Create README.md
Browse files
    	
        README.md
    ADDED
    
    | 
         @@ -0,0 +1,58 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            ---
         
     | 
| 2 | 
         
            +
            pipeline_tag: visual-question-answering
         
     | 
| 3 | 
         
            +
            ---
         
     | 
| 4 | 
         
            +
             
     | 
| 5 | 
         
            +
            ## MiniCPM-V 2.6 int4
         
     | 
| 6 | 
         
            +
            This is the int4 quantized version of [MiniCPM-V 2.6](https://huggingface.co/openbmb/MiniCPM-V-2_6).   
         
     | 
| 7 | 
         
            +
            Running with int4 version would use lower GPU memory (about 7GB).
         
     | 
| 8 | 
         
            +
             
     | 
| 9 | 
         
            +
             
     | 
| 10 | 
         
            +
            ## Usage
         
     | 
| 11 | 
         
            +
            Inference using Huggingface transformers on NVIDIA GPUs. Requirements tested on python 3.10:
         
     | 
| 12 | 
         
            +
            ```
         
     | 
| 13 | 
         
            +
            Pillow==10.1.0
         
     | 
| 14 | 
         
            +
            torch==2.1.2
         
     | 
| 15 | 
         
            +
            torchvision==0.16.2
         
     | 
| 16 | 
         
            +
            transformers==4.40.0
         
     | 
| 17 | 
         
            +
            sentencepiece==0.1.99
         
     | 
| 18 | 
         
            +
            accelerate==0.30.1
         
     | 
| 19 | 
         
            +
            bitsandbytes==0.43.1
         
     | 
| 20 | 
         
            +
            ```
         
     | 
| 21 | 
         
            +
             
     | 
| 22 | 
         
            +
            ```python
         
     | 
| 23 | 
         
            +
            # test.py
         
     | 
| 24 | 
         
            +
            import torch
         
     | 
| 25 | 
         
            +
            from PIL import Image
         
     | 
| 26 | 
         
            +
            from transformers import AutoModel, AutoTokenizer
         
     | 
| 27 | 
         
            +
             
     | 
| 28 | 
         
            +
            model = AutoModel.from_pretrained('openbmb/MiniCPM-V-2_6-int4', trust_remote_code=True)
         
     | 
| 29 | 
         
            +
            tokenizer = AutoTokenizer.from_pretrained('openbmb/MiniCPM-V-2_6-int4', trust_remote_code=True)
         
     | 
| 30 | 
         
            +
            model.eval()
         
     | 
| 31 | 
         
            +
             
     | 
| 32 | 
         
            +
            image = Image.open('xx.jpg').convert('RGB')
         
     | 
| 33 | 
         
            +
            question = 'What is in the image?'
         
     | 
| 34 | 
         
            +
            msgs = [{'role': 'user', 'content': [image, question]}]
         
     | 
| 35 | 
         
            +
             
     | 
| 36 | 
         
            +
            res = model.chat(
         
     | 
| 37 | 
         
            +
                image=None,
         
     | 
| 38 | 
         
            +
                msgs=msgs,
         
     | 
| 39 | 
         
            +
                tokenizer=tokenizer
         
     | 
| 40 | 
         
            +
            )
         
     | 
| 41 | 
         
            +
            print(res)
         
     | 
| 42 | 
         
            +
             
     | 
| 43 | 
         
            +
            ## if you want to use streaming, please make sure sampling=True and stream=True
         
     | 
| 44 | 
         
            +
            ## the model.chat will return a generator
         
     | 
| 45 | 
         
            +
            res = model.chat(
         
     | 
| 46 | 
         
            +
                image=None,
         
     | 
| 47 | 
         
            +
                msgs=msgs,
         
     | 
| 48 | 
         
            +
                tokenizer=tokenizer,
         
     | 
| 49 | 
         
            +
                sampling=True,
         
     | 
| 50 | 
         
            +
                temperature=0.7,
         
     | 
| 51 | 
         
            +
                stream=True
         
     | 
| 52 | 
         
            +
            )
         
     | 
| 53 | 
         
            +
             
     | 
| 54 | 
         
            +
            generated_text = ""
         
     | 
| 55 | 
         
            +
            for new_text in res:
         
     | 
| 56 | 
         
            +
                generated_text += new_text
         
     | 
| 57 | 
         
            +
                print(new_text, flush=True, end='')
         
     | 
| 58 | 
         
            +
            ```
         
     |