we investigate the ability of state-of-the-art large language models (LLMs) on the task of biomedical abstract simplification, using the publicly available dataset for plain language adaptation of biomedical abstracts (PLABA). The methods applied include domain fine-tuning and prompt-based learning (PBL) on: 1) Encoder-decoder models (T5, SciFive, and BART), 2) Decoder-only GPT models (GPT-3.5 and GPT-4) from OpenAI and BioGPT, and 3) Control-token mechanisms on BART-based models. We used a range of automatic evaluation metrics, including BLEU, ROUGE, SARI, and BERTscore, and also conducted human evaluations. BART-Large with Control Token (BART-L-w-CT) mechanisms reported the highest SARI score of 46.54 and T5-base reported the highest BERTscore 72.62. In human evaluation, BART-L-w-CTs achieved a better simplicity score over T5-Base (2.9 vs. 2.2), while T5-Base achieved a better meaning preservation score over BART-L-w-CTs (3.1 vs. 2.6). We also categorised the system outputs with examples, hoping this will shed some light for future research on this task. Our code, fine-tuned models, and data splits are available at https://github.com/HECTA-UoM/PLABA-MU

Unveiling Encoder-Free Vision-Language Models

Existing vision-language models (VLMs) mostly rely on vision encoders to extract visual features followed by large language models (LLMs) for visual-language tasks. However, the vision encoders set a strong inductive bias in abstracting visual representation, e.g., resolution, aspect ratio, and semantic priors, which could impede the flexibility and efficiency of the VLMs. Training pure VLMs that accept the seamless vision and language inputs, i.e., without vision encoders, remains challenging and rarely explored. Empirical observations reveal that direct training without encoders results in slow convergence and large performance gaps. In this work, we bridge the gap between encoder-based and encoder-free models, and present a simple yet effective training recipe towards pure VLMs. Specifically, we unveil the key aspects of training encoder-free VLMs efficiently via thorough experiments: (1) Bridging vision-language representation inside one unified decoder; (2) Enhancing visual recognition capability via extra supervision. With these strategies, we launch EVE, an encoder-free vision-language model that can be trained and forwarded efficiently. Notably, solely utilizing 35M publicly accessible data, EVE can impressively rival the encoder-based VLMs of similar capacities across multiple vision-language benchmarks. It significantly outperforms the counterpart Fuyu-8B with mysterious training procedures and undisclosed training data. We believe that EVE provides a transparent and efficient route for developing a pure decoder-only architecture across modalities. Our code and models are publicly available at: https://github.com/baaivision/EVE.

CodeT5+: Open Code Large Language Models for Code Understanding and Generation

Large language models (LLMs) pretrained on vast source code have achieved prominent progress in code intelligence. However, existing code LLMs have two main limitations in terms of architecture and pretraining tasks. First, they often adopt a specific architecture (encoder-only or decoder-only) or rely on a unified encoder-decoder network for different downstream tasks. The former paradigm is limited by inflexibility in applications while in the latter, the model is treated as a single system for all tasks, leading to suboptimal performance on a subset of tasks. Secondly, they often employ a limited set of pretraining objectives which might not be relevant to some downstream tasks and hence result in substantial performance degrade. To address these limitations, we propose ``CodeT5+'', a family of encoder-decoder LLMs for code in which component modules can be flexibly combined to suit a wide range of downstream code tasks. Such flexibility is enabled by our proposed mixture of pretraining objectives to mitigate the pretrain-finetune discrepancy. These objectives cover span denoising, contrastive learning, text-code matching, and causal LM pretraining tasks, on both unimodal and bimodal multilingual code corpora. Furthermore, we propose to initialize CodeT5+ with frozen off-the-shelf LLMs without training from scratch to efficiently scale up our models, and explore instruction-tuning to align with natural language instructions. We extensively evaluate CodeT5+ on over 20 code-related benchmarks in different settings, including zero-shot, finetuning, and instruction-tuning. We observe state-of-the-art (SoTA) model performance on various code-related tasks, such as code generation and completion, math programming, and text-to-code retrieval tasks. Particularly, our instruction-tuned CodeT5+ 16B achieves new SoTA results on HumanEval code generation task against other open code LLMs.

OpenMoE: An Early Effort on Open Mixture-of-Experts Language Models

To help the open-source community have a better understanding of Mixture-of-Experts (MoE) based large language models (LLMs), we train and release OpenMoE, a series of fully open-sourced and reproducible decoder-only MoE LLMs, ranging from 650M to 34B parameters and trained on up to over 1T tokens. Our investigation confirms that MoE-based LLMs can offer a more favorable cost-effectiveness trade-off than dense LLMs, highlighting the potential effectiveness for future LLM development. One more important contribution of this study is an in-depth analysis of the routing mechanisms within our OpenMoE models, leading to three significant findings: Context-Independent Specialization, Early Routing Learning, and Drop-towards-the-End. We discovered that routing decisions in MoE models are predominantly based on token IDs, with minimal context relevance. The token-to-expert assignments are determined early in the pre-training phase and remain largely unchanged. This imperfect routing can result in performance degradation, particularly in sequential tasks like multi-turn conversations, where tokens appearing later in a sequence are more likely to be dropped. Finally, we rethink our design based on the above-mentioned observations and analysis. To facilitate future MoE LLM development, we propose potential strategies for mitigating the issues we found and further improving off-the-shelf MoE LLM designs.

Fourier Head: Helping Large Language Models Learn Complex Probability Distributions

As the quality of large language models has improved, there has been increased interest in using them to model non-linguistic tokens. For example, the Decision Transformer recasts agentic decision making as a sequence modeling problem, using a decoder-only LLM to model the distribution over the discrete action space for an Atari agent. However, when adapting LLMs to non-linguistic domains, it remains unclear if softmax over discrete bins captures the continuous structure of the tokens and the potentially complex distributions needed for high quality token generation. We introduce a neural network layer, constructed using Fourier series, which we can easily substitute for any linear layer if we want the outputs to have a more continuous structure. We perform extensive analysis on synthetic datasets, as well as on large-scale decision making and time series forecasting tasks. We also provide theoretical evidence that this layer can better learn signal from data while ignoring high-frequency noise. All of our results support the effectiveness of our proposed Fourier head in scenarios where the underlying data distribution has a natural continuous structure. For example, the Fourier head improves a Decision Transformer agent's returns by 46% on the Atari Seaquest game, and increases a state-of-the-art times series foundation model's forecasting performance by 3.5% across 20 benchmarks unseen during training.

TarGEN: Targeted Data Generation with Large Language Models

The rapid advancement of large language models (LLMs) has sparked interest in data synthesis techniques, aiming to generate diverse and high-quality synthetic datasets. However, these synthetic datasets often suffer from a lack of diversity and added noise. In this paper, we present TarGEN, a multi-step prompting strategy for generating high-quality synthetic datasets utilizing a LLM. An advantage of TarGEN is its seedless nature; it does not require specific task instances, broadening its applicability beyond task replication. We augment TarGEN with a method known as self-correction empowering LLMs to rectify inaccurately labeled instances during dataset creation, ensuring reliable labels. To assess our technique's effectiveness, we emulate 8 tasks from the SuperGLUE benchmark and finetune various language models, including encoder-only, encoder-decoder, and decoder-only models on both synthetic and original training sets. Evaluation on the original test set reveals that models trained on datasets generated by TarGEN perform approximately 1-2% points better than those trained on original datasets (82.84% via syn. vs. 81.12% on og. using Flan-T5). When incorporating instruction tuning, the performance increases to 84.54% on synthetic data vs. 81.49% on original data by Flan-T5. A comprehensive analysis of the synthetic dataset compared to the original dataset reveals that the synthetic dataset demonstrates similar or higher levels of dataset complexity and diversity. Furthermore, the synthetic dataset displays a bias level that aligns closely with the original dataset. Finally, when pre-finetuned on our synthetic SuperGLUE dataset, T5-3B yields impressive results on the OpenLLM leaderboard, surpassing the model trained on the Self-Instruct dataset by 4.14% points. We hope that TarGEN can be helpful for quality data generation and reducing the human efforts to create complex benchmarks.

Adapting LLaMA Decoder to Vision Transformer

This work examines whether decoder-only Transformers such as LLaMA, which were originally designed for large language models (LLMs), can be adapted to the computer vision field. We first "LLaMAfy" a standard ViT step-by-step to align with LLaMA's architecture, and find that directly applying a casual mask to the self-attention brings an attention collapse issue, resulting in the failure to the network training. We suggest to reposition the class token behind the image tokens with a post-sequence class token technique to overcome this challenge, enabling causal self-attention to efficiently capture the entire image's information. Additionally, we develop a soft mask strategy that gradually introduces a casual mask to the self-attention at the onset of training to facilitate the optimization behavior. The tailored model, dubbed as image LLaMA (iLLaMA), is akin to LLaMA in architecture and enables direct supervised learning. Its causal self-attention boosts computational efficiency and learns complex representation by elevating attention map ranks. iLLaMA rivals the performance with its encoder-only counterparts, achieving 75.1% ImageNet top-1 accuracy with only 5.7M parameters. Scaling the model to ~310M and pre-training on ImageNet-21K further enhances the accuracy to 86.0%. Extensive experiments demonstrate iLLaMA's reliable properties: calibration, shape-texture bias, quantization compatibility, ADE20K segmentation and CIFAR transfer learning. We hope our study can kindle fresh views to visual model design in the wave of LLMs. Pre-trained models and codes are available here.

No More Adam: Learning Rate Scaling at Initialization is All You Need

In this work, we question the necessity of adaptive gradient methods for training deep neural networks. SGD-SaI is a simple yet effective enhancement to stochastic gradient descent with momentum (SGDM). SGD-SaI performs learning rate Scaling at Initialization (SaI) to distinct parameter groups, guided by their respective gradient signal-to-noise ratios (g-SNR). By adjusting learning rates without relying on adaptive second-order momentum, SGD-SaI helps prevent training imbalances from the very first iteration and cuts the optimizer's memory usage by half compared to AdamW. Despite its simplicity and efficiency, SGD-SaI consistently matches or outperforms AdamW in training a variety of Transformer-based tasks, effectively overcoming a long-standing challenge of using SGD for training Transformers. SGD-SaI excels in ImageNet-1K classification with Vision Transformers(ViT) and GPT-2 pretraining for large language models (LLMs, transformer decoder-only), demonstrating robustness to hyperparameter variations and practicality for diverse applications. We further tested its robustness on tasks like LoRA fine-tuning for LLMs and diffusion models, where it consistently outperforms state-of-the-art optimizers. From a memory efficiency perspective, SGD-SaI achieves substantial memory savings for optimizer states, reducing memory usage by 5.93 GB for GPT-2 (1.5B parameters) and 25.15 GB for Llama2-7B compared to AdamW in full-precision training settings.

Flacuna: Unleashing the Problem Solving Power of Vicuna using FLAN Fine-Tuning

Recently, the release of INSTRUCTEVAL has provided valuable insights into the performance of large language models (LLMs) that utilize encoder-decoder or decoder-only architecture. Interestingly, despite being introduced four years ago, T5-based LLMs, such as FLAN-T5, continue to outperform the latest decoder-based LLMs, such as LLAMA and VICUNA, on tasks that require general problem-solving skills. This performance discrepancy can be attributed to three key factors: (1) Pre-training data, (2) Backbone architecture, and (3) Instruction dataset. In this technical report, our main focus is on investigating the impact of the third factor by leveraging VICUNA, a large language model based on LLAMA, which has undergone fine-tuning on ChatGPT conversations. To achieve this objective, we fine-tuned VICUNA using a customized instruction dataset collection called FLANMINI. This collection includes a subset of the large-scale instruction dataset known as FLAN, as well as various code-related datasets and conversational datasets derived from ChatGPT/GPT-4. This dataset comprises a large number of tasks that demand problem-solving skills. Our experimental findings strongly indicate that the enhanced problem-solving abilities of our model, FLACUNA, are obtained through fine-tuning VICUNA on the FLAN dataset, leading to significant improvements across numerous benchmark datasets in INSTRUCTEVAL. FLACUNA is publicly available at https://huggingface.co/declare-lab/flacuna-13b-v1.0.

Robust Pronoun Fidelity with English LLMs: Are they Reasoning, Repeating, or Just Biased?

Robust, faithful and harm-free pronoun use for individuals is an important goal for language models as their use increases, but prior work tends to study only one or two of these characteristics at a time. To measure progress towards the combined goal, we introduce the task of pronoun fidelity: given a context introducing a co-referring entity and pronoun, the task is to reuse the correct pronoun later. We present RUFF, a carefully-designed dataset of over 5 million instances to measure robust pronoun fidelity in English, and we evaluate 37 popular large language models across architectures (encoder-only, decoder-only and encoder-decoder) and scales (11M-70B parameters). When an individual is introduced with a pronoun, models can mostly faithfully reuse this pronoun in the next sentence, but they are significantly worse with she/her/her, singular they and neopronouns. Moreover, models are easily distracted by non-adversarial sentences discussing other people; even one additional sentence with a distractor pronoun causes accuracy to drop on average by 34%. Our results show that pronoun fidelity is neither robust, nor due to reasoning, in a simple, naturalistic setting where humans achieve nearly 100% accuracy. We encourage researchers to bridge the gaps we find and to carefully evaluate reasoning in settings where superficial repetition might inflate perceptions of model performance.

Generating Images with Multimodal Language Models

We propose a method to fuse frozen text-only large language models (LLMs) with pre-trained image encoder and decoder models, by mapping between their embedding spaces. Our model demonstrates a wide suite of multimodal capabilities: image retrieval, novel image generation, and multimodal dialogue. Ours is the first approach capable of conditioning on arbitrarily interleaved image and text inputs to generate coherent image (and text) outputs. To achieve strong performance on image generation, we propose an efficient mapping network to ground the LLM to an off-the-shelf text-to-image generation model. This mapping network translates hidden representations of text into the embedding space of the visual models, enabling us to leverage the strong text representations of the LLM for visual outputs. Our approach outperforms baseline generation models on tasks with longer and more complex language. In addition to novel image generation, our model is also capable of image retrieval from a prespecified dataset, and decides whether to retrieve or generate at inference time. This is done with a learnt decision module which conditions on the hidden representations of the LLM. Our model exhibits a wider range of capabilities compared to prior multimodal language models. It can process image-and-text inputs, and produce retrieved images, generated images, and generated text -- outperforming non-LLM based generation models across several text-to-image tasks that measure context dependence.

NV-Embed: Improved Techniques for Training LLMs as Generalist Embedding Models

Decoder-only large language model (LLM)-based embedding models are beginning to outperform BERT or T5-based embedding models in general-purpose text embedding tasks, including dense vector-based retrieval. In this work, we introduce the NV-Embed model with a variety of architectural designs and training procedures to significantly enhance the performance of LLM as a versatile embedding model, while maintaining its simplicity and reproducibility. For model architecture, we propose a latent attention layer to obtain pooled embeddings, which consistently improves retrieval and downstream task accuracy compared to mean pooling or using the last <EOS> token embedding from LLMs. To enhance representation learning, we remove the causal attention mask of LLMs during contrastive training. For model training, we introduce a two-stage contrastive instruction-tuning method. It first applies contrastive training with instructions on retrieval datasets, utilizing in-batch negatives and curated hard negative examples. At stage-2, it blends various non-retrieval datasets into instruction tuning, which not only enhances non-retrieval task accuracy but also improves retrieval performance. Combining these techniques, our NV-Embed model, using only publicly available data, has achieved a record-high score of 69.32, ranking No. 1 on the Massive Text Embedding Benchmark (MTEB) (as of May 24, 2024), with 56 tasks, encompassing retrieval, reranking, classification, clustering, and semantic textual similarity tasks. Notably, our model also attains the highest score of 59.36 on 15 retrieval tasks in the MTEB benchmark (also known as BEIR). We will open-source the model at: https://huggingface.co/nvidia/NV-Embed-v1.

HybriDNA: A Hybrid Transformer-Mamba2 Long-Range DNA Language Model

Advances in natural language processing and large language models have sparked growing interest in modeling DNA, often referred to as the "language of life". However, DNA modeling poses unique challenges. First, it requires the ability to process ultra-long DNA sequences while preserving single-nucleotide resolution, as individual nucleotides play a critical role in DNA function. Second, success in this domain requires excelling at both generative and understanding tasks: generative tasks hold potential for therapeutic and industrial applications, while understanding tasks provide crucial insights into biological mechanisms and diseases. To address these challenges, we propose HybriDNA, a decoder-only DNA language model that incorporates a hybrid Transformer-Mamba2 architecture, seamlessly integrating the strengths of attention mechanisms with selective state-space models. This hybrid design enables HybriDNA to efficiently process DNA sequences up to 131kb in length with single-nucleotide resolution. HybriDNA achieves state-of-the-art performance across 33 DNA understanding datasets curated from the BEND, GUE, and LRB benchmarks, and demonstrates exceptional capability in generating synthetic cis-regulatory elements (CREs) with desired properties. Furthermore, we show that HybriDNA adheres to expected scaling laws, with performance improving consistently as the model scales from 300M to 3B and 7B parameters. These findings underscore HybriDNA's versatility and its potential to advance DNA research and applications, paving the way for innovations in understanding and engineering the "language of life".

MatFormer: Nested Transformer for Elastic Inference

Transformer models are deployed in a wide range of settings, from multi-accelerator clusters to standalone mobile phones. The diverse inference constraints in these scenarios necessitate practitioners to train foundation models such as PaLM 2, Llama, & ViTs as a series of models of varying sizes. Due to significant training costs, only a select few model sizes are trained and supported, limiting more fine-grained control over relevant tradeoffs, including latency, cost, and accuracy. This work introduces MatFormer, a nested Transformer architecture designed to offer elasticity in a variety of deployment constraints. Each Feed Forward Network (FFN) block of a MatFormer model is jointly optimized with a few nested smaller FFN blocks. This training procedure allows for the Mix'n'Match of model granularities across layers -- i.e., a trained universal MatFormer model enables extraction of hundreds of accurate smaller models, which were never explicitly optimized. We empirically demonstrate MatFormer's effectiveness across different model classes (decoders & encoders), modalities (language & vision), and scales (up to 2.6B parameters). We find that a 2.6B decoder-only MatFormer language model (MatLM) allows us to extract smaller models spanning from 1.5B to 2.6B, each exhibiting comparable validation loss and one-shot downstream evaluations to their independently trained counterparts. Furthermore, we observe that smaller encoders extracted from a universal MatFormer-based ViT (MatViT) encoder preserve the metric-space structure for adaptive large-scale retrieval. Finally, we showcase that speculative decoding with the accurate and consistent submodels extracted from MatFormer can further reduce inference latency.

Youku-mPLUG: A 10 Million Large-scale Chinese Video-Language Dataset for Pre-training and Benchmarks

To promote the development of Vision-Language Pre-training (VLP) and multimodal Large Language Model (LLM) in the Chinese community, we firstly release the largest public Chinese high-quality video-language dataset named Youku-mPLUG, which is collected from Youku, a well-known Chinese video-sharing website, with strict criteria of safety, diversity, and quality. Youku-mPLUG contains 10 million Chinese video-text pairs filtered from 400 million raw videos across a wide range of 45 diverse categories for large-scale pre-training. In addition, to facilitate a comprehensive evaluation of video-language models, we carefully build the largest human-annotated Chinese benchmarks covering three popular video-language tasks of cross-modal retrieval, video captioning, and video category classification. Youku-mPLUG can enable researchers to conduct more in-depth multimodal research and develop better applications in the future. Furthermore, we release popular video-language pre-training models, ALPRO and mPLUG-2, and our proposed modularized decoder-only model mPLUG-video pre-trained on Youku-mPLUG. Experiments show that models pre-trained on Youku-mPLUG gain up to 23.1% improvement in video category classification. Besides, mPLUG-video achieves a new state-of-the-art result on these benchmarks with 80.5% top-1 accuracy in video category classification and 68.9 CIDEr score in video captioning, respectively. Finally, we scale up mPLUG-video based on the frozen Bloomz with only 1.7% trainable parameters as Chinese multimodal LLM, and demonstrate impressive instruction and video understanding ability. The zero-shot instruction understanding experiment indicates that pretraining with Youku-mPLUG can enhance the ability to comprehend overall and detailed visual semantics, recognize scene text, and leverage open-domain knowledge.

Decoder Pre-Training with only Text for Scene Text Recognition

Scene text recognition (STR) pre-training methods have achieved remarkable progress, primarily relying on synthetic datasets. However, the domain gap between synthetic and real images poses a challenge in acquiring feature representations that align well with images on real scenes, thereby limiting the performance of these methods. We note that vision-language models like CLIP, pre-trained on extensive real image-text pairs, effectively align images and text in a unified embedding space, suggesting the potential to derive the representations of real images from text alone. Building upon this premise, we introduce a novel method named Decoder Pre-training with only text for STR (DPTR). DPTR treats text embeddings produced by the CLIP text encoder as pseudo visual embeddings and uses them to pre-train the decoder. An Offline Randomized Perturbation (ORP) strategy is introduced. It enriches the diversity of text embeddings by incorporating natural image embeddings extracted from the CLIP image encoder, effectively directing the decoder to acquire the potential representations of real images. In addition, we introduce a Feature Merge Unit (FMU) that guides the extracted visual embeddings focusing on the character foreground within the text image, thereby enabling the pre-trained decoder to work more efficiently and accurately. Extensive experiments across various STR decoders and language recognition tasks underscore the broad applicability and remarkable performance of DPTR, providing a novel insight for STR pre-training. Code is available at https://github.com/Topdu/OpenOCR

It's All in The [MASK]: Simple Instruction-Tuning Enables BERT-like Masked Language Models As Generative Classifiers

While encoder-only models such as BERT and ModernBERT are ubiquitous in real-world NLP applications, their conventional reliance on task-specific classification heads can limit their applicability compared to decoder-based large language models (LLMs). In this work, we introduce ModernBERT-Large-Instruct, a 0.4B-parameter encoder model that leverages its masked language modelling (MLM) head for generative classification. Our approach employs an intentionally simple training loop and inference mechanism that requires no heavy pre-processing, heavily engineered prompting, or architectural modifications. ModernBERT-Large-Instruct exhibits strong zero-shot performance on both classification and knowledge-based tasks, outperforming similarly sized LLMs on MMLU and achieving 93% of Llama3-1B's MMLU performance with 60% less parameters. We also demonstrate that, when fine-tuned, the generative approach using the MLM head matches or even surpasses traditional classification-head methods across diverse NLU tasks.This capability emerges specifically in models trained on contemporary, diverse data mixes, with models trained on lower volume, less-diverse data yielding considerably weaker performance. Although preliminary, these results demonstrate the potential of using the original generative masked language modelling head over traditional task-specific heads for downstream tasks. Our work suggests that further exploration into this area is warranted, highlighting many avenues for future improvements.

OWSM-CTC: An Open Encoder-Only Speech Foundation Model for Speech Recognition, Translation, and Language Identification

There has been an increasing interest in large speech models that can perform multiple speech processing tasks in a single model. Such models usually adopt the encoder-decoder or decoder-only architecture due to their popularity and good performance in many domains. However, autoregressive models can be slower during inference compared to non-autoregressive models and also have potential risks of hallucination. Though prior studies observed promising results of non-autoregressive models for certain tasks at small scales, it remains unclear if they can be scaled to speech-to-text generation in diverse languages and tasks. Inspired by the Open Whisper-style Speech Model (OWSM) project, we propose OWSM-CTC, a novel encoder-only speech foundation model based on Connectionist Temporal Classification (CTC). It is trained on 180k hours of public audio data for multilingual automatic speech recognition (ASR), speech translation (ST), and language identification (LID). Compared to encoder-decoder OWSM, our OWSM-CTC achieves competitive results on ASR and up to 25% relative improvement on ST, while it is more robust and 3 to 4 times faster for inference. OWSM-CTC also improves the long-form ASR result with 20x speed-up. We will publicly release our codebase, pre-trained model, and training logs to promote open science in speech foundation models.

Exploring Large Language Models for Classical Philology

Recent advances in NLP have led to the creation of powerful language models for many languages including Ancient Greek and Latin. While prior work on Classical languages unanimously uses BERT, in this work we create four language models for Ancient Greek that vary along two dimensions to study their versatility for tasks of interest for Classical languages: we explore (i) encoder-only and encoder-decoder architectures using RoBERTa and T5 as strong model types, and create for each of them (ii) a monolingual Ancient Greek and a multilingual instance that includes Latin and English. We evaluate all models on morphological and syntactic tasks, including lemmatization, which demonstrates the added value of T5's decoding abilities. We further define two probing tasks to investigate the knowledge acquired by models pre-trained on Classical texts. Our experiments provide the first benchmarking analysis of existing models of Ancient Greek. Results show that our models provide significant improvements over the SoTA. The systematic analysis of model types can inform future research in designing language models for Classical languages, including the development of novel generative tasks. We make all our models available as community resources, along with a large curated pre-training corpus for Ancient Greek, to support the creation of a larger, comparable model zoo for Classical Philology. Our models and resources are available at https://github.com/Heidelberg-NLP/ancient-language-models.

Future Token Prediction -- Causal Language Modelling with Per-Token Semantic State Vector for Multi-Token Prediction

Causal decoder-only transformer models used for generative language modelling, such as Generative Pre-trained Transformers (GPT), are trained to predict the next token in a sequence based only on its previous tokens. Despite this simple training objective, they have proved to be powerful AI tools. However, only predicting the next token results in top layer embedding vectors that are highly token-focused. There may be benefits in generating embedding vectors at each token position that better capture the overall meaning of longer sequences of future text. Recent studies matching brain scans with deep language models suggest that humans also predict upcoming words when listening or reading but consider multiple future tokens rather than just one. This research investigates a new pretraining method called Future Token Prediction (FTP). In FTP, a large transformer encoder generates top layer embedding vectors for each token position, which, instead of being passed to a language head, are linearly and expansively projected to a pseudo-sequence, which is cross attended to by a small transformer decoder to predict the next N tokens forward from that position in the sequence. The top layer embedding vectors from FTP models exhibit distinct properties compared to those from standard GPT models, varying smoothly along a text sequence as measured by cosine similarity between adjacent tokens. Text generated by FTP models show improved topic coherence compared to standard GPT-like models trained with the same prediction perplexity for the next single token. The vectors are shown to better represent the topic of text based on the results of text classification examples. On a toy, but complex, coding problem, FTP networks produce significantly better results than GPT networks.

What Language Model Architecture and Pretraining Objective Work Best for Zero-Shot Generalization?

Large pretrained Transformer language models have been shown to exhibit zero-shot generalization, i.e. they can perform a wide variety of tasks that they were not explicitly trained on. However, the architectures and pretraining objectives used across state-of-the-art models differ significantly, and there has been limited systematic comparison of these factors. In this work, we present a large-scale evaluation of modeling choices and their impact on zero-shot generalization. In particular, we focus on text-to-text models and experiment with three model architectures (causal/non-causal decoder-only and encoder-decoder), trained with two different pretraining objectives (autoregressive and masked language modeling), and evaluated with and without multitask prompted finetuning. We train models with over 5 billion parameters for more than 170 billion tokens, thereby increasing the likelihood that our conclusions will transfer to even larger scales. Our experiments show that causal decoder-only models trained on an autoregressive language modeling objective exhibit the strongest zero-shot generalization after purely unsupervised pretraining. However, models with non-causal visibility on their input trained with a masked language modeling objective followed by multitask finetuning perform the best among our experiments. We therefore consider the adaptation of pretrained models across architectures and objectives. We find that pretrained non-causal decoder models can be adapted into performant generative causal decoder models, using autoregressive language modeling as a downstream task. Furthermore, we find that pretrained causal decoder models can be efficiently adapted into non-causal decoder models, ultimately achieving competitive performance after multitask finetuning. Code and checkpoints are available at https://github.com/bigscience-workshop/architecture-objective.

Towards a Unified Language Model for Knowledge-Intensive Tasks Utilizing External Corpus

The advent of large language models (LLMs) has showcased their efficacy across various domains, yet they often hallucinate, especially in knowledge-intensive tasks that require external knowledge sources. To improve factual accuracy of language models, retrieval-augmented generation (RAG) has emerged as a popular solution. However, traditional retrieval modules often rely on large-scale document indexes, which can be disconnected from generative tasks. Through generative retrieval (GR) approach, language models can achieve superior retrieval performance by directly generating relevant document identifiers (DocIDs). However, the relationship between GR and downstream tasks, as well as the potential of LLMs in GR, remains unexplored. In this paper, we present a unified language model that utilizes external corpus to handle various knowledge-intensive tasks by seamlessly integrating generative retrieval, closed-book generation, and RAG. In order to achieve effective retrieval and generation through a unified continuous decoding process, we introduce the following mechanisms: (1) a ranking-oriented DocID decoding strategy, which improves ranking ability by directly learning from a DocID ranking list; (2) a continuous generation strategy to facilitate effective and efficient RAG; (3) well-designed auxiliary DocID understanding tasks to enhance the model's comprehension of DocIDs and their relevance to downstream tasks. Our approach is evaluated on the widely used KILT benchmark using two variants of backbone models: an encoder-decoder T5 model and a decoder-only LLM, Llama2. Experimental results showcase the superior performance of our models in both retrieval and downstream knowledge-intensive tasks.

MLP Memory: Language Modeling with Retriever-pretrained External Memory

While modern decoder-only LLMs achieve superior performance across various domains, hallucinations have risen to be a common problem in their generated text, hindering their application in knowledge-intensive tasks. Retriever-augmented generation (RAG) offers a solution, but the non-parametric nature of the retriever hinders its deep interaction with LLM. In this work, we propose to decouple memorization from the LLM decoder using a pretrained, differentiable external memory. The external memory is an MLP pretrained by imitating the behavior of a retriever on the entire pretraining dataset. Our resulting architecture, which comprises a transformer decoder and an external MLP memory pretrained on language modeling and retriever imitation respectively, demonstrates strong perplexity and performance on downstream tasks. Experiments show our architecture exhibits steeper power-law scaling with model size, achieving 17.5% and 24.1% improvement on WikiText-103 and Web datasets compared to decoder-only models while benefiting from added training without overfitting. We demonstrate superior performance on three hallucination benchmarks and nine memory-intensive tasks. Additionally, our approach delivers 80times speedup over kNN-LM (500M tokens) and 1.3times faster inference than decoder-only models. Unlike kNN-LM, which impairs reasoning, our MLP memory improves StrategyQA performance. We will open-source our code and models in the future.

Making the Most of your Model: Methods for Finetuning and Applying Pretrained Transformers

This thesis provides methods and analysis of models which make progress on this goal. The techniques outlined are task agnostic, and should provide benefit when used with nearly any transformer LM. We introduce two new finetuning methods which add new capabilities to the models they are used on. The first adds a recurrence mechanism, which removes the fixed-window sized constraint and improves the efficiency of a transformer decoder. The second allows masked language models (MLMs) to be used for initialization of both the encoder and decoder of a non-autoregressive sequence-to-sequence transformer, opening up generative applications of models which were previously only used for natural language understanding tasks. We also introduce two new techniques for improving the quality of predictions of any transformer decoder without additional finetuning. One, hidden state optimization, can be applied to any transformer decoder to improve the quality of predictions at inference time, especially for few-shot classification. The other, conditional beam search, allows practitioners to search for natural language generation (NLG) model outputs with high likelihood while conditioning on the event that the output is not degenerate (e.g. empty, repetitive, etc.). Finally, we provide theoretical and empirical insights on the divergence of model-likelihood and output quality which has widely been observed in prior work. These insights apply to any model which represents a distribution over text, and apply to language models which are not transformers or even autoregressive. We argue that the NLP community has, to some extent, misunderstood the implications of these findings, and encourage a point of view which has more nuance.

Lumina-mGPT: Illuminate Flexible Photorealistic Text-to-Image Generation with Multimodal Generative Pretraining

We present Lumina-mGPT, a family of multimodal autoregressive models capable of various vision and language tasks, particularly excelling in generating flexible photorealistic images from text descriptions. Unlike existing autoregressive image generation approaches, Lumina-mGPT employs a pretrained decoder-only transformer as a unified framework for modeling multimodal token sequences. Our key insight is that a simple decoder-only transformer with multimodal Generative PreTraining (mGPT), utilizing the next-token prediction objective on massive interleaved text-image sequences, can learn broad and general multimodal capabilities, thereby illuminating photorealistic text-to-image generation. Building on these pretrained models, we propose Flexible Progressive Supervised Finetuning (FP-SFT) on high-quality image-text pairs to fully unlock their potential for high-aesthetic image synthesis at any resolution while maintaining their general multimodal capabilities. Furthermore, we introduce Ominiponent Supervised Finetuning (Omni-SFT), transforming Lumina-mGPT into a foundation model that seamlessly achieves omnipotent task unification. The resulting model demonstrates versatile multimodal capabilities, including visual generation tasks like flexible text-to-image generation and controllable generation, visual recognition tasks like segmentation and depth estimation, and vision-language tasks like multiturn visual question answering. Additionally, we analyze the differences and similarities between diffusion-based and autoregressive methods in a direct comparison.

BEAST: Efficient Tokenization of B-Splines Encoded Action Sequences for Imitation Learning

We present the B-spline Encoded Action Sequence Tokenizer (BEAST), a novel action tokenizer that encodes action sequences into compact discrete or continuous tokens using B-splines. In contrast to existing action tokenizers based on vector quantization or byte pair encoding, BEAST requires no separate tokenizer training and consistently produces tokens of uniform length, enabling fast action sequence generation via parallel decoding. Leveraging our B-spline formulation, BEAST inherently ensures generating smooth trajectories without discontinuities between adjacent segments. We extensively evaluate BEAST by integrating it with three distinct model architectures: a Variational Autoencoder (VAE) with continuous tokens, a decoder-only Transformer with discrete tokens, and Florence-2, a pretrained Vision-Language Model with an encoder-decoder architecture, demonstrating BEAST's compatibility and scalability with large pretrained models. We evaluate BEAST across three established benchmarks consisting of 166 simulated tasks and on three distinct robot settings with a total of 8 real-world tasks. Experimental results demonstrate that BEAST (i) significantly reduces both training and inference computational costs, and (ii) consistently generates smooth, high-frequency control signals suitable for continuous control tasks while (iii) reliably achieves competitive task success rates compared to state-of-the-art methods.

Mistral-SPLADE: LLMs for better Learned Sparse Retrieval

Learned Sparse Retrievers (LSR) have evolved into an effective retrieval strategy that can bridge the gap between traditional keyword-based sparse retrievers and embedding-based dense retrievers. At its core, learned sparse retrievers try to learn the most important semantic keyword expansions from a query and/or document which can facilitate better retrieval with overlapping keyword expansions. LSR like SPLADE has typically been using encoder only models with MLM (masked language modeling) style objective in conjunction with known ways of retrieval performance improvement such as hard negative mining, distillation, etc. In this work, we propose to use decoder-only model for learning semantic keyword expansion. We posit, decoder only models that have seen much higher magnitudes of data are better equipped to learn keyword expansions needed for improved retrieval. We use Mistral as the backbone to develop our Learned Sparse Retriever similar to SPLADE and train it on a subset of sentence-transformer data which is often used for training text embedding models. Our experiments support the hypothesis that a sparse retrieval model based on decoder only large language model (LLM) surpasses the performance of existing LSR systems, including SPLADE and all its variants. The LLM based model (Echo-Mistral-SPLADE) now stands as a state-of-the-art learned sparse retrieval model on the BEIR text retrieval benchmark.

LG-ANNA-Embedding technical report

This report presents a unified instruction-based framework for learning generalized text embeddings optimized for both information retrieval (IR) and non-IR tasks. Built upon a decoder-only large language model (Mistral-7B), our approach combines in-context learning, soft supervision, and adaptive hard-negative mining to generate context-aware embeddings without task-specific fine-tuning. Structured instructions and few-shot examples are used to guide the model across diverse tasks, enabling strong performance on classification, semantic similarity, clustering, and reranking benchmarks. To improve semantic discrimination, we employ a soft labeling framework where continuous relevance scores, distilled from a high-performance dense retriever and reranker, serve as fine-grained supervision signals. In addition, we introduce adaptive margin-based hard-negative mining, which filters out semantically ambiguous negatives based on their similarity to positive examples, thereby enhancing training stability and retrieval robustness. Our model is evaluated on the newly introduced MTEB (English, v2) benchmark, covering 41 tasks across seven categories. Results show that our method achieves strong generalization and ranks among the top-performing models by Borda score, outperforming several larger or fully fine-tuned baselines. These findings highlight the effectiveness of combining in-context prompting, soft supervision, and adaptive sampling for scalable, high-quality embedding generation.

Language Model Can Listen While Speaking

Dialogue serves as the most natural manner of human-computer interaction (HCI). Recent advancements in speech language models (SLM) have significantly enhanced speech-based conversational AI. However, these models are limited to turn-based conversation, lacking the ability to interact with humans in real-time spoken scenarios, for example, being interrupted when the generated content is not satisfactory. To address these limitations, we explore full duplex modeling (FDM) in interactive speech language models (iSLM), focusing on enhancing real-time interaction and, more explicitly, exploring the quintessential ability of interruption. We introduce a novel model design, namely listening-while-speaking language model (LSLM), an end-to-end system equipped with both listening and speaking channels. Our LSLM employs a token-based decoder-only TTS for speech generation and a streaming self-supervised learning (SSL) encoder for real-time audio input. LSLM fuses both channels for autoregressive generation and detects turn-taking in real time. Three fusion strategies -- early fusion, middle fusion, and late fusion -- are explored, with middle fusion achieving an optimal balance between speech generation and real-time interaction. Two experimental settings, command-based FDM and voice-based FDM, demonstrate LSLM's robustness to noise and sensitivity to diverse instructions. Our results highlight LSLM's capability to achieve duplex communication with minimal impact on existing systems. This study aims to advance the development of interactive speech dialogue systems, enhancing their applicability in real-world contexts.

Efficient Long-Range Transformers: You Need to Attend More, but Not Necessarily at Every Layer

Pretrained transformer models have demonstrated remarkable performance across various natural language processing tasks. These models leverage the attention mechanism to capture long- and short-range dependencies in the sequence. However, the (full) attention mechanism incurs high computational cost - quadratic in the sequence length, which is not affordable in tasks with long sequences, e.g., inputs with 8k tokens. Although sparse attention can be used to improve computational efficiency, as suggested in existing work, it has limited modeling capacity and often fails to capture complicated dependencies in long sequences. To tackle this challenge, we propose MASFormer, an easy-to-implement transformer variant with Mixed Attention Spans. Specifically, MASFormer is equipped with full attention to capture long-range dependencies, but only at a small number of layers. For the remaining layers, MASformer only employs sparse attention to capture short-range dependencies. Our experiments on natural language modeling and generation tasks show that a decoder-only MASFormer model of 1.3B parameters can achieve competitive performance to vanilla transformers with full attention while significantly reducing computational cost (up to 75%). Additionally, we investigate the effectiveness of continual training with long sequence data and how sequence length impacts downstream generation performance, which may be of independent interest.

DrBERT: Unveiling the Potential of Masked Language Modeling Decoder in BERT pretraining

BERT (Bidirectional Encoder Representations from Transformers) has revolutionized the field of natural language processing through its exceptional performance on numerous tasks. Yet, the majority of researchers have mainly concentrated on enhancements related to the model structure, such as relative position embedding and more efficient attention mechanisms. Others have delved into pretraining tricks associated with Masked Language Modeling, including whole word masking. DeBERTa introduced an enhanced decoder adapted for BERT's encoder model for pretraining, proving to be highly effective. We argue that the design and research around enhanced masked language modeling decoders have been underappreciated. In this paper, we propose several designs of enhanced decoders and introduce DrBERT (Decoder-refined BERT), a novel method for modeling training. Typically, a pretrained BERT model is fine-tuned for specific Natural Language Understanding (NLU) tasks. In our approach, we utilize the original BERT model as the encoder, making only changes to the decoder without altering the encoder. This approach does not necessitate extensive modifications to the model's architecture and can be seamlessly integrated into existing fine-tuning pipelines and services, offering an efficient and effective enhancement strategy. Compared to other methods, while we also incur a moderate training cost for the decoder during the pretraining process, our approach does not introduce additional training costs during the fine-tuning phase. We test multiple enhanced decoder structures after pretraining and evaluate their performance on the GLUE benchmark. Our results demonstrate that DrBERT, having only undergone subtle refinements to the model structure during pretraining, significantly enhances model performance without escalating the inference time and serving budget.

Granite Code Models: A Family of Open Foundation Models for Code Intelligence

Large Language Models (LLMs) trained on code are revolutionizing the software development process. Increasingly, code LLMs are being integrated into software development environments to improve the productivity of human programmers, and LLM-based agents are beginning to show promise for handling complex tasks autonomously. Realizing the full potential of code LLMs requires a wide range of capabilities, including code generation, fixing bugs, explaining and documenting code, maintaining repositories, and more. In this work, we introduce the Granite series of decoder-only code models for code generative tasks, trained with code written in 116 programming languages. The Granite Code models family consists of models ranging in size from 3 to 34 billion parameters, suitable for applications ranging from complex application modernization tasks to on-device memory-constrained use cases. Evaluation on a comprehensive set of tasks demonstrates that Granite Code models consistently reaches state-of-the-art performance among available open-source code LLMs. The Granite Code model family was optimized for enterprise software development workflows and performs well across a range of coding tasks (e.g. code generation, fixing and explanation), making it a versatile all around code model. We release all our Granite Code models under an Apache 2.0 license for both research and commercial use.

Kimi-VL Technical Report

We present Kimi-VL, an efficient open-source Mixture-of-Experts (MoE) vision-language model (VLM) that offers advanced multimodal reasoning, long-context understanding, and strong agent capabilities - all while activating only 2.8B parameters in its language decoder (Kimi-VL-A3B). Kimi-VL demonstrates strong performance across challenging domains: as a general-purpose VLM, Kimi-VL excels in multi-turn agent tasks (e.g., OSWorld), matching flagship models. Furthermore, it exhibits remarkable capabilities across diverse challenging vision language tasks, including college-level image and video comprehension, OCR, mathematical reasoning, and multi-image understanding. In comparative evaluations, it effectively competes with cutting-edge efficient VLMs such as GPT-4o-mini, Qwen2.5-VL-7B, and Gemma-3-12B-IT, while surpassing GPT-4o in several key domains. Kimi-VL also advances in processing long contexts and perceiving clearly. With a 128K extended context window, Kimi-VL can process diverse long inputs, achieving impressive scores of 64.5 on LongVideoBench and 35.1 on MMLongBench-Doc. Its native-resolution vision encoder, MoonViT, further allows it to see and understand ultra-high-resolution visual inputs, achieving 83.2 on InfoVQA and 34.5 on ScreenSpot-Pro, while maintaining lower computational cost for common tasks. Building upon Kimi-VL, we introduce an advanced long-thinking variant: Kimi-VL-Thinking. Developed through long chain-of-thought (CoT) supervised fine-tuning (SFT) and reinforcement learning (RL), this model exhibits strong long-horizon reasoning capabilities. It achieves scores of 61.7 on MMMU, 36.8 on MathVision, and 71.3 on MathVista while maintaining the compact 2.8B activated LLM parameters, setting a new standard for efficient multimodal thinking models. Code and models are publicly accessible at https://github.com/MoonshotAI/Kimi-VL.