1
		
	commited on
		
		
					Commit 
							
							·
						
						75f07f8
	
1
								Parent(s):
							
							c4424af
								
init
Browse files- 1_Pooling/config.json +10 -0
 - README.md +0 -0
 - added_tokens.json +10 -0
 - config.json +110 -0
 - config_sentence_transformers.json +9 -0
 - configuration_minicpm.py +206 -0
 - model.safetensors +3 -0
 - modeling_minicpm.py +1806 -0
 - modules.json +20 -0
 - results/dense.md +0 -0
 - results/dense_sparse.md +0 -0
 - results/sparse.md +0 -0
 - scripts/flagembedding_demo.py +27 -0
 - scripts/infinity_demo.py +24 -0
 - scripts/sentence_transformers_demo.py +20 -0
 - scripts/test_mteb.py +475 -0
 - scripts/transformers_demo.py +26 -0
 - sentence_bert_config.json +3 -0
 - special_tokens_map.json +40 -0
 - tokenizer.model +3 -0
 - tokenizer_config.json +116 -0
 
    	
        1_Pooling/config.json
    ADDED
    
    | 
         @@ -0,0 +1,10 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            {
         
     | 
| 2 | 
         
            +
                "word_embedding_dimension": 1024,
         
     | 
| 3 | 
         
            +
                "pooling_mode_cls_token": false,
         
     | 
| 4 | 
         
            +
                "pooling_mode_mean_tokens": true,
         
     | 
| 5 | 
         
            +
                "pooling_mode_max_tokens": false,
         
     | 
| 6 | 
         
            +
                "pooling_mode_mean_sqrt_len_tokens": false,
         
     | 
| 7 | 
         
            +
                "pooling_mode_weightedmean_tokens": false,
         
     | 
| 8 | 
         
            +
                "pooling_mode_lasttoken": false,
         
     | 
| 9 | 
         
            +
                "include_prompt": true
         
     | 
| 10 | 
         
            +
              }
         
     | 
    	
        README.md
    CHANGED
    
    | 
         The diff for this file is too large to render. 
		See raw diff 
     | 
| 
         | 
    	
        added_tokens.json
    ADDED
    
    | 
         @@ -0,0 +1,10 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            {
         
     | 
| 2 | 
         
            +
              "<|execute_end|>": 73444,
         
     | 
| 3 | 
         
            +
              "<|execute_start|>": 73443,
         
     | 
| 4 | 
         
            +
              "<|fim_middle|>": 73446,
         
     | 
| 5 | 
         
            +
              "<|fim_prefix|>": 73445,
         
     | 
| 6 | 
         
            +
              "<|fim_suffix|>": 73447,
         
     | 
| 7 | 
         
            +
              "<|im_end|>": 73440,
         
     | 
| 8 | 
         
            +
              "<|im_start|>": 73441,
         
     | 
| 9 | 
         
            +
              "<|tool_call|>": 73442
         
     | 
| 10 | 
         
            +
            }
         
     | 
    	
        config.json
    ADDED
    
    | 
         @@ -0,0 +1,110 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            {
         
     | 
| 2 | 
         
            +
              "_name_or_path": "openbmb/UltraRAG-Embedding",
         
     | 
| 3 | 
         
            +
              "adapt_mean_pooling": true,
         
     | 
| 4 | 
         
            +
              "architectures": [
         
     | 
| 5 | 
         
            +
                "MiniCPMModel"
         
     | 
| 6 | 
         
            +
              ],
         
     | 
| 7 | 
         
            +
              "attention_bias": false,
         
     | 
| 8 | 
         
            +
              "attention_dropout": 0.0,
         
     | 
| 9 | 
         
            +
              "auto_map": {
         
     | 
| 10 | 
         
            +
                "AutoConfig": "configuration_minicpm.MiniCPMConfig",
         
     | 
| 11 | 
         
            +
                "AutoModel": "modeling_minicpm.MiniCPMModel",
         
     | 
| 12 | 
         
            +
                "AutoModelForCausalLM": "modeling_minicpm.MiniCPMForCausalLM",
         
     | 
| 13 | 
         
            +
                "AutoModelForSeq2SeqLM": "modeling_minicpm.MiniCPMForCausalLM",
         
     | 
| 14 | 
         
            +
                "AutoModelForSequenceClassification": "modeling_minicpm.MiniCPMForSequenceClassification"
         
     | 
| 15 | 
         
            +
              },
         
     | 
| 16 | 
         
            +
              "bos_token_id": 1,
         
     | 
| 17 | 
         
            +
              "dim_model_base": 256,
         
     | 
| 18 | 
         
            +
              "eos_token_id": 2,
         
     | 
| 19 | 
         
            +
              "hidden_act": "silu",
         
     | 
| 20 | 
         
            +
              "hidden_size": 1024,
         
     | 
| 21 | 
         
            +
              "initializer_range": 0.1,
         
     | 
| 22 | 
         
            +
              "intermediate_size": 4096,
         
     | 
| 23 | 
         
            +
              "is_causal": false,
         
     | 
| 24 | 
         
            +
              "max_position_embeddings": 4096,
         
     | 
| 25 | 
         
            +
              "model_type": "minicpm",
         
     | 
| 26 | 
         
            +
              "num_attention_heads": 16,
         
     | 
| 27 | 
         
            +
              "num_hidden_layers": 24,
         
     | 
| 28 | 
         
            +
              "num_key_value_heads": 2,
         
     | 
| 29 | 
         
            +
              "pretraining_tp": 1,
         
     | 
| 30 | 
         
            +
              "rms_norm_eps": 1e-05,
         
     | 
| 31 | 
         
            +
              "rope_scaling": {
         
     | 
| 32 | 
         
            +
                "long_factor": [
         
     | 
| 33 | 
         
            +
                  1.0004360675811768,
         
     | 
| 34 | 
         
            +
                  1.0668443441390991,
         
     | 
| 35 | 
         
            +
                  1.1631425619125366,
         
     | 
| 36 | 
         
            +
                  1.3025742769241333,
         
     | 
| 37 | 
         
            +
                  1.5040205717086792,
         
     | 
| 38 | 
         
            +
                  1.7941505908966064,
         
     | 
| 39 | 
         
            +
                  2.2101221084594727,
         
     | 
| 40 | 
         
            +
                  2.802666664123535,
         
     | 
| 41 | 
         
            +
                  3.6389970779418945,
         
     | 
| 42 | 
         
            +
                  4.804192543029785,
         
     | 
| 43 | 
         
            +
                  6.39855432510376,
         
     | 
| 44 | 
         
            +
                  8.527148246765137,
         
     | 
| 45 | 
         
            +
                  11.277542114257812,
         
     | 
| 46 | 
         
            +
                  14.684998512268066,
         
     | 
| 47 | 
         
            +
                  18.69317054748535,
         
     | 
| 48 | 
         
            +
                  23.13019371032715,
         
     | 
| 49 | 
         
            +
                  27.72362518310547,
         
     | 
| 50 | 
         
            +
                  32.1606559753418,
         
     | 
| 51 | 
         
            +
                  36.168827056884766,
         
     | 
| 52 | 
         
            +
                  39.57627868652344,
         
     | 
| 53 | 
         
            +
                  42.32667541503906,
         
     | 
| 54 | 
         
            +
                  44.45526885986328,
         
     | 
| 55 | 
         
            +
                  46.04962921142578,
         
     | 
| 56 | 
         
            +
                  47.21482849121094,
         
     | 
| 57 | 
         
            +
                  48.05115509033203,
         
     | 
| 58 | 
         
            +
                  48.64370346069336,
         
     | 
| 59 | 
         
            +
                  49.05967712402344,
         
     | 
| 60 | 
         
            +
                  49.34980392456055,
         
     | 
| 61 | 
         
            +
                  49.551246643066406,
         
     | 
| 62 | 
         
            +
                  49.69068145751953,
         
     | 
| 63 | 
         
            +
                  49.78697967529297,
         
     | 
| 64 | 
         
            +
                  49.85338592529297
         
     | 
| 65 | 
         
            +
                ],
         
     | 
| 66 | 
         
            +
                "original_max_position_embeddings": 4096,
         
     | 
| 67 | 
         
            +
                "short_factor": [
         
     | 
| 68 | 
         
            +
                  1.0004360675811768,
         
     | 
| 69 | 
         
            +
                  1.0668443441390991,
         
     | 
| 70 | 
         
            +
                  1.1631425619125366,
         
     | 
| 71 | 
         
            +
                  1.3025742769241333,
         
     | 
| 72 | 
         
            +
                  1.5040205717086792,
         
     | 
| 73 | 
         
            +
                  1.7941505908966064,
         
     | 
| 74 | 
         
            +
                  2.2101221084594727,
         
     | 
| 75 | 
         
            +
                  2.802666664123535,
         
     | 
| 76 | 
         
            +
                  3.6389970779418945,
         
     | 
| 77 | 
         
            +
                  4.804192543029785,
         
     | 
| 78 | 
         
            +
                  6.39855432510376,
         
     | 
| 79 | 
         
            +
                  8.527148246765137,
         
     | 
| 80 | 
         
            +
                  11.277542114257812,
         
     | 
| 81 | 
         
            +
                  14.684998512268066,
         
     | 
| 82 | 
         
            +
                  18.69317054748535,
         
     | 
| 83 | 
         
            +
                  23.13019371032715,
         
     | 
| 84 | 
         
            +
                  27.72362518310547,
         
     | 
| 85 | 
         
            +
                  32.1606559753418,
         
     | 
| 86 | 
         
            +
                  36.168827056884766,
         
     | 
| 87 | 
         
            +
                  39.57627868652344,
         
     | 
| 88 | 
         
            +
                  42.32667541503906,
         
     | 
| 89 | 
         
            +
                  44.45526885986328,
         
     | 
| 90 | 
         
            +
                  46.04962921142578,
         
     | 
| 91 | 
         
            +
                  47.21482849121094,
         
     | 
| 92 | 
         
            +
                  48.05115509033203,
         
     | 
| 93 | 
         
            +
                  48.64370346069336,
         
     | 
| 94 | 
         
            +
                  49.05967712402344,
         
     | 
| 95 | 
         
            +
                  49.34980392456055,
         
     | 
| 96 | 
         
            +
                  49.551246643066406,
         
     | 
| 97 | 
         
            +
                  49.69068145751953,
         
     | 
| 98 | 
         
            +
                  49.78697967529297,
         
     | 
| 99 | 
         
            +
                  49.85338592529297
         
     | 
| 100 | 
         
            +
                ],
         
     | 
| 101 | 
         
            +
                "type": "longrope"
         
     | 
| 102 | 
         
            +
              },
         
     | 
| 103 | 
         
            +
              "rope_theta": 10000.0,
         
     | 
| 104 | 
         
            +
              "scale_depth": 1.4,
         
     | 
| 105 | 
         
            +
              "scale_emb": 12,
         
     | 
| 106 | 
         
            +
              "torch_dtype": "bfloat16",
         
     | 
| 107 | 
         
            +
              "transformers_version": "4.37.2",
         
     | 
| 108 | 
         
            +
              "use_cache": false,
         
     | 
| 109 | 
         
            +
              "vocab_size": 73448
         
     | 
| 110 | 
         
            +
            }
         
     | 
    	
        config_sentence_transformers.json
    ADDED
    
    | 
         @@ -0,0 +1,9 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            {
         
     | 
| 2 | 
         
            +
                "__version__": {
         
     | 
| 3 | 
         
            +
                  "sentence_transformers": "2.7.0",
         
     | 
| 4 | 
         
            +
                  "transformers": "4.37.2",
         
     | 
| 5 | 
         
            +
                  "pytorch": "2.0.1+cu121"
         
     | 
| 6 | 
         
            +
                },
         
     | 
| 7 | 
         
            +
                "prompts": {},
         
     | 
| 8 | 
         
            +
                "default_prompt_name": null
         
     | 
| 9 | 
         
            +
              }
         
     | 
    	
        configuration_minicpm.py
    ADDED
    
    | 
         @@ -0,0 +1,206 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            # coding=utf-8
         
     | 
| 2 | 
         
            +
            # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
         
     | 
| 3 | 
         
            +
            #
         
     | 
| 4 | 
         
            +
            # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
         
     | 
| 5 | 
         
            +
            # and OPT implementations in this library. It has been modified from its
         
     | 
| 6 | 
         
            +
            # original forms to accommodate minor architectural differences compared
         
     | 
| 7 | 
         
            +
            # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
         
     | 
| 8 | 
         
            +
            #
         
     | 
| 9 | 
         
            +
            # Licensed under the Apache License, Version 2.0 (the "License");
         
     | 
| 10 | 
         
            +
            # you may not use this file except in compliance with the License.
         
     | 
| 11 | 
         
            +
            # You may obtain a copy of the License at
         
     | 
| 12 | 
         
            +
            #
         
     | 
| 13 | 
         
            +
            #     http://www.apache.org/licenses/LICENSE-2.0
         
     | 
| 14 | 
         
            +
            #
         
     | 
| 15 | 
         
            +
            # Unless required by applicable law or agreed to in writing, software
         
     | 
| 16 | 
         
            +
            # distributed under the License is distributed on an "AS IS" BASIS,
         
     | 
| 17 | 
         
            +
            # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
         
     | 
| 18 | 
         
            +
            # See the License for the specific language governing permissions and
         
     | 
| 19 | 
         
            +
            # limitations under the License.
         
     | 
| 20 | 
         
            +
            """ MiniCPM model configuration"""
         
     | 
| 21 | 
         
            +
             
     | 
| 22 | 
         
            +
            from transformers.configuration_utils import PretrainedConfig
         
     | 
| 23 | 
         
            +
            from transformers.utils import logging
         
     | 
| 24 | 
         
            +
             
     | 
| 25 | 
         
            +
             
     | 
| 26 | 
         
            +
            logger = logging.get_logger(__name__)
         
     | 
| 27 | 
         
            +
             
     | 
| 28 | 
         
            +
            MINICPM_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
         
     | 
| 29 | 
         
            +
             
     | 
| 30 | 
         
            +
             
     | 
| 31 | 
         
            +
            class MiniCPMConfig(PretrainedConfig):
         
     | 
| 32 | 
         
            +
                r"""
         
     | 
| 33 | 
         
            +
                This is the configuration class to store the configuration of a [`MiniCPMModel`]. It is used to instantiate an MiniCPM
         
     | 
| 34 | 
         
            +
                model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
         
     | 
| 35 | 
         
            +
                defaults will yield a similar configuration to that of the MiniCPM-7B.
         
     | 
| 36 | 
         
            +
             
     | 
| 37 | 
         
            +
                Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
         
     | 
| 38 | 
         
            +
                documentation from [`PretrainedConfig`] for more information.
         
     | 
| 39 | 
         
            +
             
     | 
| 40 | 
         
            +
             
     | 
| 41 | 
         
            +
                Args:
         
     | 
| 42 | 
         
            +
                    vocab_size (`int`, *optional*, defaults to 32000):
         
     | 
| 43 | 
         
            +
                        Vocabulary size of the MiniCPM model. Defines the number of different tokens that can be represented by the
         
     | 
| 44 | 
         
            +
                        `inputs_ids` passed when calling [`MiniCPMModel`]
         
     | 
| 45 | 
         
            +
                    hidden_size (`int`, *optional*, defaults to 4096):
         
     | 
| 46 | 
         
            +
                        Dimension of the hidden representations.
         
     | 
| 47 | 
         
            +
                    intermediate_size (`int`, *optional*, defaults to 11008):
         
     | 
| 48 | 
         
            +
                        Dimension of the MLP representations.
         
     | 
| 49 | 
         
            +
                    num_hidden_layers (`int`, *optional*, defaults to 32):
         
     | 
| 50 | 
         
            +
                        Number of hidden layers in the Transformer decoder.
         
     | 
| 51 | 
         
            +
                    num_attention_heads (`int`, *optional*, defaults to 32):
         
     | 
| 52 | 
         
            +
                        Number of attention heads for each attention layer in the Transformer decoder.
         
     | 
| 53 | 
         
            +
                    num_key_value_heads (`int`, *optional*):
         
     | 
| 54 | 
         
            +
                        This is the number of key_value heads that should be used to implement Grouped Query Attention. If
         
     | 
| 55 | 
         
            +
                        `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
         
     | 
| 56 | 
         
            +
                        `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
         
     | 
| 57 | 
         
            +
                        converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
         
     | 
| 58 | 
         
            +
                        by meanpooling all the original heads within that group. For more details checkout [this
         
     | 
| 59 | 
         
            +
                        paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
         
     | 
| 60 | 
         
            +
                        `num_attention_heads`.
         
     | 
| 61 | 
         
            +
                    hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
         
     | 
| 62 | 
         
            +
                        The non-linear activation function (function or string) in the decoder.
         
     | 
| 63 | 
         
            +
                    max_position_embeddings (`int`, *optional*, defaults to 2048):
         
     | 
| 64 | 
         
            +
                        The maximum sequence length that this model might ever be used with. MiniCPM 1 supports up to 2048 tokens,
         
     | 
| 65 | 
         
            +
                        MiniCPM 2 up to 4096, CodeMiniCPM up to 16384.
         
     | 
| 66 | 
         
            +
                    initializer_range (`float`, *optional*, defaults to 0.02):
         
     | 
| 67 | 
         
            +
                        The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
         
     | 
| 68 | 
         
            +
                    rms_norm_eps (`float`, *optional*, defaults to 1e-06):
         
     | 
| 69 | 
         
            +
                        The epsilon used by the rms normalization layers.
         
     | 
| 70 | 
         
            +
                    use_cache (`bool`, *optional*, defaults to `True`):
         
     | 
| 71 | 
         
            +
                        Whether or not the model should return the last key/values attentions (not used by all models). Only
         
     | 
| 72 | 
         
            +
                        relevant if `config.is_decoder=True`.
         
     | 
| 73 | 
         
            +
                    pad_token_id (`int`, *optional*):
         
     | 
| 74 | 
         
            +
                        Padding token id.
         
     | 
| 75 | 
         
            +
                    bos_token_id (`int`, *optional*, defaults to 1):
         
     | 
| 76 | 
         
            +
                        Beginning of stream token id.
         
     | 
| 77 | 
         
            +
                    eos_token_id (`int`, *optional*, defaults to 2):
         
     | 
| 78 | 
         
            +
                        End of stream token id.
         
     | 
| 79 | 
         
            +
                    pretraining_tp (`int`, *optional*, defaults to 1):
         
     | 
| 80 | 
         
            +
                        Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this
         
     | 
| 81 | 
         
            +
                        document](https://huggingface.co/docs/transformers/parallelism) to understand more about it. This value is
         
     | 
| 82 | 
         
            +
                        necessary to ensure exact reproducibility of the pretraining results. Please refer to [this
         
     | 
| 83 | 
         
            +
                        issue](https://github.com/pytorch/pytorch/issues/76232).
         
     | 
| 84 | 
         
            +
                    tie_word_embeddings (`bool`, *optional*, defaults to `False`):
         
     | 
| 85 | 
         
            +
                        Whether to tie weight embeddings
         
     | 
| 86 | 
         
            +
                    rope_theta (`float`, *optional*, defaults to 10000.0):
         
     | 
| 87 | 
         
            +
                        The base period of the RoPE embeddings.
         
     | 
| 88 | 
         
            +
                    rope_scaling (`Dict`, *optional*):
         
     | 
| 89 | 
         
            +
                        Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
         
     | 
| 90 | 
         
            +
                        strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is
         
     | 
| 91 | 
         
            +
                        `{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
         
     | 
| 92 | 
         
            +
                        `max_position_embeddings` to the expected new maximum. See the following thread for more information on how
         
     | 
| 93 | 
         
            +
                        these scaling strategies behave:
         
     | 
| 94 | 
         
            +
                        https://www.reddit.com/r/LocalMiniCPM/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an
         
     | 
| 95 | 
         
            +
                        experimental feature, subject to breaking API changes in future versions.
         
     | 
| 96 | 
         
            +
                    attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
         
     | 
| 97 | 
         
            +
                        Whether to use a bias in the query, key, value and output projection layers during self-attention.
         
     | 
| 98 | 
         
            +
                    attention_dropout (`float`, *optional*, defaults to 0.0):
         
     | 
| 99 | 
         
            +
                        The dropout ratio for the attention probabilities.
         
     | 
| 100 | 
         
            +
             
     | 
| 101 | 
         
            +
                ```python
         
     | 
| 102 | 
         
            +
                >>> from transformers import MiniCPMModel, MiniCPMConfig
         
     | 
| 103 | 
         
            +
             
     | 
| 104 | 
         
            +
                >>> # Initializing a MiniCPM minicpm-7b style configuration
         
     | 
| 105 | 
         
            +
                >>> configuration = MiniCPMConfig()
         
     | 
| 106 | 
         
            +
             
     | 
| 107 | 
         
            +
                >>> # Initializing a model from the minicpm-7b style configuration
         
     | 
| 108 | 
         
            +
                >>> model = MiniCPMModel(configuration)
         
     | 
| 109 | 
         
            +
             
     | 
| 110 | 
         
            +
                >>> # Accessing the model configuration
         
     | 
| 111 | 
         
            +
                >>> configuration = model.config
         
     | 
| 112 | 
         
            +
                ```"""
         
     | 
| 113 | 
         
            +
             
     | 
| 114 | 
         
            +
                model_type = "minicpm"
         
     | 
| 115 | 
         
            +
                keys_to_ignore_at_inference = ["past_key_values"]
         
     | 
| 116 | 
         
            +
             
     | 
| 117 | 
         
            +
                def __init__(
         
     | 
| 118 | 
         
            +
                    self,
         
     | 
| 119 | 
         
            +
                    vocab_size=32000,
         
     | 
| 120 | 
         
            +
                    hidden_size=4096,
         
     | 
| 121 | 
         
            +
                    intermediate_size=11008,
         
     | 
| 122 | 
         
            +
                    num_hidden_layers=32,
         
     | 
| 123 | 
         
            +
                    num_attention_heads=32,
         
     | 
| 124 | 
         
            +
                    num_key_value_heads=None,
         
     | 
| 125 | 
         
            +
                    hidden_act="silu",
         
     | 
| 126 | 
         
            +
                    max_position_embeddings=2048,
         
     | 
| 127 | 
         
            +
                    initializer_range=0.02,
         
     | 
| 128 | 
         
            +
                    rms_norm_eps=1e-6,
         
     | 
| 129 | 
         
            +
                    use_cache=True,
         
     | 
| 130 | 
         
            +
                    pad_token_id=None,
         
     | 
| 131 | 
         
            +
                    bos_token_id=1,
         
     | 
| 132 | 
         
            +
                    eos_token_id=2,
         
     | 
| 133 | 
         
            +
                    pretraining_tp=1,
         
     | 
| 134 | 
         
            +
                    tie_word_embeddings=True,
         
     | 
| 135 | 
         
            +
                    rope_theta=10000.0,
         
     | 
| 136 | 
         
            +
                    rope_scaling=None,
         
     | 
| 137 | 
         
            +
                    attention_bias=False,
         
     | 
| 138 | 
         
            +
                    attention_dropout=0.0,
         
     | 
| 139 | 
         
            +
                    scale_emb=1,
         
     | 
| 140 | 
         
            +
                    dim_model_base=1,
         
     | 
| 141 | 
         
            +
                    scale_depth=1,
         
     | 
| 142 | 
         
            +
                    is_causal=True,
         
     | 
| 143 | 
         
            +
                    adapt_mean_pooling=True,
         
     | 
| 144 | 
         
            +
                    **kwargs,
         
     | 
| 145 | 
         
            +
                ):
         
     | 
| 146 | 
         
            +
                    self.vocab_size = vocab_size
         
     | 
| 147 | 
         
            +
                    self.max_position_embeddings = max_position_embeddings
         
     | 
| 148 | 
         
            +
                    self.hidden_size = hidden_size
         
     | 
| 149 | 
         
            +
                    self.intermediate_size = intermediate_size
         
     | 
| 150 | 
         
            +
                    self.num_hidden_layers = num_hidden_layers
         
     | 
| 151 | 
         
            +
                    self.num_attention_heads = num_attention_heads
         
     | 
| 152 | 
         
            +
             
     | 
| 153 | 
         
            +
                    # for backward compatibility
         
     | 
| 154 | 
         
            +
                    if num_key_value_heads is None:
         
     | 
| 155 | 
         
            +
                        num_key_value_heads = num_attention_heads
         
     | 
| 156 | 
         
            +
             
     | 
| 157 | 
         
            +
                    self.num_key_value_heads = num_key_value_heads
         
     | 
| 158 | 
         
            +
                    self.hidden_act = hidden_act
         
     | 
| 159 | 
         
            +
                    self.initializer_range = initializer_range
         
     | 
| 160 | 
         
            +
                    self.rms_norm_eps = rms_norm_eps
         
     | 
| 161 | 
         
            +
                    self.pretraining_tp = pretraining_tp
         
     | 
| 162 | 
         
            +
                    self.use_cache = use_cache
         
     | 
| 163 | 
         
            +
                    self.rope_theta = rope_theta
         
     | 
| 164 | 
         
            +
                    self.rope_scaling = rope_scaling
         
     | 
| 165 | 
         
            +
                    # self._rope_scaling_validation()
         
     | 
| 166 | 
         
            +
                    self.attention_bias = attention_bias
         
     | 
| 167 | 
         
            +
                    self.attention_dropout = attention_dropout
         
     | 
| 168 | 
         
            +
                    self.scale_emb = scale_emb
         
     | 
| 169 | 
         
            +
                    self.dim_model_base = dim_model_base
         
     | 
| 170 | 
         
            +
                    self.scale_depth = scale_depth
         
     | 
| 171 | 
         
            +
                    self.is_causal = is_causal
         
     | 
| 172 | 
         
            +
                    self.adapt_mean_pooling = adapt_mean_pooling
         
     | 
| 173 | 
         
            +
             
     | 
| 174 | 
         
            +
                    super().__init__(
         
     | 
| 175 | 
         
            +
                        pad_token_id=pad_token_id,
         
     | 
| 176 | 
         
            +
                        bos_token_id=bos_token_id,
         
     | 
| 177 | 
         
            +
                        eos_token_id=eos_token_id,
         
     | 
| 178 | 
         
            +
                        tie_word_embeddings=tie_word_embeddings,
         
     | 
| 179 | 
         
            +
                        **kwargs,
         
     | 
| 180 | 
         
            +
                    )
         
     | 
| 181 | 
         
            +
                    # try:
         
     | 
| 182 | 
         
            +
                    #     import flash_attn
         
     | 
| 183 | 
         
            +
                    #     self._attn_implementation = "flash_attention_2"
         
     | 
| 184 | 
         
            +
                    # except:
         
     | 
| 185 | 
         
            +
                    #     pass
         
     | 
| 186 | 
         
            +
             
     | 
| 187 | 
         
            +
                def _rope_scaling_validation(self):
         
     | 
| 188 | 
         
            +
                    """
         
     | 
| 189 | 
         
            +
                    Validate the `rope_scaling` configuration.
         
     | 
| 190 | 
         
            +
                    """
         
     | 
| 191 | 
         
            +
                    if self.rope_scaling is None:
         
     | 
| 192 | 
         
            +
                        return
         
     | 
| 193 | 
         
            +
             
     | 
| 194 | 
         
            +
                    if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
         
     | 
| 195 | 
         
            +
                        raise ValueError(
         
     | 
| 196 | 
         
            +
                            "`rope_scaling` must be a dictionary with with two fields, `type` and `factor`, "
         
     | 
| 197 | 
         
            +
                            f"got {self.rope_scaling}"
         
     | 
| 198 | 
         
            +
                        )
         
     | 
| 199 | 
         
            +
                    rope_scaling_type = self.rope_scaling.get("type", None)
         
     | 
| 200 | 
         
            +
                    rope_scaling_factor = self.rope_scaling.get("factor", None)
         
     | 
| 201 | 
         
            +
                    if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
         
     | 
| 202 | 
         
            +
                        raise ValueError(
         
     | 
| 203 | 
         
            +
                            f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
         
     | 
| 204 | 
         
            +
                        )
         
     | 
| 205 | 
         
            +
                    if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor <= 1.0:
         
     | 
| 206 | 
         
            +
                        raise ValueError(f"`rope_scaling`'s factor field must be a float > 1, got {rope_scaling_factor}")
         
     | 
    	
        model.safetensors
    ADDED
    
    | 
         @@ -0,0 +1,3 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            version https://git-lfs.github.com/spec/v1
         
     | 
| 2 | 
         
            +
            oid sha256:109f243eddb0ae63ec4bbcb16ddb127d65399184a4e01565a628911c9c4c6afc
         
     | 
| 3 | 
         
            +
            size 867773472
         
     | 
    	
        modeling_minicpm.py
    ADDED
    
    | 
         @@ -0,0 +1,1806 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            # coding=utf-8
         
     | 
| 2 | 
         
            +
            # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
         
     | 
| 3 | 
         
            +
            #
         
     | 
| 4 | 
         
            +
            # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
         
     | 
| 5 | 
         
            +
            # and OPT implementations in this library. It has been modified from its
         
     | 
| 6 | 
         
            +
            # original forms to accommodate minor architectural differences compared
         
     | 
| 7 | 
         
            +
            # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
         
     | 
| 8 | 
         
            +
            #
         
     | 
| 9 | 
         
            +
            # Licensed under the Apache License, Version 2.0 (the "License");
         
     | 
| 10 | 
         
            +
            # you may not use this file except in compliance with the License.
         
     | 
| 11 | 
         
            +
            # You may obtain a copy of the License at
         
     | 
| 12 | 
         
            +
            #
         
     | 
| 13 | 
         
            +
            #     http://www.apache.org/licenses/LICENSE-2.0
         
     | 
| 14 | 
         
            +
            #
         
     | 
| 15 | 
         
            +
            # Unless required by applicable law or agreed to in writing, software
         
     | 
| 16 | 
         
            +
            # distributed under the License is distributed on an "AS IS" BASIS,
         
     | 
| 17 | 
         
            +
            # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
         
     | 
| 18 | 
         
            +
            # See the License for the specific language governing permissions and
         
     | 
| 19 | 
         
            +
            # limitations under the License.
         
     | 
| 20 | 
         
            +
            """ PyTorch MiniCPM model."""
         
     | 
| 21 | 
         
            +
            import math
         
     | 
| 22 | 
         
            +
            import warnings
         
     | 
| 23 | 
         
            +
            from typing import List, Optional, Tuple, Union, Dict
         
     | 
| 24 | 
         
            +
            import os
         
     | 
| 25 | 
         
            +
            from tqdm import tqdm
         
     | 
| 26 | 
         
            +
            import torch
         
     | 
| 27 | 
         
            +
            import torch.nn.functional as F
         
     | 
| 28 | 
         
            +
            import torch.utils.checkpoint
         
     | 
| 29 | 
         
            +
            from torch import nn
         
     | 
| 30 | 
         
            +
            from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
         
     | 
| 31 | 
         
            +
            import numpy as np
         
     | 
| 32 | 
         
            +
            from copy import deepcopy
         
     | 
| 33 | 
         
            +
             
     | 
| 34 | 
         
            +
            from transformers.activations import ACT2FN
         
     | 
| 35 | 
         
            +
            from transformers.cache_utils import Cache, DynamicCache
         
     | 
| 36 | 
         
            +
            from transformers import AutoTokenizer
         
     | 
| 37 | 
         
            +
            from transformers.modeling_attn_mask_utils import (
         
     | 
| 38 | 
         
            +
                AttentionMaskConverter,
         
     | 
| 39 | 
         
            +
                _prepare_4d_attention_mask,
         
     | 
| 40 | 
         
            +
                _prepare_4d_causal_attention_mask,
         
     | 
| 41 | 
         
            +
                _prepare_4d_causal_attention_mask_for_sdpa,
         
     | 
| 42 | 
         
            +
                _prepare_4d_attention_mask_for_sdpa,
         
     | 
| 43 | 
         
            +
            )
         
     | 
| 44 | 
         
            +
            from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast, SequenceClassifierOutputWithPast
         
     | 
| 45 | 
         
            +
            from transformers.modeling_utils import PreTrainedModel
         
     | 
| 46 | 
         
            +
            from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS, is_torch_greater_or_equal_than_1_13
         
     | 
| 47 | 
         
            +
            from transformers.utils import (
         
     | 
| 48 | 
         
            +
                add_start_docstrings,
         
     | 
| 49 | 
         
            +
                add_start_docstrings_to_model_forward,
         
     | 
| 50 | 
         
            +
                is_flash_attn_2_available,
         
     | 
| 51 | 
         
            +
                is_flash_attn_greater_or_equal_2_10,
         
     | 
| 52 | 
         
            +
                logging,
         
     | 
| 53 | 
         
            +
                replace_return_docstrings,
         
     | 
| 54 | 
         
            +
            )
         
     | 
| 55 | 
         
            +
            from transformers.utils.import_utils import is_torch_fx_available
         
     | 
| 56 | 
         
            +
            from .configuration_minicpm import MiniCPMConfig
         
     | 
| 57 | 
         
            +
            import re
         
     | 
| 58 | 
         
            +
             
     | 
| 59 | 
         
            +
            try:
         
     | 
| 60 | 
         
            +
                from flash_attn import flash_attn_func, flash_attn_varlen_func
         
     | 
| 61 | 
         
            +
                from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input  # noqa
         
     | 
| 62 | 
         
            +
            except:
         
     | 
| 63 | 
         
            +
                pass
         
     | 
| 64 | 
         
            +
             
     | 
| 65 | 
         
            +
             
     | 
| 66 | 
         
            +
            # This makes `_prepare_4d_causal_attention_mask` a leaf function in the FX graph.
         
     | 
| 67 | 
         
            +
            # It means that the function will not be traced through and simply appear as a node in the graph.
         
     | 
| 68 | 
         
            +
            if is_torch_fx_available():
         
     | 
| 69 | 
         
            +
                if not is_torch_greater_or_equal_than_1_13:
         
     | 
| 70 | 
         
            +
                    import torch.fx
         
     | 
| 71 | 
         
            +
             
     | 
| 72 | 
         
            +
                _prepare_4d_causal_attention_mask = torch.fx.wrap(_prepare_4d_causal_attention_mask)
         
     | 
| 73 | 
         
            +
             
     | 
| 74 | 
         
            +
             
     | 
| 75 | 
         
            +
            logger = logging.get_logger(__name__)
         
     | 
| 76 | 
         
            +
             
     | 
| 77 | 
         
            +
            _CONFIG_FOR_DOC = "MiniCPMConfig"
         
     | 
| 78 | 
         
            +
             
     | 
| 79 | 
         
            +
             
     | 
| 80 | 
         
            +
            def _get_unpad_data(attention_mask):
         
     | 
| 81 | 
         
            +
                seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
         
     | 
| 82 | 
         
            +
                indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
         
     | 
| 83 | 
         
            +
                max_seqlen_in_batch = seqlens_in_batch.max().item()
         
     | 
| 84 | 
         
            +
                cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0))
         
     | 
| 85 | 
         
            +
                return (
         
     | 
| 86 | 
         
            +
                    indices,
         
     | 
| 87 | 
         
            +
                    cu_seqlens,
         
     | 
| 88 | 
         
            +
                    max_seqlen_in_batch,
         
     | 
| 89 | 
         
            +
                )
         
     | 
| 90 | 
         
            +
             
     | 
| 91 | 
         
            +
             
     | 
| 92 | 
         
            +
            def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
         
     | 
| 93 | 
         
            +
                warnings.warn(
         
     | 
| 94 | 
         
            +
                    "Calling `transformers.models.minicpm.modeling_minicpm._prepare_4d_attention_mask` is deprecated and will be removed in v4.37. Use `transformers.modeling_attn_mask_utils._prepare_4d_attention_mask"
         
     | 
| 95 | 
         
            +
                )
         
     | 
| 96 | 
         
            +
                return _prepare_4d_attention_mask(mask=mask, dtype=dtype, tgt_len=tgt_len)
         
     | 
| 97 | 
         
            +
             
     | 
| 98 | 
         
            +
             
     | 
| 99 | 
         
            +
            def _make_causal_mask(
         
     | 
| 100 | 
         
            +
                input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
         
     | 
| 101 | 
         
            +
            ):
         
     | 
| 102 | 
         
            +
                warnings.warn(
         
     | 
| 103 | 
         
            +
                    "Calling `transformers.models.minicpm.modeling_minicpm._make_causal_mask` is deprecated and will be removed in v4.37. Use `transformers.models.minicpm.modeling_minicpm.AttentionMaskConverter._make_causal_mask"
         
     | 
| 104 | 
         
            +
                )
         
     | 
| 105 | 
         
            +
                return AttentionMaskConverter._make_causal_mask(
         
     | 
| 106 | 
         
            +
                    input_ids_shape=input_ids_shape, dtype=dtype, device=device, past_key_values_length=past_key_values_length
         
     | 
| 107 | 
         
            +
                )
         
     | 
| 108 | 
         
            +
             
     | 
| 109 | 
         
            +
            # @torch.jit.script  # type: ignore
         
     | 
| 110 | 
         
            +
            def rms_layernorm(hidden: torch.Tensor, weight: torch.Tensor, eps: float):
         
     | 
| 111 | 
         
            +
                old_dtype = hidden.dtype
         
     | 
| 112 | 
         
            +
                variance = hidden.to(torch.float32).pow(2).mean(dim=-1, keepdim=True)
         
     | 
| 113 | 
         
            +
                hidden = (hidden * torch.rsqrt(variance + eps)).to(old_dtype)
         
     | 
| 114 | 
         
            +
                return hidden * weight
         
     | 
| 115 | 
         
            +
             
     | 
| 116 | 
         
            +
             
     | 
| 117 | 
         
            +
            class MiniCPMRMSNorm(nn.Module):
         
     | 
| 118 | 
         
            +
                def __init__(self, hidden_size, eps=1e-6):
         
     | 
| 119 | 
         
            +
                    """
         
     | 
| 120 | 
         
            +
                    MiniCPMRMSNorm is equivalent to T5LayerNorm
         
     | 
| 121 | 
         
            +
                    """
         
     | 
| 122 | 
         
            +
                    super().__init__()
         
     | 
| 123 | 
         
            +
                    self.weight = nn.Parameter(torch.ones(hidden_size))
         
     | 
| 124 | 
         
            +
                    self.variance_epsilon = eps
         
     | 
| 125 | 
         
            +
             
     | 
| 126 | 
         
            +
                def forward(self, hidden_states):
         
     | 
| 127 | 
         
            +
                    return rms_layernorm(hidden_states, self.weight, self.variance_epsilon)
         
     | 
| 128 | 
         
            +
             
     | 
| 129 | 
         
            +
             
     | 
| 130 | 
         
            +
            ALL_LAYERNORM_LAYERS.append(MiniCPMRMSNorm)
         
     | 
| 131 | 
         
            +
             
     | 
| 132 | 
         
            +
             
     | 
| 133 | 
         
            +
            class MiniCPMRotaryEmbedding(nn.Module):
         
     | 
| 134 | 
         
            +
                def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
         
     | 
| 135 | 
         
            +
                    super().__init__()
         
     | 
| 136 | 
         
            +
             
     | 
| 137 | 
         
            +
                    self.dim = dim
         
     | 
| 138 | 
         
            +
                    self.max_position_embeddings = max_position_embeddings
         
     | 
| 139 | 
         
            +
                    self.base = base
         
     | 
| 140 | 
         
            +
                    inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
         
     | 
| 141 | 
         
            +
                    self.register_buffer("inv_freq", inv_freq, persistent=False)
         
     | 
| 142 | 
         
            +
             
     | 
| 143 | 
         
            +
                    # Build here to make `torch.jit.trace` work.
         
     | 
| 144 | 
         
            +
                    self._set_cos_sin_cache(
         
     | 
| 145 | 
         
            +
                        # seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
         
     | 
| 146 | 
         
            +
                        seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.float32
         
     | 
| 147 | 
         
            +
                    )
         
     | 
| 148 | 
         
            +
             
     | 
| 149 | 
         
            +
                def _set_cos_sin_cache(self, seq_len, device, dtype):
         
     | 
| 150 | 
         
            +
                    self.max_seq_len_cached = seq_len
         
     | 
| 151 | 
         
            +
                    t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
         
     | 
| 152 | 
         
            +
                    freqs = torch.outer(t, self.inv_freq)
         
     | 
| 153 | 
         
            +
                    # Different from paper, but it uses a different permutation in order to obtain the same calculation
         
     | 
| 154 | 
         
            +
                    emb = torch.cat((freqs, freqs), dim=-1)
         
     | 
| 155 | 
         
            +
             
     | 
| 156 | 
         
            +
                    self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
         
     | 
| 157 | 
         
            +
                    self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
         
     | 
| 158 | 
         
            +
             
     | 
| 159 | 
         
            +
                def forward(self, x, seq_len=None):
         
     | 
| 160 | 
         
            +
                    # x: [bs, num_attention_heads, seq_len, head_size]
         
     | 
| 161 | 
         
            +
                    if seq_len > self.max_seq_len_cached:
         
     | 
| 162 | 
         
            +
                        self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
         
     | 
| 163 | 
         
            +
             
     | 
| 164 | 
         
            +
                    return (
         
     | 
| 165 | 
         
            +
                        self.cos_cached[:seq_len].to(dtype=x.dtype),
         
     | 
| 166 | 
         
            +
                        self.sin_cached[:seq_len].to(dtype=x.dtype),
         
     | 
| 167 | 
         
            +
                    )
         
     | 
| 168 | 
         
            +
             
     | 
| 169 | 
         
            +
             
     | 
| 170 | 
         
            +
            class MiniCPMLongRoPE(MiniCPMRotaryEmbedding):
         
     | 
| 171 | 
         
            +
                """MiniCPMRotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla"""
         
     | 
| 172 | 
         
            +
             
     | 
| 173 | 
         
            +
                def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, short_factor=None, long_factor=None, original_max_position_embeddings=None):
         
     | 
| 174 | 
         
            +
                    self.short_factor = short_factor
         
     | 
| 175 | 
         
            +
                    self.long_factor = long_factor
         
     | 
| 176 | 
         
            +
                    self.original_max_position_embeddings = original_max_position_embeddings
         
     | 
| 177 | 
         
            +
                    scale = (max_position_embeddings /
         
     | 
| 178 | 
         
            +
                             self.original_max_position_embeddings)
         
     | 
| 179 | 
         
            +
                    self.scaling_factor = math.sqrt(
         
     | 
| 180 | 
         
            +
                            1 + math.log(scale) /
         
     | 
| 181 | 
         
            +
                            math.log(self.original_max_position_embeddings))
         
     | 
| 182 | 
         
            +
                    super().__init__(dim, max_position_embeddings, base, device)
         
     | 
| 183 | 
         
            +
             
     | 
| 184 | 
         
            +
                def _set_cos_sin_cache(self, seq_len, device, dtype):
         
     | 
| 185 | 
         
            +
                    self.max_seq_len_cached = seq_len
         
     | 
| 186 | 
         
            +
                    t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
         
     | 
| 187 | 
         
            +
                    if seq_len > self.original_max_position_embeddings:
         
     | 
| 188 | 
         
            +
                        ext_factors = torch.tensor(self.long_factor, dtype=torch.float32, device=device)
         
     | 
| 189 | 
         
            +
                    else:
         
     | 
| 190 | 
         
            +
                        ext_factors = torch.tensor(self.short_factor, dtype=torch.float32, device=device)
         
     | 
| 191 | 
         
            +
                    
         
     | 
| 192 | 
         
            +
                    freqs = torch.mul(
         
     | 
| 193 | 
         
            +
                        torch.outer(t, 1.0 / ext_factors).to(device=device),
         
     | 
| 194 | 
         
            +
                        self.inv_freq.to(device=device).to(dtype)
         
     | 
| 195 | 
         
            +
                    )
         
     | 
| 196 | 
         
            +
                    # Different from paper, but it uses a different permutation in order to obtain the same calculation
         
     | 
| 197 | 
         
            +
                    emb = torch.cat((freqs, freqs), dim=-1)
         
     | 
| 198 | 
         
            +
                    self.register_buffer("cos_cached", emb.cos().to(dtype) * self.scaling_factor, persistent=False)
         
     | 
| 199 | 
         
            +
                    self.register_buffer("sin_cached", emb.sin().to(dtype) * self.scaling_factor, persistent=False)
         
     | 
| 200 | 
         
            +
             
     | 
| 201 | 
         
            +
             
     | 
| 202 | 
         
            +
            class MiniCPMLinearScalingRotaryEmbedding(MiniCPMRotaryEmbedding):
         
     | 
| 203 | 
         
            +
                """MiniCPMRotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
         
     | 
| 204 | 
         
            +
             
     | 
| 205 | 
         
            +
                def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
         
     | 
| 206 | 
         
            +
                    self.scaling_factor = scaling_factor
         
     | 
| 207 | 
         
            +
                    super().__init__(dim, max_position_embeddings, base, device)
         
     | 
| 208 | 
         
            +
             
     | 
| 209 | 
         
            +
                def _set_cos_sin_cache(self, seq_len, device, dtype):
         
     | 
| 210 | 
         
            +
                    self.max_seq_len_cached = seq_len
         
     | 
| 211 | 
         
            +
                    t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
         
     | 
| 212 | 
         
            +
                    t = t / self.scaling_factor
         
     | 
| 213 | 
         
            +
             
     | 
| 214 | 
         
            +
                    freqs = torch.outer(t, self.inv_freq)
         
     | 
| 215 | 
         
            +
                    # Different from paper, but it uses a different permutation in order to obtain the same calculation
         
     | 
| 216 | 
         
            +
                    emb = torch.cat((freqs, freqs), dim=-1)
         
     | 
| 217 | 
         
            +
                    self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
         
     | 
| 218 | 
         
            +
                    self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
         
     | 
| 219 | 
         
            +
             
     | 
| 220 | 
         
            +
             
     | 
| 221 | 
         
            +
            class MiniCPMDynamicNTKScalingRotaryEmbedding(MiniCPMRotaryEmbedding):
         
     | 
| 222 | 
         
            +
                """MiniCPMRotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla"""
         
     | 
| 223 | 
         
            +
             
     | 
| 224 | 
         
            +
                def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
         
     | 
| 225 | 
         
            +
                    self.scaling_factor = scaling_factor
         
     | 
| 226 | 
         
            +
                    super().__init__(dim, max_position_embeddings, base, device)
         
     | 
| 227 | 
         
            +
             
     | 
| 228 | 
         
            +
                def _set_cos_sin_cache(self, seq_len, device, dtype):
         
     | 
| 229 | 
         
            +
                    self.max_seq_len_cached = seq_len
         
     | 
| 230 | 
         
            +
             
     | 
| 231 | 
         
            +
                    if seq_len > self.max_position_embeddings:
         
     | 
| 232 | 
         
            +
                        base = self.base * (
         
     | 
| 233 | 
         
            +
                            (self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1)
         
     | 
| 234 | 
         
            +
                        ) ** (self.dim / (self.dim - 2))
         
     | 
| 235 | 
         
            +
                        inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
         
     | 
| 236 | 
         
            +
                        self.register_buffer("inv_freq", inv_freq, persistent=False)
         
     | 
| 237 | 
         
            +
             
     | 
| 238 | 
         
            +
                    t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
         
     | 
| 239 | 
         
            +
             
     | 
| 240 | 
         
            +
                    freqs = torch.outer(t, self.inv_freq)
         
     | 
| 241 | 
         
            +
                    # Different from paper, but it uses a different permutation in order to obtain the same calculation
         
     | 
| 242 | 
         
            +
                    emb = torch.cat((freqs, freqs), dim=-1)
         
     | 
| 243 | 
         
            +
             
     | 
| 244 | 
         
            +
                    self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
         
     | 
| 245 | 
         
            +
                    self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
         
     | 
| 246 | 
         
            +
             
     | 
| 247 | 
         
            +
             
     | 
| 248 | 
         
            +
            def rotate_half(x):
         
     | 
| 249 | 
         
            +
                """Rotates half the hidden dims of the input."""
         
     | 
| 250 | 
         
            +
                x1 = x[..., : x.shape[-1] // 2]
         
     | 
| 251 | 
         
            +
                x2 = x[..., x.shape[-1] // 2 :]
         
     | 
| 252 | 
         
            +
                return torch.cat((-x2, x1), dim=-1)
         
     | 
| 253 | 
         
            +
             
     | 
| 254 | 
         
            +
             
     | 
| 255 | 
         
            +
            def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1):
         
     | 
| 256 | 
         
            +
                """Applies Rotary Position Embedding to the query and key tensors.
         
     | 
| 257 | 
         
            +
             
     | 
| 258 | 
         
            +
                Args:
         
     | 
| 259 | 
         
            +
                    q (`torch.Tensor`): The query tensor.
         
     | 
| 260 | 
         
            +
                    k (`torch.Tensor`): The key tensor.
         
     | 
| 261 | 
         
            +
                    cos (`torch.Tensor`): The cosine part of the rotary embedding.
         
     | 
| 262 | 
         
            +
                    sin (`torch.Tensor`): The sine part of the rotary embedding.
         
     | 
| 263 | 
         
            +
                    position_ids (`torch.Tensor`):
         
     | 
| 264 | 
         
            +
                        The position indices of the tokens corresponding to the query and key tensors. For example, this can be
         
     | 
| 265 | 
         
            +
                        used to pass offsetted position ids when working with a KV-cache.
         
     | 
| 266 | 
         
            +
                    unsqueeze_dim (`int`, *optional*, defaults to 1):
         
     | 
| 267 | 
         
            +
                        The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
         
     | 
| 268 | 
         
            +
                        sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
         
     | 
| 269 | 
         
            +
                        that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
         
     | 
| 270 | 
         
            +
                        k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
         
     | 
| 271 | 
         
            +
                        cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
         
     | 
| 272 | 
         
            +
                        the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
         
     | 
| 273 | 
         
            +
                Returns:
         
     | 
| 274 | 
         
            +
                    `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
         
     | 
| 275 | 
         
            +
                """
         
     | 
| 276 | 
         
            +
                # cos = cos[position_ids].unsqueeze(unsqueeze_dim)
         
     | 
| 277 | 
         
            +
                # sin = sin[position_ids].unsqueeze(unsqueeze_dim)
         
     | 
| 278 | 
         
            +
                # q_embed = (q * cos) + (rotate_half(q) * sin)
         
     | 
| 279 | 
         
            +
                # k_embed = (k * cos) + (rotate_half(k) * sin)
         
     | 
| 280 | 
         
            +
                orig_dtype = k.dtype
         
     | 
| 281 | 
         
            +
                cos = cos[position_ids].unsqueeze(unsqueeze_dim)  # [bs, 1, seq_len, dim]
         
     | 
| 282 | 
         
            +
                sin = sin[position_ids].unsqueeze(unsqueeze_dim)  # [bs, 1, seq_len, dim]
         
     | 
| 283 | 
         
            +
                q_fp32 = q.to(dtype=torch.float32, device=q.device)
         
     | 
| 284 | 
         
            +
                k_fp32 = k.to(dtype=torch.float32, device=k.device)
         
     | 
| 285 | 
         
            +
                q_embed = (q_fp32 * cos) + (rotate_half(q_fp32) * sin)
         
     | 
| 286 | 
         
            +
                k_embed = (k_fp32 * cos) + (rotate_half(k_fp32) * sin)
         
     | 
| 287 | 
         
            +
                return q_embed.to(dtype=orig_dtype), k_embed.to(dtype=orig_dtype)
         
     | 
| 288 | 
         
            +
             
     | 
| 289 | 
         
            +
            class MiniCPMMLP(nn.Module):
         
     | 
| 290 | 
         
            +
                def __init__(self, config):
         
     | 
| 291 | 
         
            +
                    super().__init__()
         
     | 
| 292 | 
         
            +
                    self.config = config
         
     | 
| 293 | 
         
            +
                    self.hidden_size = config.hidden_size
         
     | 
| 294 | 
         
            +
                    self.intermediate_size = config.intermediate_size
         
     | 
| 295 | 
         
            +
                    self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
         
     | 
| 296 | 
         
            +
                    self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
         
     | 
| 297 | 
         
            +
                    self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
         
     | 
| 298 | 
         
            +
                    self.act_fn = ACT2FN[config.hidden_act]
         
     | 
| 299 | 
         
            +
             
     | 
| 300 | 
         
            +
                def forward(self, x):
         
     | 
| 301 | 
         
            +
                    if self.config.pretraining_tp > 1:
         
     | 
| 302 | 
         
            +
                        slice = self.intermediate_size // self.config.pretraining_tp
         
     | 
| 303 | 
         
            +
                        gate_proj_slices = self.gate_proj.weight.split(slice, dim=0)
         
     | 
| 304 | 
         
            +
                        up_proj_slices = self.up_proj.weight.split(slice, dim=0)
         
     | 
| 305 | 
         
            +
                        down_proj_slices = self.down_proj.weight.split(slice, dim=1)
         
     | 
| 306 | 
         
            +
             
     | 
| 307 | 
         
            +
                        gate_proj = torch.cat(
         
     | 
| 308 | 
         
            +
                            [F.linear(x, gate_proj_slices[i]) for i in range(self.config.pretraining_tp)], dim=-1
         
     | 
| 309 | 
         
            +
                        )
         
     | 
| 310 | 
         
            +
                        up_proj = torch.cat([F.linear(x, up_proj_slices[i]) for i in range(self.config.pretraining_tp)], dim=-1)
         
     | 
| 311 | 
         
            +
             
     | 
| 312 | 
         
            +
                        intermediate_states = (self.act_fn(gate_proj) * up_proj).split(slice, dim=2)
         
     | 
| 313 | 
         
            +
                        down_proj = [
         
     | 
| 314 | 
         
            +
                            F.linear(intermediate_states[i], down_proj_slices[i]) for i in range(self.config.pretraining_tp)
         
     | 
| 315 | 
         
            +
                        ]
         
     | 
| 316 | 
         
            +
                        down_proj = sum(down_proj)
         
     | 
| 317 | 
         
            +
                    else:
         
     | 
| 318 | 
         
            +
                        down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
         
     | 
| 319 | 
         
            +
             
     | 
| 320 | 
         
            +
                    return down_proj
         
     | 
| 321 | 
         
            +
             
     | 
| 322 | 
         
            +
             
     | 
| 323 | 
         
            +
            def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
         
     | 
| 324 | 
         
            +
                """
         
     | 
| 325 | 
         
            +
                This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
         
     | 
| 326 | 
         
            +
                num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
         
     | 
| 327 | 
         
            +
                """
         
     | 
| 328 | 
         
            +
                batch, num_key_value_heads, slen, head_dim = hidden_states.shape
         
     | 
| 329 | 
         
            +
                if n_rep == 1:
         
     | 
| 330 | 
         
            +
                    return hidden_states
         
     | 
| 331 | 
         
            +
                hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
         
     | 
| 332 | 
         
            +
                return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
         
     | 
| 333 | 
         
            +
             
     | 
| 334 | 
         
            +
             
     | 
| 335 | 
         
            +
             
     | 
| 336 | 
         
            +
            class MiniCPMAttention(nn.Module):
         
     | 
| 337 | 
         
            +
                """Multi-headed attention from 'Attention Is All You Need' paper"""
         
     | 
| 338 | 
         
            +
             
     | 
| 339 | 
         
            +
                def __init__(self, config: MiniCPMConfig, layer_idx: Optional[int] = None):
         
     | 
| 340 | 
         
            +
                    super().__init__()
         
     | 
| 341 | 
         
            +
                    self.config = config
         
     | 
| 342 | 
         
            +
                    self.layer_idx = layer_idx
         
     | 
| 343 | 
         
            +
                    if layer_idx is None:
         
     | 
| 344 | 
         
            +
                        logger.warning_once(
         
     | 
| 345 | 
         
            +
                            f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will "
         
     | 
| 346 | 
         
            +
                            "to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` "
         
     | 
| 347 | 
         
            +
                            "when creating this class."
         
     | 
| 348 | 
         
            +
                        )
         
     | 
| 349 | 
         
            +
             
     | 
| 350 | 
         
            +
                    self.attention_dropout = config.attention_dropout
         
     | 
| 351 | 
         
            +
                    self.hidden_size = config.hidden_size
         
     | 
| 352 | 
         
            +
                    self.num_heads = config.num_attention_heads
         
     | 
| 353 | 
         
            +
                    self.head_dim = self.hidden_size // self.num_heads
         
     | 
| 354 | 
         
            +
                    self.num_key_value_heads = config.num_key_value_heads
         
     | 
| 355 | 
         
            +
                    self.num_key_value_groups = self.num_heads // self.num_key_value_heads
         
     | 
| 356 | 
         
            +
                    self.max_position_embeddings = config.max_position_embeddings
         
     | 
| 357 | 
         
            +
                    self.rope_theta = config.rope_theta
         
     | 
| 358 | 
         
            +
                            
         
     | 
| 359 | 
         
            +
                    self.is_causal = config.is_causal
         
     | 
| 360 | 
         
            +
             
     | 
| 361 | 
         
            +
                    if (self.head_dim * self.num_heads) != self.hidden_size:
         
     | 
| 362 | 
         
            +
                        raise ValueError(
         
     | 
| 363 | 
         
            +
                            f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
         
     | 
| 364 | 
         
            +
                            f" and `num_heads`: {self.num_heads})."
         
     | 
| 365 | 
         
            +
                        )
         
     | 
| 366 | 
         
            +
             
     | 
| 367 | 
         
            +
                    self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=config.attention_bias)
         
     | 
| 368 | 
         
            +
                    self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
         
     | 
| 369 | 
         
            +
                    self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
         
     | 
| 370 | 
         
            +
                    self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=config.attention_bias)
         
     | 
| 371 | 
         
            +
                    self._init_rope()
         
     | 
| 372 | 
         
            +
             
     | 
| 373 | 
         
            +
                def _init_rope(self):
         
     | 
| 374 | 
         
            +
                    if self.config.rope_scaling is None:
         
     | 
| 375 | 
         
            +
                        self.rotary_emb = MiniCPMRotaryEmbedding(
         
     | 
| 376 | 
         
            +
                            self.head_dim,
         
     | 
| 377 | 
         
            +
                            max_position_embeddings=self.max_position_embeddings,
         
     | 
| 378 | 
         
            +
                            base=self.rope_theta,
         
     | 
| 379 | 
         
            +
                        )
         
     | 
| 380 | 
         
            +
                    else:
         
     | 
| 381 | 
         
            +
                        scaling_type = self.config.rope_scaling["type"]
         
     | 
| 382 | 
         
            +
                        
         
     | 
| 383 | 
         
            +
                        if scaling_type == "linear":
         
     | 
| 384 | 
         
            +
                            scaling_factor = self.config.rope_scaling["factor"]
         
     | 
| 385 | 
         
            +
                            self.rotary_emb = MiniCPMLinearScalingRotaryEmbedding(
         
     | 
| 386 | 
         
            +
                                self.head_dim,
         
     | 
| 387 | 
         
            +
                                max_position_embeddings=self.max_position_embeddings,
         
     | 
| 388 | 
         
            +
                                scaling_factor=scaling_factor,
         
     | 
| 389 | 
         
            +
                                base=self.rope_theta,
         
     | 
| 390 | 
         
            +
                            )
         
     | 
| 391 | 
         
            +
                        elif scaling_type == "dynamic":
         
     | 
| 392 | 
         
            +
                            scaling_factor = self.config.rope_scaling["factor"]
         
     | 
| 393 | 
         
            +
                            self.rotary_emb = MiniCPMDynamicNTKScalingRotaryEmbedding(
         
     | 
| 394 | 
         
            +
                                self.head_dim,
         
     | 
| 395 | 
         
            +
                                max_position_embeddings=self.max_position_embeddings,
         
     | 
| 396 | 
         
            +
                                scaling_factor=scaling_factor,
         
     | 
| 397 | 
         
            +
                                base=self.rope_theta,
         
     | 
| 398 | 
         
            +
                            )
         
     | 
| 399 | 
         
            +
                        elif scaling_type == "longrope":
         
     | 
| 400 | 
         
            +
                            self.rotary_emb = MiniCPMLongRoPE(
         
     | 
| 401 | 
         
            +
                                self.head_dim,
         
     | 
| 402 | 
         
            +
                                max_position_embeddings=self.max_position_embeddings,
         
     | 
| 403 | 
         
            +
                                short_factor = self.config.rope_scaling["short_factor"],
         
     | 
| 404 | 
         
            +
                                long_factor = self.config.rope_scaling["long_factor"],
         
     | 
| 405 | 
         
            +
                                base=self.rope_theta,
         
     | 
| 406 | 
         
            +
                                original_max_position_embeddings=self.config.rope_scaling["original_max_position_embeddings"]
         
     | 
| 407 | 
         
            +
                            )
         
     | 
| 408 | 
         
            +
                        else:
         
     | 
| 409 | 
         
            +
                            raise ValueError(f"Unknown RoPE scaling type {scaling_type}")
         
     | 
| 410 | 
         
            +
             
     | 
| 411 | 
         
            +
                def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
         
     | 
| 412 | 
         
            +
                    return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
         
     | 
| 413 | 
         
            +
             
     | 
| 414 | 
         
            +
                def forward(
         
     | 
| 415 | 
         
            +
                    self,
         
     | 
| 416 | 
         
            +
                    hidden_states: torch.Tensor,
         
     | 
| 417 | 
         
            +
                    attention_mask: Optional[torch.Tensor] = None,
         
     | 
| 418 | 
         
            +
                    position_ids: Optional[torch.LongTensor] = None,
         
     | 
| 419 | 
         
            +
                    past_key_value: Optional[Cache] = None,
         
     | 
| 420 | 
         
            +
                    output_attentions: bool = False,
         
     | 
| 421 | 
         
            +
                    use_cache: bool = False,
         
     | 
| 422 | 
         
            +
                    **kwargs,
         
     | 
| 423 | 
         
            +
                ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
         
     | 
| 424 | 
         
            +
                    if "padding_mask" in kwargs:
         
     | 
| 425 | 
         
            +
                        warnings.warn(
         
     | 
| 426 | 
         
            +
                            "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
         
     | 
| 427 | 
         
            +
                        )
         
     | 
| 428 | 
         
            +
             
     | 
| 429 | 
         
            +
                    bsz, q_len, _ = hidden_states.size()
         
     | 
| 430 | 
         
            +
             
     | 
| 431 | 
         
            +
                    if self.config.pretraining_tp > 1:
         
     | 
| 432 | 
         
            +
                        key_value_slicing = (self.num_key_value_heads * self.head_dim) // self.config.pretraining_tp
         
     | 
| 433 | 
         
            +
                        query_slices = self.q_proj.weight.split(
         
     | 
| 434 | 
         
            +
                            (self.num_heads * self.head_dim) // self.config.pretraining_tp, dim=0
         
     | 
| 435 | 
         
            +
                        )
         
     | 
| 436 | 
         
            +
                        key_slices = self.k_proj.weight.split(key_value_slicing, dim=0)
         
     | 
| 437 | 
         
            +
                        value_slices = self.v_proj.weight.split(key_value_slicing, dim=0)
         
     | 
| 438 | 
         
            +
             
     | 
| 439 | 
         
            +
                        query_states = [F.linear(hidden_states, query_slices[i]) for i in range(self.config.pretraining_tp)]
         
     | 
| 440 | 
         
            +
                        query_states = torch.cat(query_states, dim=-1)
         
     | 
| 441 | 
         
            +
             
     | 
| 442 | 
         
            +
                        key_states = [F.linear(hidden_states, key_slices[i]) for i in range(self.config.pretraining_tp)]
         
     | 
| 443 | 
         
            +
                        key_states = torch.cat(key_states, dim=-1)
         
     | 
| 444 | 
         
            +
             
     | 
| 445 | 
         
            +
                        value_states = [F.linear(hidden_states, value_slices[i]) for i in range(self.config.pretraining_tp)]
         
     | 
| 446 | 
         
            +
                        value_states = torch.cat(value_states, dim=-1)
         
     | 
| 447 | 
         
            +
             
     | 
| 448 | 
         
            +
                    else:
         
     | 
| 449 | 
         
            +
                        query_states = self.q_proj(hidden_states)
         
     | 
| 450 | 
         
            +
                        key_states = self.k_proj(hidden_states)
         
     | 
| 451 | 
         
            +
                        value_states = self.v_proj(hidden_states)
         
     | 
| 452 | 
         
            +
             
     | 
| 453 | 
         
            +
                    query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
         
     | 
| 454 | 
         
            +
                    key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
         
     | 
| 455 | 
         
            +
                    value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
         
     | 
| 456 | 
         
            +
             
     | 
| 457 | 
         
            +
                    kv_seq_len = key_states.shape[-2]
         
     | 
| 458 | 
         
            +
                    if past_key_value is not None:
         
     | 
| 459 | 
         
            +
                        if self.layer_idx is None:
         
     | 
| 460 | 
         
            +
                            raise ValueError(
         
     | 
| 461 | 
         
            +
                                f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
         
     | 
| 462 | 
         
            +
                                "for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
         
     | 
| 463 | 
         
            +
                                "with a layer index."
         
     | 
| 464 | 
         
            +
                            )
         
     | 
| 465 | 
         
            +
                        kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
         
     | 
| 466 | 
         
            +
                    cos, sin = self.rotary_emb(value_states.to(torch.float32), seq_len=kv_seq_len)
         
     | 
| 467 | 
         
            +
             
     | 
| 468 | 
         
            +
                    query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
         
     | 
| 469 | 
         
            +
             
     | 
| 470 | 
         
            +
                    if past_key_value is not None:
         
     | 
| 471 | 
         
            +
                        cache_kwargs = {"sin": sin, "cos": cos}  # Specific to RoPE models
         
     | 
| 472 | 
         
            +
                        key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
         
     | 
| 473 | 
         
            +
             
     | 
| 474 | 
         
            +
                    key_states = repeat_kv(key_states, self.num_key_value_groups)
         
     | 
| 475 | 
         
            +
                    value_states = repeat_kv(value_states, self.num_key_value_groups)
         
     | 
| 476 | 
         
            +
             
     | 
| 477 | 
         
            +
                    attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
         
     | 
| 478 | 
         
            +
                    if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
         
     | 
| 479 | 
         
            +
                        raise ValueError(
         
     | 
| 480 | 
         
            +
                            f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
         
     | 
| 481 | 
         
            +
                            f" {attn_weights.size()}"
         
     | 
| 482 | 
         
            +
                        )
         
     | 
| 483 | 
         
            +
             
     | 
| 484 | 
         
            +
                    if attention_mask is not None:
         
     | 
| 485 | 
         
            +
                        if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
         
     | 
| 486 | 
         
            +
                            raise ValueError(
         
     | 
| 487 | 
         
            +
                                f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
         
     | 
| 488 | 
         
            +
                            )
         
     | 
| 489 | 
         
            +
                        attn_weights = attn_weights + attention_mask
         
     | 
| 490 | 
         
            +
             
     | 
| 491 | 
         
            +
                    # upcast attention to fp32
         
     | 
| 492 | 
         
            +
                    attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
         
     | 
| 493 | 
         
            +
                    attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
         
     | 
| 494 | 
         
            +
                    attn_output = torch.matmul(attn_weights, value_states)
         
     | 
| 495 | 
         
            +
             
     | 
| 496 | 
         
            +
                    if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
         
     | 
| 497 | 
         
            +
                        raise ValueError(
         
     | 
| 498 | 
         
            +
                            f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
         
     | 
| 499 | 
         
            +
                            f" {attn_output.size()}"
         
     | 
| 500 | 
         
            +
                        )
         
     | 
| 501 | 
         
            +
             
     | 
| 502 | 
         
            +
                    attn_output = attn_output.transpose(1, 2).contiguous()
         
     | 
| 503 | 
         
            +
             
     | 
| 504 | 
         
            +
                    attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
         
     | 
| 505 | 
         
            +
             
     | 
| 506 | 
         
            +
                    if self.config.pretraining_tp > 1:
         
     | 
| 507 | 
         
            +
                        attn_output = attn_output.split(self.hidden_size // self.config.pretraining_tp, dim=2)
         
     | 
| 508 | 
         
            +
                        o_proj_slices = self.o_proj.weight.split(self.hidden_size // self.config.pretraining_tp, dim=1)
         
     | 
| 509 | 
         
            +
                        attn_output = sum([F.linear(attn_output[i], o_proj_slices[i]) for i in range(self.config.pretraining_tp)])
         
     | 
| 510 | 
         
            +
                    else:
         
     | 
| 511 | 
         
            +
                        attn_output = self.o_proj(attn_output)
         
     | 
| 512 | 
         
            +
             
     | 
| 513 | 
         
            +
                    if not output_attentions:
         
     | 
| 514 | 
         
            +
                        attn_weights = None
         
     | 
| 515 | 
         
            +
                    
         
     | 
| 516 | 
         
            +
                    return attn_output, attn_weights, past_key_value
         
     | 
| 517 | 
         
            +
             
     | 
| 518 | 
         
            +
             
     | 
| 519 | 
         
            +
            class MiniCPMFlashAttention2(MiniCPMAttention):
         
     | 
| 520 | 
         
            +
                """
         
     | 
| 521 | 
         
            +
                MiniCPM flash attention module. This module inherits from `MiniCPMAttention` as the weights of the module stays
         
     | 
| 522 | 
         
            +
                untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
         
     | 
| 523 | 
         
            +
                flash attention and deal with padding tokens in case the input contains any of them.
         
     | 
| 524 | 
         
            +
                """
         
     | 
| 525 | 
         
            +
             
     | 
| 526 | 
         
            +
                def __init__(self, *args, **kwargs):
         
     | 
| 527 | 
         
            +
                    super().__init__(*args, **kwargs)
         
     | 
| 528 | 
         
            +
             
     | 
| 529 | 
         
            +
                    # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
         
     | 
| 530 | 
         
            +
                    # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
         
     | 
| 531 | 
         
            +
                    # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
         
     | 
| 532 | 
         
            +
                    self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
         
     | 
| 533 | 
         
            +
             
     | 
| 534 | 
         
            +
                def forward(
         
     | 
| 535 | 
         
            +
                    self,
         
     | 
| 536 | 
         
            +
                    hidden_states: torch.Tensor,
         
     | 
| 537 | 
         
            +
                    attention_mask: Optional[torch.LongTensor] = None,
         
     | 
| 538 | 
         
            +
                    position_ids: Optional[torch.LongTensor] = None,
         
     | 
| 539 | 
         
            +
                    past_key_value: Optional[Cache] = None,
         
     | 
| 540 | 
         
            +
                    output_attentions: bool = False,
         
     | 
| 541 | 
         
            +
                    use_cache: bool = False,
         
     | 
| 542 | 
         
            +
                    **kwargs,
         
     | 
| 543 | 
         
            +
                ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
         
     | 
| 544 | 
         
            +
                    # MiniCPMFlashAttention2 attention does not support output_attentions
         
     | 
| 545 | 
         
            +
                    if "padding_mask" in kwargs:
         
     | 
| 546 | 
         
            +
                        warnings.warn(
         
     | 
| 547 | 
         
            +
                            "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
         
     | 
| 548 | 
         
            +
                        )
         
     | 
| 549 | 
         
            +
             
     | 
| 550 | 
         
            +
                        # overwrite attention_mask with padding_mask
         
     | 
| 551 | 
         
            +
                        attention_mask = kwargs.pop("padding_mask")
         
     | 
| 552 | 
         
            +
             
     | 
| 553 | 
         
            +
                    output_attentions = False
         
     | 
| 554 | 
         
            +
             
     | 
| 555 | 
         
            +
                    bsz, q_len, _ = hidden_states.size()
         
     | 
| 556 | 
         
            +
             
     | 
| 557 | 
         
            +
                    query_states = self.q_proj(hidden_states)
         
     | 
| 558 | 
         
            +
                    key_states = self.k_proj(hidden_states)
         
     | 
| 559 | 
         
            +
                    value_states = self.v_proj(hidden_states)
         
     | 
| 560 | 
         
            +
             
     | 
| 561 | 
         
            +
                    # Flash attention requires the input to have the shape
         
     | 
| 562 | 
         
            +
                    # batch_size x seq_length x head_dim x hidden_dim
         
     | 
| 563 | 
         
            +
                    # therefore we just need to keep the original shape
         
     | 
| 564 | 
         
            +
                    query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
         
     | 
| 565 | 
         
            +
                    key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
         
     | 
| 566 | 
         
            +
                    value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
         
     | 
| 567 | 
         
            +
             
     | 
| 568 | 
         
            +
                    kv_seq_len = key_states.shape[-2]
         
     | 
| 569 | 
         
            +
                    if past_key_value is not None:
         
     | 
| 570 | 
         
            +
                        kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
         
     | 
| 571 | 
         
            +
                    cos, sin = self.rotary_emb(value_states.to(torch.float32), seq_len=kv_seq_len)
         
     | 
| 572 | 
         
            +
                    query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
         
     | 
| 573 | 
         
            +
             
     | 
| 574 | 
         
            +
                    if past_key_value is not None:
         
     | 
| 575 | 
         
            +
                        cache_kwargs = {"sin": sin, "cos": cos}  # Specific to RoPE models
         
     | 
| 576 | 
         
            +
                        key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
         
     | 
| 577 | 
         
            +
             
     | 
| 578 | 
         
            +
                    # TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
         
     | 
| 579 | 
         
            +
                    # to be able to avoid many of these transpose/reshape/view.
         
     | 
| 580 | 
         
            +
                    query_states = query_states.transpose(1, 2)
         
     | 
| 581 | 
         
            +
                    key_states = key_states.transpose(1, 2)
         
     | 
| 582 | 
         
            +
                    value_states = value_states.transpose(1, 2)
         
     | 
| 583 | 
         
            +
             
     | 
| 584 | 
         
            +
                    dropout_rate = self.attention_dropout if self.training else 0.0
         
     | 
| 585 | 
         
            +
             
     | 
| 586 | 
         
            +
                    # In PEFT, usually we cast the layer norms in float32 for training stability reasons
         
     | 
| 587 | 
         
            +
                    # therefore the input hidden states gets silently casted in float32. Hence, we need
         
     | 
| 588 | 
         
            +
                    # cast them back in the correct dtype just to be sure everything works as expected.
         
     | 
| 589 | 
         
            +
                    # This might slowdown training & inference so it is recommended to not cast the LayerNorms
         
     | 
| 590 | 
         
            +
                    # in fp32. (MiniCPMRMSNorm handles it correctly)
         
     | 
| 591 | 
         
            +
             
     | 
| 592 | 
         
            +
                    input_dtype = query_states.dtype
         
     | 
| 593 | 
         
            +
                    if input_dtype == torch.float32:
         
     | 
| 594 | 
         
            +
                        # Handle the case where the model is quantized
         
     | 
| 595 | 
         
            +
                        if hasattr(self.config, "_pre_quantization_dtype"):
         
     | 
| 596 | 
         
            +
                            target_dtype = self.config._pre_quantization_dtype
         
     | 
| 597 | 
         
            +
                        else:
         
     | 
| 598 | 
         
            +
                            target_dtype = self.q_proj.weight.dtype
         
     | 
| 599 | 
         
            +
             
     | 
| 600 | 
         
            +
                        logger.warning_once(
         
     | 
| 601 | 
         
            +
                            f"The input hidden states seems to be silently casted in float32, this might be related to"
         
     | 
| 602 | 
         
            +
                            f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
         
     | 
| 603 | 
         
            +
                            f" {target_dtype}."
         
     | 
| 604 | 
         
            +
                        )
         
     | 
| 605 | 
         
            +
             
     | 
| 606 | 
         
            +
                        query_states = query_states.to(target_dtype)
         
     | 
| 607 | 
         
            +
                        key_states = key_states.to(target_dtype)
         
     | 
| 608 | 
         
            +
                        value_states = value_states.to(target_dtype)
         
     | 
| 609 | 
         
            +
             
     | 
| 610 | 
         
            +
                    attn_output = self._flash_attention_forward(
         
     | 
| 611 | 
         
            +
                        query_states, key_states, value_states, attention_mask, q_len, dropout=dropout_rate
         
     | 
| 612 | 
         
            +
                    )
         
     | 
| 613 | 
         
            +
             
     | 
| 614 | 
         
            +
                    attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
         
     | 
| 615 | 
         
            +
                    attn_output = self.o_proj(attn_output)
         
     | 
| 616 | 
         
            +
             
     | 
| 617 | 
         
            +
                    if not output_attentions:
         
     | 
| 618 | 
         
            +
                        attn_weights = None
         
     | 
| 619 | 
         
            +
             
     | 
| 620 | 
         
            +
                    return attn_output, attn_weights, past_key_value
         
     | 
| 621 | 
         
            +
             
     | 
| 622 | 
         
            +
                def _flash_attention_forward(
         
     | 
| 623 | 
         
            +
                    self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None
         
     | 
| 624 | 
         
            +
                ):
         
     | 
| 625 | 
         
            +
                    """
         
     | 
| 626 | 
         
            +
                    Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
         
     | 
| 627 | 
         
            +
                    first unpad the input, then computes the attention scores and pad the final attention scores.
         
     | 
| 628 | 
         
            +
             
     | 
| 629 | 
         
            +
                    Args:
         
     | 
| 630 | 
         
            +
                        query_states (`torch.Tensor`):
         
     | 
| 631 | 
         
            +
                            Input query states to be passed to Flash Attention API
         
     | 
| 632 | 
         
            +
                        key_states (`torch.Tensor`):
         
     | 
| 633 | 
         
            +
                            Input key states to be passed to Flash Attention API
         
     | 
| 634 | 
         
            +
                        value_states (`torch.Tensor`):
         
     | 
| 635 | 
         
            +
                            Input value states to be passed to Flash Attention API
         
     | 
| 636 | 
         
            +
                        attention_mask (`torch.Tensor`):
         
     | 
| 637 | 
         
            +
                            The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
         
     | 
| 638 | 
         
            +
                            position of padding tokens and 1 for the position of non-padding tokens.
         
     | 
| 639 | 
         
            +
                        dropout (`int`, *optional*):
         
     | 
| 640 | 
         
            +
                            Attention dropout
         
     | 
| 641 | 
         
            +
                        softmax_scale (`float`, *optional*):
         
     | 
| 642 | 
         
            +
                            The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
         
     | 
| 643 | 
         
            +
                    """
         
     | 
| 644 | 
         
            +
                    if not self._flash_attn_uses_top_left_mask:
         
     | 
| 645 | 
         
            +
                        causal = self.is_causal
         
     | 
| 646 | 
         
            +
                    else:
         
     | 
| 647 | 
         
            +
                        # TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in MiniCPMFlashAttention2 __init__.
         
     | 
| 648 | 
         
            +
                        causal = self.is_causal and query_length != 1
         
     | 
| 649 | 
         
            +
                    # Contains at least one padding token in the sequence
         
     | 
| 650 | 
         
            +
                    if attention_mask is not None:
         
     | 
| 651 | 
         
            +
                        batch_size = query_states.shape[0]
         
     | 
| 652 | 
         
            +
                        query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
         
     | 
| 653 | 
         
            +
                            query_states, key_states, value_states, attention_mask, query_length
         
     | 
| 654 | 
         
            +
                        )
         
     | 
| 655 | 
         
            +
             
     | 
| 656 | 
         
            +
                        cu_seqlens_q, cu_seqlens_k = cu_seq_lens
         
     | 
| 657 | 
         
            +
                        max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
         
     | 
| 658 | 
         
            +
                        attn_output_unpad = flash_attn_varlen_func(
         
     | 
| 659 | 
         
            +
                            query_states,
         
     | 
| 660 | 
         
            +
                            key_states,
         
     | 
| 661 | 
         
            +
                            value_states,
         
     | 
| 662 | 
         
            +
                            cu_seqlens_q=cu_seqlens_q,
         
     | 
| 663 | 
         
            +
                            cu_seqlens_k=cu_seqlens_k,
         
     | 
| 664 | 
         
            +
                            max_seqlen_q=max_seqlen_in_batch_q,
         
     | 
| 665 | 
         
            +
                            max_seqlen_k=max_seqlen_in_batch_k,
         
     | 
| 666 | 
         
            +
                            dropout_p=dropout,
         
     | 
| 667 | 
         
            +
                            softmax_scale=softmax_scale,
         
     | 
| 668 | 
         
            +
                            causal=causal,
         
     | 
| 669 | 
         
            +
                        )
         
     | 
| 670 | 
         
            +
             
     | 
| 671 | 
         
            +
                        attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
         
     | 
| 672 | 
         
            +
                    else:
         
     | 
| 673 | 
         
            +
                        attn_output = flash_attn_func(
         
     | 
| 674 | 
         
            +
                            query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal
         
     | 
| 675 | 
         
            +
                        )
         
     | 
| 676 | 
         
            +
             
     | 
| 677 | 
         
            +
                    return attn_output
         
     | 
| 678 | 
         
            +
             
     | 
| 679 | 
         
            +
                def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
         
     | 
| 680 | 
         
            +
                    indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
         
     | 
| 681 | 
         
            +
                    batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
         
     | 
| 682 | 
         
            +
             
     | 
| 683 | 
         
            +
                    key_layer = index_first_axis(
         
     | 
| 684 | 
         
            +
                        key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
         
     | 
| 685 | 
         
            +
                    )
         
     | 
| 686 | 
         
            +
                    value_layer = index_first_axis(
         
     | 
| 687 | 
         
            +
                        value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
         
     | 
| 688 | 
         
            +
                    )
         
     | 
| 689 | 
         
            +
                    if query_length == kv_seq_len:
         
     | 
| 690 | 
         
            +
                        query_layer = index_first_axis(
         
     | 
| 691 | 
         
            +
                            query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k
         
     | 
| 692 | 
         
            +
                        )
         
     | 
| 693 | 
         
            +
                        cu_seqlens_q = cu_seqlens_k
         
     | 
| 694 | 
         
            +
                        max_seqlen_in_batch_q = max_seqlen_in_batch_k
         
     | 
| 695 | 
         
            +
                        indices_q = indices_k
         
     | 
| 696 | 
         
            +
                    elif query_length == 1:
         
     | 
| 697 | 
         
            +
                        max_seqlen_in_batch_q = 1
         
     | 
| 698 | 
         
            +
                        cu_seqlens_q = torch.arange(
         
     | 
| 699 | 
         
            +
                            batch_size + 1, dtype=torch.int32, device=query_layer.device
         
     | 
| 700 | 
         
            +
                        )  # There is a memcpy here, that is very bad.
         
     | 
| 701 | 
         
            +
                        indices_q = cu_seqlens_q[:-1]
         
     | 
| 702 | 
         
            +
                        query_layer = query_layer.squeeze(1)
         
     | 
| 703 | 
         
            +
                    else:
         
     | 
| 704 | 
         
            +
                        # The -q_len: slice assumes left padding.
         
     | 
| 705 | 
         
            +
                        attention_mask = attention_mask[:, -query_length:]
         
     | 
| 706 | 
         
            +
                        query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
         
     | 
| 707 | 
         
            +
             
     | 
| 708 | 
         
            +
                    return (
         
     | 
| 709 | 
         
            +
                        query_layer,
         
     | 
| 710 | 
         
            +
                        key_layer,
         
     | 
| 711 | 
         
            +
                        value_layer,
         
     | 
| 712 | 
         
            +
                        indices_q,
         
     | 
| 713 | 
         
            +
                        (cu_seqlens_q, cu_seqlens_k),
         
     | 
| 714 | 
         
            +
                        (max_seqlen_in_batch_q, max_seqlen_in_batch_k),
         
     | 
| 715 | 
         
            +
                    )
         
     | 
| 716 | 
         
            +
             
     | 
| 717 | 
         
            +
             
     | 
| 718 | 
         
            +
            class MiniCPMSdpaAttention(MiniCPMAttention):
         
     | 
| 719 | 
         
            +
                """
         
     | 
| 720 | 
         
            +
                MiniCPM attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
         
     | 
| 721 | 
         
            +
                `MiniCPMAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
         
     | 
| 722 | 
         
            +
                SDPA API.
         
     | 
| 723 | 
         
            +
                """
         
     | 
| 724 | 
         
            +
             
     | 
| 725 | 
         
            +
                # Adapted from MiniCPMAttention.forward
         
     | 
| 726 | 
         
            +
                def forward(
         
     | 
| 727 | 
         
            +
                    self,
         
     | 
| 728 | 
         
            +
                    hidden_states: torch.Tensor,
         
     | 
| 729 | 
         
            +
                    attention_mask: Optional[torch.Tensor] = None,
         
     | 
| 730 | 
         
            +
                    position_ids: Optional[torch.LongTensor] = None,
         
     | 
| 731 | 
         
            +
                    past_key_value: Optional[Cache] = None,
         
     | 
| 732 | 
         
            +
                    output_attentions: bool = False,
         
     | 
| 733 | 
         
            +
                    use_cache: bool = False,
         
     | 
| 734 | 
         
            +
                ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
         
     | 
| 735 | 
         
            +
                    if output_attentions:
         
     | 
| 736 | 
         
            +
                        # TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
         
     | 
| 737 | 
         
            +
                        logger.warning_once(
         
     | 
| 738 | 
         
            +
                            "MiniCPMModel is using MiniCPMSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
         
     | 
| 739 | 
         
            +
                            'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
         
     | 
| 740 | 
         
            +
                        )
         
     | 
| 741 | 
         
            +
                        return super().forward(
         
     | 
| 742 | 
         
            +
                            hidden_states=hidden_states,
         
     | 
| 743 | 
         
            +
                            attention_mask=attention_mask,
         
     | 
| 744 | 
         
            +
                            position_ids=position_ids,
         
     | 
| 745 | 
         
            +
                            past_key_value=past_key_value,
         
     | 
| 746 | 
         
            +
                            output_attentions=output_attentions,
         
     | 
| 747 | 
         
            +
                            use_cache=use_cache,
         
     | 
| 748 | 
         
            +
                        )
         
     | 
| 749 | 
         
            +
             
     | 
| 750 | 
         
            +
                    bsz, q_len, _ = hidden_states.size()
         
     | 
| 751 | 
         
            +
             
     | 
| 752 | 
         
            +
                    query_states = self.q_proj(hidden_states)
         
     | 
| 753 | 
         
            +
                    key_states = self.k_proj(hidden_states)
         
     | 
| 754 | 
         
            +
                    value_states = self.v_proj(hidden_states)
         
     | 
| 755 | 
         
            +
             
     | 
| 756 | 
         
            +
                    query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
         
     | 
| 757 | 
         
            +
                    key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
         
     | 
| 758 | 
         
            +
                    value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
         
     | 
| 759 | 
         
            +
             
     | 
| 760 | 
         
            +
                    kv_seq_len = key_states.shape[-2]
         
     | 
| 761 | 
         
            +
                    if past_key_value is not None:
         
     | 
| 762 | 
         
            +
                        kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
         
     | 
| 763 | 
         
            +
                    cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
         
     | 
| 764 | 
         
            +
             
     | 
| 765 | 
         
            +
                    query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
         
     | 
| 766 | 
         
            +
             
     | 
| 767 | 
         
            +
                    if past_key_value is not None:
         
     | 
| 768 | 
         
            +
                        cache_kwargs = {"sin": sin, "cos": cos}  # Specific to RoPE models
         
     | 
| 769 | 
         
            +
                        key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
         
     | 
| 770 | 
         
            +
             
     | 
| 771 | 
         
            +
                    key_states = repeat_kv(key_states, self.num_key_value_groups)
         
     | 
| 772 | 
         
            +
                    value_states = repeat_kv(value_states, self.num_key_value_groups)
         
     | 
| 773 | 
         
            +
             
     | 
| 774 | 
         
            +
                    if attention_mask is not None:
         
     | 
| 775 | 
         
            +
                        if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
         
     | 
| 776 | 
         
            +
                            raise ValueError(
         
     | 
| 777 | 
         
            +
                                f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
         
     | 
| 778 | 
         
            +
                            )
         
     | 
| 779 | 
         
            +
             
     | 
| 780 | 
         
            +
                    # SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
         
     | 
| 781 | 
         
            +
                    # Reference: https://github.com/pytorch/pytorch/issues/112577.
         
     | 
| 782 | 
         
            +
                    if query_states.device.type == "cuda" and attention_mask is not None:
         
     | 
| 783 | 
         
            +
                        query_states = query_states.contiguous()
         
     | 
| 784 | 
         
            +
                        key_states = key_states.contiguous()
         
     | 
| 785 | 
         
            +
                        value_states = value_states.contiguous()
         
     | 
| 786 | 
         
            +
             
     | 
| 787 | 
         
            +
                    attn_output = torch.nn.functional.scaled_dot_product_attention(
         
     | 
| 788 | 
         
            +
                        query_states,
         
     | 
| 789 | 
         
            +
                        key_states,
         
     | 
| 790 | 
         
            +
                        value_states,
         
     | 
| 791 | 
         
            +
                        attn_mask=attention_mask,
         
     | 
| 792 | 
         
            +
                        dropout_p=self.attention_dropout if self.training else 0.0,
         
     | 
| 793 | 
         
            +
                        # The q_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case q_len == 1.
         
     | 
| 794 | 
         
            +
                        is_causal=self.is_causal and attention_mask is None and q_len > 1,
         
     | 
| 795 | 
         
            +
                    )
         
     | 
| 796 | 
         
            +
             
     | 
| 797 | 
         
            +
                    attn_output = attn_output.transpose(1, 2).contiguous()
         
     | 
| 798 | 
         
            +
                    attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
         
     | 
| 799 | 
         
            +
             
     | 
| 800 | 
         
            +
                    attn_output = self.o_proj(attn_output)
         
     | 
| 801 | 
         
            +
             
     | 
| 802 | 
         
            +
                    return attn_output, None, past_key_value
         
     | 
| 803 | 
         
            +
             
     | 
| 804 | 
         
            +
             
     | 
| 805 | 
         
            +
            MINICPM_ATTENTION_CLASSES = {
         
     | 
| 806 | 
         
            +
                "eager": MiniCPMAttention,
         
     | 
| 807 | 
         
            +
                "flash_attention_2": MiniCPMFlashAttention2,
         
     | 
| 808 | 
         
            +
                "sdpa": MiniCPMSdpaAttention,
         
     | 
| 809 | 
         
            +
            }
         
     | 
| 810 | 
         
            +
             
     | 
| 811 | 
         
            +
             
     | 
| 812 | 
         
            +
            class MiniCPMDecoderLayer(nn.Module):
         
     | 
| 813 | 
         
            +
                def __init__(self, config: MiniCPMConfig, layer_idx: int):
         
     | 
| 814 | 
         
            +
                    super().__init__()
         
     | 
| 815 | 
         
            +
                    self.hidden_size = config.hidden_size
         
     | 
| 816 | 
         
            +
                    self.self_attn = MINICPM_ATTENTION_CLASSES[config._attn_implementation](config=config, layer_idx=layer_idx)
         
     | 
| 817 | 
         
            +
             
     | 
| 818 | 
         
            +
                    self.mlp = MiniCPMMLP(config)
         
     | 
| 819 | 
         
            +
                    self.input_layernorm = MiniCPMRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
         
     | 
| 820 | 
         
            +
                    self.post_attention_layernorm = MiniCPMRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
         
     | 
| 821 | 
         
            +
             
     | 
| 822 | 
         
            +
                    self.scale_depth = config.scale_depth
         
     | 
| 823 | 
         
            +
                    self.num_hidden_layers = config.num_hidden_layers
         
     | 
| 824 | 
         
            +
             
     | 
| 825 | 
         
            +
                def forward(
         
     | 
| 826 | 
         
            +
                    self,
         
     | 
| 827 | 
         
            +
                    hidden_states: torch.Tensor,
         
     | 
| 828 | 
         
            +
                    attention_mask: Optional[torch.Tensor] = None,
         
     | 
| 829 | 
         
            +
                    position_ids: Optional[torch.LongTensor] = None,
         
     | 
| 830 | 
         
            +
                    past_key_value: Optional[Tuple[torch.Tensor]] = None,
         
     | 
| 831 | 
         
            +
                    output_attentions: Optional[bool] = False,
         
     | 
| 832 | 
         
            +
                    use_cache: Optional[bool] = False,
         
     | 
| 833 | 
         
            +
                    **kwargs,
         
     | 
| 834 | 
         
            +
                ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
         
     | 
| 835 | 
         
            +
                    """
         
     | 
| 836 | 
         
            +
                    Args:
         
     | 
| 837 | 
         
            +
                        hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
         
     | 
| 838 | 
         
            +
                        attention_mask (`torch.FloatTensor`, *optional*):
         
     | 
| 839 | 
         
            +
                            attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1,
         
     | 
| 840 | 
         
            +
                            query_sequence_length, key_sequence_length)` if default attention is used.
         
     | 
| 841 | 
         
            +
                        output_attentions (`bool`, *optional*):
         
     | 
| 842 | 
         
            +
                            Whether or not to return the attentions tensors of all attention layers. See `attentions` under
         
     | 
| 843 | 
         
            +
                            returned tensors for more detail.
         
     | 
| 844 | 
         
            +
                        use_cache (`bool`, *optional*):
         
     | 
| 845 | 
         
            +
                            If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
         
     | 
| 846 | 
         
            +
                            (see `past_key_values`).
         
     | 
| 847 | 
         
            +
                        past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
         
     | 
| 848 | 
         
            +
                    """
         
     | 
| 849 | 
         
            +
                    if "padding_mask" in kwargs:
         
     | 
| 850 | 
         
            +
                        warnings.warn(
         
     | 
| 851 | 
         
            +
                            "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
         
     | 
| 852 | 
         
            +
                        )
         
     | 
| 853 | 
         
            +
             
     | 
| 854 | 
         
            +
                    residual = hidden_states
         
     | 
| 855 | 
         
            +
                    hidden_states = self.input_layernorm(hidden_states)
         
     | 
| 856 | 
         
            +
                    # Self Attention
         
     | 
| 857 | 
         
            +
                    hidden_states, self_attn_weights, present_key_value = self.self_attn(
         
     | 
| 858 | 
         
            +
                        hidden_states=hidden_states,
         
     | 
| 859 | 
         
            +
                        attention_mask=attention_mask,
         
     | 
| 860 | 
         
            +
                        position_ids=position_ids,
         
     | 
| 861 | 
         
            +
                        past_key_value=past_key_value,
         
     | 
| 862 | 
         
            +
                        output_attentions=output_attentions,
         
     | 
| 863 | 
         
            +
                        use_cache=use_cache,
         
     | 
| 864 | 
         
            +
                        **kwargs,
         
     | 
| 865 | 
         
            +
                    )
         
     | 
| 866 | 
         
            +
                    
         
     | 
| 867 | 
         
            +
                    hidden_states = residual + hidden_states * (self.scale_depth / math.sqrt(self.num_hidden_layers))
         
     | 
| 868 | 
         
            +
             
     | 
| 869 | 
         
            +
                    # Fully Connected
         
     | 
| 870 | 
         
            +
                    residual = hidden_states
         
     | 
| 871 | 
         
            +
                    hidden_states = self.post_attention_layernorm(hidden_states)
         
     | 
| 872 | 
         
            +
             
     | 
| 873 | 
         
            +
                    hidden_states = self.mlp(hidden_states)
         
     | 
| 874 | 
         
            +
                    hidden_states = residual + hidden_states * (self.scale_depth / math.sqrt(self.num_hidden_layers))
         
     | 
| 875 | 
         
            +
             
     | 
| 876 | 
         
            +
                    outputs = (hidden_states,)
         
     | 
| 877 | 
         
            +
             
     | 
| 878 | 
         
            +
                    if output_attentions:
         
     | 
| 879 | 
         
            +
                        outputs += (self_attn_weights,)
         
     | 
| 880 | 
         
            +
             
     | 
| 881 | 
         
            +
                    if use_cache:
         
     | 
| 882 | 
         
            +
                        outputs += (present_key_value,)
         
     | 
| 883 | 
         
            +
             
     | 
| 884 | 
         
            +
                    return outputs
         
     | 
| 885 | 
         
            +
             
     | 
| 886 | 
         
            +
             
     | 
| 887 | 
         
            +
            MINICPM_START_DOCSTRING = r"""
         
     | 
| 888 | 
         
            +
                This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
         
     | 
| 889 | 
         
            +
                library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
         
     | 
| 890 | 
         
            +
                etc.)
         
     | 
| 891 | 
         
            +
             
     | 
| 892 | 
         
            +
                This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
         
     | 
| 893 | 
         
            +
                Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
         
     | 
| 894 | 
         
            +
                and behavior.
         
     | 
| 895 | 
         
            +
             
     | 
| 896 | 
         
            +
                Parameters:
         
     | 
| 897 | 
         
            +
                    config ([`MiniCPMConfig`]):
         
     | 
| 898 | 
         
            +
                        Model configuration class with all the parameters of the model. Initializing with a config file does not
         
     | 
| 899 | 
         
            +
                        load the weights associated with the model, only the configuration. Check out the
         
     | 
| 900 | 
         
            +
                        [`~PreTrainedModel.from_pretrained`] method to load the model weights.
         
     | 
| 901 | 
         
            +
            """
         
     | 
| 902 | 
         
            +
             
     | 
| 903 | 
         
            +
             
     | 
| 904 | 
         
            +
            @add_start_docstrings(
         
     | 
| 905 | 
         
            +
                "The bare MiniCPM Model outputting raw hidden-states without any specific head on top.",
         
     | 
| 906 | 
         
            +
                MINICPM_START_DOCSTRING,
         
     | 
| 907 | 
         
            +
            )
         
     | 
| 908 | 
         
            +
            class MiniCPMPreTrainedModel(PreTrainedModel):
         
     | 
| 909 | 
         
            +
                config_class = MiniCPMConfig
         
     | 
| 910 | 
         
            +
                base_model_prefix = "model"
         
     | 
| 911 | 
         
            +
                supports_gradient_checkpointing = True
         
     | 
| 912 | 
         
            +
                _no_split_modules = ["MiniCPMDecoderLayer"]
         
     | 
| 913 | 
         
            +
                _skip_keys_device_placement = "past_key_values"
         
     | 
| 914 | 
         
            +
                _supports_flash_attn_2 = True
         
     | 
| 915 | 
         
            +
                _supports_sdpa = True
         
     | 
| 916 | 
         
            +
                _supports_cache_class = True
         
     | 
| 917 | 
         
            +
             
     | 
| 918 | 
         
            +
                def _init_weights(self, module):
         
     | 
| 919 | 
         
            +
                    std = self.config.initializer_range
         
     | 
| 920 | 
         
            +
                    if isinstance(module, nn.Linear):
         
     | 
| 921 | 
         
            +
                        module.weight.data.normal_(mean=0.0, std=std)
         
     | 
| 922 | 
         
            +
                        if module.bias is not None:
         
     | 
| 923 | 
         
            +
                            module.bias.data.zero_()
         
     | 
| 924 | 
         
            +
                    elif isinstance(module, nn.Embedding):
         
     | 
| 925 | 
         
            +
                        module.weight.data.normal_(mean=0.0, std=std)
         
     | 
| 926 | 
         
            +
                        if module.padding_idx is not None:
         
     | 
| 927 | 
         
            +
                            module.weight.data[module.padding_idx].zero_()
         
     | 
| 928 | 
         
            +
             
     | 
| 929 | 
         
            +
             
     | 
| 930 | 
         
            +
            MINICPM_INPUTS_DOCSTRING = r"""
         
     | 
| 931 | 
         
            +
                Args:
         
     | 
| 932 | 
         
            +
                    input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
         
     | 
| 933 | 
         
            +
                        Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
         
     | 
| 934 | 
         
            +
                        it.
         
     | 
| 935 | 
         
            +
             
     | 
| 936 | 
         
            +
                        Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
         
     | 
| 937 | 
         
            +
                        [`PreTrainedTokenizer.__call__`] for details.
         
     | 
| 938 | 
         
            +
             
     | 
| 939 | 
         
            +
                        [What are input IDs?](../glossary#input-ids)
         
     | 
| 940 | 
         
            +
                    attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
         
     | 
| 941 | 
         
            +
                        Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
         
     | 
| 942 | 
         
            +
             
     | 
| 943 | 
         
            +
                        - 1 for tokens that are **not masked**,
         
     | 
| 944 | 
         
            +
                        - 0 for tokens that are **masked**.
         
     | 
| 945 | 
         
            +
             
     | 
| 946 | 
         
            +
                        [What are attention masks?](../glossary#attention-mask)
         
     | 
| 947 | 
         
            +
             
     | 
| 948 | 
         
            +
                        Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
         
     | 
| 949 | 
         
            +
                        [`PreTrainedTokenizer.__call__`] for details.
         
     | 
| 950 | 
         
            +
             
     | 
| 951 | 
         
            +
                        If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
         
     | 
| 952 | 
         
            +
                        `past_key_values`).
         
     | 
| 953 | 
         
            +
             
     | 
| 954 | 
         
            +
                        If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
         
     | 
| 955 | 
         
            +
                        and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
         
     | 
| 956 | 
         
            +
                        information on the default strategy.
         
     | 
| 957 | 
         
            +
             
     | 
| 958 | 
         
            +
                        - 1 indicates the head is **not masked**,
         
     | 
| 959 | 
         
            +
                        - 0 indicates the head is **masked**.
         
     | 
| 960 | 
         
            +
                    position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
         
     | 
| 961 | 
         
            +
                        Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
         
     | 
| 962 | 
         
            +
                        config.n_positions - 1]`.
         
     | 
| 963 | 
         
            +
             
     | 
| 964 | 
         
            +
                        [What are position IDs?](../glossary#position-ids)
         
     | 
| 965 | 
         
            +
                    past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
         
     | 
| 966 | 
         
            +
                        Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
         
     | 
| 967 | 
         
            +
                        blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
         
     | 
| 968 | 
         
            +
                        returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
         
     | 
| 969 | 
         
            +
             
     | 
| 970 | 
         
            +
                        Two formats are allowed:
         
     | 
| 971 | 
         
            +
                        - a [`~cache_utils.Cache`] instance;
         
     | 
| 972 | 
         
            +
                        - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
         
     | 
| 973 | 
         
            +
                        shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
         
     | 
| 974 | 
         
            +
                        cache format.
         
     | 
| 975 | 
         
            +
             
     | 
| 976 | 
         
            +
                        The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
         
     | 
| 977 | 
         
            +
                        legacy cache format will be returned.
         
     | 
| 978 | 
         
            +
             
     | 
| 979 | 
         
            +
                        If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
         
     | 
| 980 | 
         
            +
                        have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
         
     | 
| 981 | 
         
            +
                        of shape `(batch_size, sequence_length)`.
         
     | 
| 982 | 
         
            +
                    inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
         
     | 
| 983 | 
         
            +
                        Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
         
     | 
| 984 | 
         
            +
                        is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
         
     | 
| 985 | 
         
            +
                        model's internal embedding lookup matrix.
         
     | 
| 986 | 
         
            +
                    use_cache (`bool`, *optional*):
         
     | 
| 987 | 
         
            +
                        If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
         
     | 
| 988 | 
         
            +
                        `past_key_values`).
         
     | 
| 989 | 
         
            +
                    output_attentions (`bool`, *optional*):
         
     | 
| 990 | 
         
            +
                        Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
         
     | 
| 991 | 
         
            +
                        tensors for more detail.
         
     | 
| 992 | 
         
            +
                    output_hidden_states (`bool`, *optional*):
         
     | 
| 993 | 
         
            +
                        Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
         
     | 
| 994 | 
         
            +
                        more detail.
         
     | 
| 995 | 
         
            +
                    return_dict (`bool`, *optional*):
         
     | 
| 996 | 
         
            +
                        Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
         
     | 
| 997 | 
         
            +
            """
         
     | 
| 998 | 
         
            +
             
     | 
| 999 | 
         
            +
             
     | 
| 1000 | 
         
            +
            @add_start_docstrings(
         
     | 
| 1001 | 
         
            +
                "The bare MiniCPM Model outputting raw hidden-states without any specific head on top.",
         
     | 
| 1002 | 
         
            +
                MINICPM_START_DOCSTRING,
         
     | 
| 1003 | 
         
            +
            )
         
     | 
| 1004 | 
         
            +
            class MiniCPMModel(MiniCPMPreTrainedModel):
         
     | 
| 1005 | 
         
            +
                """
         
     | 
| 1006 | 
         
            +
                Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`MiniCPMDecoderLayer`]
         
     | 
| 1007 | 
         
            +
             
     | 
| 1008 | 
         
            +
                Args:
         
     | 
| 1009 | 
         
            +
                    config: MiniCPMConfig
         
     | 
| 1010 | 
         
            +
                """
         
     | 
| 1011 | 
         
            +
             
     | 
| 1012 | 
         
            +
                def __init__(self, config: MiniCPMConfig):
         
     | 
| 1013 | 
         
            +
                    super().__init__(config)
         
     | 
| 1014 | 
         
            +
                    self.padding_idx = config.pad_token_id
         
     | 
| 1015 | 
         
            +
                    self.vocab_size = config.vocab_size
         
     | 
| 1016 | 
         
            +
             
     | 
| 1017 | 
         
            +
                    self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
         
     | 
| 1018 | 
         
            +
                    self.layers = nn.ModuleList(
         
     | 
| 1019 | 
         
            +
                        [MiniCPMDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
         
     | 
| 1020 | 
         
            +
                    )
         
     | 
| 1021 | 
         
            +
                    self._use_sdpa = config._attn_implementation == "sdpa"
         
     | 
| 1022 | 
         
            +
                    self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"
         
     | 
| 1023 | 
         
            +
             
     | 
| 1024 | 
         
            +
                    self.norm = MiniCPMRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
         
     | 
| 1025 | 
         
            +
             
     | 
| 1026 | 
         
            +
                    self.gradient_checkpointing = False
         
     | 
| 1027 | 
         
            +
                    self.is_causal = config.is_causal
         
     | 
| 1028 | 
         
            +
                    self.adapt_mean_pooling = config.adapt_mean_pooling
         
     | 
| 1029 | 
         
            +
                    
         
     | 
| 1030 | 
         
            +
                    # Initialize weights and apply final processing
         
     | 
| 1031 | 
         
            +
                    self.head = torch.nn.Linear(in_features=1024, out_features=1, bias=False).float()
         
     | 
| 1032 | 
         
            +
                    self.post_init()
         
     | 
| 1033 | 
         
            +
                    self.tokenizer = AutoTokenizer.from_pretrained(config._name_or_path, trust_remote_code=True)
         
     | 
| 1034 | 
         
            +
             
     | 
| 1035 | 
         
            +
                def get_input_embeddings(self):
         
     | 
| 1036 | 
         
            +
                    return self.embed_tokens
         
     | 
| 1037 | 
         
            +
             
     | 
| 1038 | 
         
            +
                def set_input_embeddings(self, value):
         
     | 
| 1039 | 
         
            +
                    self.embed_tokens = value
         
     | 
| 1040 | 
         
            +
             
     | 
| 1041 | 
         
            +
                @add_start_docstrings_to_model_forward(MINICPM_INPUTS_DOCSTRING)
         
     | 
| 1042 | 
         
            +
                def forward(
         
     | 
| 1043 | 
         
            +
                    self,
         
     | 
| 1044 | 
         
            +
                    input_ids: torch.LongTensor = None,
         
     | 
| 1045 | 
         
            +
                    attention_mask: Optional[torch.Tensor] = None,
         
     | 
| 1046 | 
         
            +
                    position_ids: Optional[torch.LongTensor] = None,
         
     | 
| 1047 | 
         
            +
                    past_key_values: Optional[List[torch.FloatTensor]] = None,
         
     | 
| 1048 | 
         
            +
                    inputs_embeds: Optional[torch.FloatTensor] = None,
         
     | 
| 1049 | 
         
            +
                    use_cache: Optional[bool] = None,
         
     | 
| 1050 | 
         
            +
                    output_attentions: Optional[bool] = None,
         
     | 
| 1051 | 
         
            +
                    output_hidden_states: Optional[bool] = None,
         
     | 
| 1052 | 
         
            +
                    return_dict: Optional[bool] = None,
         
     | 
| 1053 | 
         
            +
                    adapt_mean_pooling: Optional[bool] = None,
         
     | 
| 1054 | 
         
            +
                ) -> Union[Tuple, BaseModelOutputWithPast]:
         
     | 
| 1055 | 
         
            +
                    output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
         
     | 
| 1056 | 
         
            +
                    output_hidden_states = (
         
     | 
| 1057 | 
         
            +
                        output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
         
     | 
| 1058 | 
         
            +
                    )
         
     | 
| 1059 | 
         
            +
                    use_cache = use_cache if use_cache is not None else self.config.use_cache
         
     | 
| 1060 | 
         
            +
             
     | 
| 1061 | 
         
            +
                    return_dict = return_dict if return_dict is not None else self.config.use_return_dict
         
     | 
| 1062 | 
         
            +
             
     | 
| 1063 | 
         
            +
                    # retrieve input_ids and inputs_embeds
         
     | 
| 1064 | 
         
            +
                    if input_ids is not None and inputs_embeds is not None:
         
     | 
| 1065 | 
         
            +
                        raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
         
     | 
| 1066 | 
         
            +
                    elif input_ids is not None:
         
     | 
| 1067 | 
         
            +
                        batch_size, seq_length = input_ids.shape[:2]
         
     | 
| 1068 | 
         
            +
                    elif inputs_embeds is not None:
         
     | 
| 1069 | 
         
            +
                        batch_size, seq_length = inputs_embeds.shape[:2]
         
     | 
| 1070 | 
         
            +
                    else:
         
     | 
| 1071 | 
         
            +
                        raise ValueError("You have to specify either input_ids or inputs_embeds")
         
     | 
| 1072 | 
         
            +
             
     | 
| 1073 | 
         
            +
                    if self.gradient_checkpointing and self.training:
         
     | 
| 1074 | 
         
            +
                        if use_cache:
         
     | 
| 1075 | 
         
            +
                            logger.warning_once(
         
     | 
| 1076 | 
         
            +
                                "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
         
     | 
| 1077 | 
         
            +
                            )
         
     | 
| 1078 | 
         
            +
                            use_cache = False
         
     | 
| 1079 | 
         
            +
             
     | 
| 1080 | 
         
            +
                    past_key_values_length = 0
         
     | 
| 1081 | 
         
            +
                    if use_cache:
         
     | 
| 1082 | 
         
            +
                        use_legacy_cache = not isinstance(past_key_values, Cache)
         
     | 
| 1083 | 
         
            +
                        if use_legacy_cache:
         
     | 
| 1084 | 
         
            +
                            past_key_values = DynamicCache.from_legacy_cache(past_key_values)
         
     | 
| 1085 | 
         
            +
                        past_key_values_length = past_key_values.get_usable_length(seq_length)
         
     | 
| 1086 | 
         
            +
             
     | 
| 1087 | 
         
            +
                    if position_ids is None:
         
     | 
| 1088 | 
         
            +
                        device = input_ids.device if input_ids is not None else inputs_embeds.device
         
     | 
| 1089 | 
         
            +
                        position_ids = torch.arange(
         
     | 
| 1090 | 
         
            +
                            past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
         
     | 
| 1091 | 
         
            +
                        )
         
     | 
| 1092 | 
         
            +
                        position_ids = position_ids.unsqueeze(0)
         
     | 
| 1093 | 
         
            +
             
     | 
| 1094 | 
         
            +
                    if inputs_embeds is None:
         
     | 
| 1095 | 
         
            +
                        inputs_embeds = self.embed_tokens(input_ids) * self.config.scale_emb
         
     | 
| 1096 | 
         
            +
                    
         
     | 
| 1097 | 
         
            +
                    # print(attention_mask)
         
     | 
| 1098 | 
         
            +
                    _attention_mask = attention_mask
         
     | 
| 1099 | 
         
            +
                    if self._use_flash_attention_2:
         
     | 
| 1100 | 
         
            +
                        # 2d mask is passed through the layers
         
     | 
| 1101 | 
         
            +
                        attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
         
     | 
| 1102 | 
         
            +
                    elif self._use_sdpa and not output_attentions:
         
     | 
| 1103 | 
         
            +
                        # output_attentions=True can not be supported when using SDPA, and we fall back on
         
     | 
| 1104 | 
         
            +
                        # the manual implementation that requires a 4D causal mask in all cases.
         
     | 
| 1105 | 
         
            +
                        if self.is_causal:
         
     | 
| 1106 | 
         
            +
                            attention_mask = _prepare_4d_causal_attention_mask_for_sdpa (
         
     | 
| 1107 | 
         
            +
                                attention_mask,
         
     | 
| 1108 | 
         
            +
                                (batch_size, seq_length),
         
     | 
| 1109 | 
         
            +
                                inputs_embeds,
         
     | 
| 1110 | 
         
            +
                                past_key_values_length,
         
     | 
| 1111 | 
         
            +
                            )
         
     | 
| 1112 | 
         
            +
                        else:
         
     | 
| 1113 | 
         
            +
                            attention_mask = _prepare_4d_attention_mask_for_sdpa(
         
     | 
| 1114 | 
         
            +
                                attention_mask,
         
     | 
| 1115 | 
         
            +
                                inputs_embeds.dtype,
         
     | 
| 1116 | 
         
            +
                            )
         
     | 
| 1117 | 
         
            +
                    else:
         
     | 
| 1118 | 
         
            +
                        # 4d mask is passed through the layers
         
     | 
| 1119 | 
         
            +
                        if self.is_causal:
         
     | 
| 1120 | 
         
            +
                            attention_mask = _prepare_4d_causal_attention_mask (
         
     | 
| 1121 | 
         
            +
                                attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
         
     | 
| 1122 | 
         
            +
                            )
         
     | 
| 1123 | 
         
            +
                        else:
         
     | 
| 1124 | 
         
            +
                            attention_mask = _prepare_4d_attention_mask(
         
     | 
| 1125 | 
         
            +
                                attention_mask,
         
     | 
| 1126 | 
         
            +
                                inputs_embeds.dtype,
         
     | 
| 1127 | 
         
            +
                            )
         
     | 
| 1128 | 
         
            +
             
     | 
| 1129 | 
         
            +
                    # embed positions
         
     | 
| 1130 | 
         
            +
                    hidden_states = inputs_embeds
         
     | 
| 1131 | 
         
            +
             
     | 
| 1132 | 
         
            +
                    # decoder layers
         
     | 
| 1133 | 
         
            +
                    all_hidden_states = () if output_hidden_states else None
         
     | 
| 1134 | 
         
            +
                    all_self_attns = () if output_attentions else None
         
     | 
| 1135 | 
         
            +
                    next_decoder_cache = None
         
     | 
| 1136 | 
         
            +
             
     | 
| 1137 | 
         
            +
                    for decoder_layer in self.layers:
         
     | 
| 1138 | 
         
            +
                        if output_hidden_states:
         
     | 
| 1139 | 
         
            +
                            all_hidden_states += (hidden_states,)
         
     | 
| 1140 | 
         
            +
             
     | 
| 1141 | 
         
            +
                        if self.gradient_checkpointing and self.training:
         
     | 
| 1142 | 
         
            +
                            layer_outputs = self._gradient_checkpointing_func(
         
     | 
| 1143 | 
         
            +
                                decoder_layer.__call__,
         
     | 
| 1144 | 
         
            +
                                hidden_states,
         
     | 
| 1145 | 
         
            +
                                attention_mask,
         
     | 
| 1146 | 
         
            +
                                position_ids,
         
     | 
| 1147 | 
         
            +
                                past_key_values,
         
     | 
| 1148 | 
         
            +
                                output_attentions,
         
     | 
| 1149 | 
         
            +
                                use_cache,
         
     | 
| 1150 | 
         
            +
                            )
         
     | 
| 1151 | 
         
            +
                        else:
         
     | 
| 1152 | 
         
            +
                            layer_outputs = decoder_layer(
         
     | 
| 1153 | 
         
            +
                                hidden_states,
         
     | 
| 1154 | 
         
            +
                                attention_mask=attention_mask,
         
     | 
| 1155 | 
         
            +
                                position_ids=position_ids,
         
     | 
| 1156 | 
         
            +
                                past_key_value=past_key_values,
         
     | 
| 1157 | 
         
            +
                                output_attentions=output_attentions,
         
     | 
| 1158 | 
         
            +
                                use_cache=use_cache,
         
     | 
| 1159 | 
         
            +
                            )
         
     | 
| 1160 | 
         
            +
             
     | 
| 1161 | 
         
            +
                        hidden_states = layer_outputs[0]
         
     | 
| 1162 | 
         
            +
             
     | 
| 1163 | 
         
            +
                        if use_cache:
         
     | 
| 1164 | 
         
            +
                            next_decoder_cache = layer_outputs[2 if output_attentions else 1]
         
     | 
| 1165 | 
         
            +
             
     | 
| 1166 | 
         
            +
                        if output_attentions:
         
     | 
| 1167 | 
         
            +
                            all_self_attns += (layer_outputs[1],)
         
     | 
| 1168 | 
         
            +
             
     | 
| 1169 | 
         
            +
                    hidden_states = self.norm(hidden_states)
         
     | 
| 1170 | 
         
            +
             
     | 
| 1171 | 
         
            +
                    # add hidden states from the last decoder layer
         
     | 
| 1172 | 
         
            +
                    if output_hidden_states:
         
     | 
| 1173 | 
         
            +
                        all_hidden_states += (hidden_states,)
         
     | 
| 1174 | 
         
            +
             
     | 
| 1175 | 
         
            +
                    next_cache = None
         
     | 
| 1176 | 
         
            +
                    
         
     | 
| 1177 | 
         
            +
                    # gen weight before mean pooling
         
     | 
| 1178 | 
         
            +
                    if adapt_mean_pooling is None:
         
     | 
| 1179 | 
         
            +
                        adapt_mean_pooling = self.adapt_mean_pooling
         
     | 
| 1180 | 
         
            +
                    if adapt_mean_pooling:
         
     | 
| 1181 | 
         
            +
                        attention_mask_ = _attention_mask * _attention_mask.cumsum(dim=1)
         
     | 
| 1182 | 
         
            +
                        s = hidden_states * attention_mask_.unsqueeze(-1).float()
         
     | 
| 1183 | 
         
            +
                        d = attention_mask_.sum(dim=1, keepdim=True).unsqueeze(1).float() /_attention_mask.sum(dim=1, keepdim=True).unsqueeze(1).float()
         
     | 
| 1184 | 
         
            +
             
     | 
| 1185 | 
         
            +
                        hidden_states = s / d
         
     | 
| 1186 | 
         
            +
                    
         
     | 
| 1187 | 
         
            +
                    if use_cache:
         
     | 
| 1188 | 
         
            +
                        next_cache = next_decoder_cache.to_legacy_cache() if use_legacy_cache else next_decoder_cache
         
     | 
| 1189 | 
         
            +
                    if not return_dict:
         
     | 
| 1190 | 
         
            +
                        return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
         
     | 
| 1191 | 
         
            +
                    
         
     | 
| 1192 | 
         
            +
             
     | 
| 1193 | 
         
            +
             
     | 
| 1194 | 
         
            +
                    return BaseModelOutputWithPast(
         
     | 
| 1195 | 
         
            +
                        last_hidden_state=hidden_states,
         
     | 
| 1196 | 
         
            +
                        past_key_values=next_cache,
         
     | 
| 1197 | 
         
            +
                        hidden_states=all_hidden_states,
         
     | 
| 1198 | 
         
            +
                        attentions=all_self_attns,
         
     | 
| 1199 | 
         
            +
                    )
         
     | 
| 1200 | 
         
            +
                
         
     | 
| 1201 | 
         
            +
                @staticmethod
         
     | 
| 1202 | 
         
            +
                def wmean_pooling(hidden,attention_mask):
         
     | 
| 1203 | 
         
            +
                    attention_mask_ = attention_mask * attention_mask.cumsum(dim=1)
         
     | 
| 1204 | 
         
            +
                    hidden_masked = hidden * attention_mask_.unsqueeze(-1).float()
         
     | 
| 1205 | 
         
            +
                    s = torch.sum(hidden_masked, dim=1)
         
     | 
| 1206 | 
         
            +
                    d = attention_mask_.sum(dim=1, keepdim=True).float()
         
     | 
| 1207 | 
         
            +
                    reps = s / d
         
     | 
| 1208 | 
         
            +
                    return reps
         
     | 
| 1209 | 
         
            +
             
     | 
| 1210 | 
         
            +
                
         
     | 
| 1211 | 
         
            +
                def sparse_pooling(self,items, hidden, attention_mask):
         
     | 
| 1212 | 
         
            +
                    hidden = hidden * attention_mask.unsqueeze(-1).float()
         
     | 
| 1213 | 
         
            +
                    max_hidden_norm = torch.max(torch.norm(hidden,dim=-1),dim = -1).values.detach()
         
     | 
| 1214 | 
         
            +
                    token_weights = torch.relu(self.head(hidden.float()/max_hidden_norm.unsqueeze(-1).unsqueeze(-1)))
         
     | 
| 1215 | 
         
            +
                    vocab_size = self.embed_tokens.weight.size(0)
         
     | 
| 1216 | 
         
            +
                    input_ids = items["input_ids"]
         
     | 
| 1217 | 
         
            +
                    sparse_embedding_chunks = []
         
     | 
| 1218 | 
         
            +
                    mini_chunk_size = 1
         
     | 
| 1219 | 
         
            +
                    mini_chunk_size = min(mini_chunk_size,hidden.shape[0])
         
     | 
| 1220 | 
         
            +
                    for i in range(0, token_weights.size(0), mini_chunk_size):
         
     | 
| 1221 | 
         
            +
                        now_chunk_size = min(mini_chunk_size, token_weights.size(0) - i)
         
     | 
| 1222 | 
         
            +
                        sparse_embedding = torch.zeros(now_chunk_size , input_ids.size(1), vocab_size,
         
     | 
| 1223 | 
         
            +
                                                   dtype=token_weights.dtype,
         
     | 
| 1224 | 
         
            +
                                                   device=token_weights.device)
         
     | 
| 1225 | 
         
            +
                        sparse_embedding_chunks.append(torch.max((torch.scatter(sparse_embedding, dim=-1, index=input_ids[i:i+now_chunk_size, :].unsqueeze(-1), src=token_weights[i:i+now_chunk_size, :])), dim=1).values)
         
     | 
| 1226 | 
         
            +
                    sparse_embedding = torch.concat(sparse_embedding_chunks, dim=0)
         
     | 
| 1227 | 
         
            +
                    unused_tokens = [self.tokenizer.unk_token_id, self.tokenizer.pad_token_id, self.tokenizer.eos_token_id, self.tokenizer.bos_token_id]
         
     | 
| 1228 | 
         
            +
                    sparse_embedding[:,unused_tokens] = 0
         
     | 
| 1229 | 
         
            +
                    return sparse_embedding
         
     | 
| 1230 | 
         
            +
                
         
     | 
| 1231 | 
         
            +
                @torch.no_grad()
         
     | 
| 1232 | 
         
            +
                def process_sparse_embedding(self, sparse_embeddings,input_ids):
         
     | 
| 1233 | 
         
            +
                    results = []
         
     | 
| 1234 | 
         
            +
                    unused_tokens = [self.tokenizer.unk_token_id, self.tokenizer.pad_token_id, self.tokenizer.eos_token_id, self.tokenizer.bos_token_id]
         
     | 
| 1235 | 
         
            +
                    batch_size = sparse_embeddings.size(0)
         
     | 
| 1236 | 
         
            +
                    for i in range(batch_size):
         
     | 
| 1237 | 
         
            +
                        results.append({})
         
     | 
| 1238 | 
         
            +
                    for i, (sparse_embedding, input_id) in enumerate(zip(sparse_embeddings, input_ids)):
         
     | 
| 1239 | 
         
            +
                        for input_id_j in input_id.to(int).cpu().numpy().tolist():
         
     | 
| 1240 | 
         
            +
                            if input_id_j in unused_tokens:
         
     | 
| 1241 | 
         
            +
                                continue
         
     | 
| 1242 | 
         
            +
                            if sparse_embedding[input_id_j] == 0:
         
     | 
| 1243 | 
         
            +
                                continue
         
     | 
| 1244 | 
         
            +
                            results[i][self.tokenizer.convert_ids_to_tokens(input_id_j)] = sparse_embedding[input_id_j].item()
         
     | 
| 1245 | 
         
            +
                    return results
         
     | 
| 1246 | 
         
            +
                
         
     | 
| 1247 | 
         
            +
                def encode(self,
         
     | 
| 1248 | 
         
            +
                    sentences: Union[str, List[str]],
         
     | 
| 1249 | 
         
            +
                    batch_size: int = 32,
         
     | 
| 1250 | 
         
            +
                    show_progress_bar: Optional[bool] = True,
         
     | 
| 1251 | 
         
            +
                    convert_to_numpy: bool = True,
         
     | 
| 1252 | 
         
            +
                    return_dense_vectors: bool = True,
         
     | 
| 1253 | 
         
            +
                    return_sparse_vectors: bool = False,
         
     | 
| 1254 | 
         
            +
                    max_length: int = 512,
         
     | 
| 1255 | 
         
            +
                    dense_dim: int = 1024,
         
     | 
| 1256 | 
         
            +
                ):
         
     | 
| 1257 | 
         
            +
                    if isinstance(sentences, str):
         
     | 
| 1258 | 
         
            +
                        sentences = [sentences]
         
     | 
| 1259 | 
         
            +
                    dense_vectors_list = []
         
     | 
| 1260 | 
         
            +
                    sparse_vectors_list = []
         
     | 
| 1261 | 
         
            +
                    for start_index in tqdm(range(0, len(sentences), batch_size), desc="Batches", disable=not show_progress_bar):
         
     | 
| 1262 | 
         
            +
                        sentences_batch = sentences[start_index:start_index + batch_size]
         
     | 
| 1263 | 
         
            +
                        batch_dict = self.tokenizer(sentences_batch, padding=True, truncation=True, max_length=max_length, return_tensors="pt")
         
     | 
| 1264 | 
         
            +
                        for key in batch_dict:
         
     | 
| 1265 | 
         
            +
                            batch_dict[key] = batch_dict[key].to(self.device)
         
     | 
| 1266 | 
         
            +
                        outputs = self.forward(**batch_dict,adapt_mean_pooling=False)
         
     | 
| 1267 | 
         
            +
                        hidden_states = outputs.last_hidden_state
         
     | 
| 1268 | 
         
            +
                        attention_mask = batch_dict["attention_mask"]
         
     | 
| 1269 | 
         
            +
                        dense_vectors = None
         
     | 
| 1270 | 
         
            +
                        sparse_vectors = None
         
     | 
| 1271 | 
         
            +
                        if return_dense_vectors:
         
     | 
| 1272 | 
         
            +
                            dense_vectors = self.wmean_pooling(hidden_states,attention_mask)
         
     | 
| 1273 | 
         
            +
                            dense_vectors = F.normalize(dense_vectors[:,:dense_dim], p=2, dim=-1)
         
     | 
| 1274 | 
         
            +
                            
         
     | 
| 1275 | 
         
            +
                            if convert_to_numpy:
         
     | 
| 1276 | 
         
            +
                                dense_vectors = dense_vectors.cpu().numpy()
         
     | 
| 1277 | 
         
            +
                            dense_vectors_list.append(dense_vectors)
         
     | 
| 1278 | 
         
            +
                        if return_sparse_vectors:
         
     | 
| 1279 | 
         
            +
                            sparse_vectors = self.sparse_pooling(batch_dict,hidden_states,attention_mask)
         
     | 
| 1280 | 
         
            +
                            
         
     | 
| 1281 | 
         
            +
                            if convert_to_numpy:
         
     | 
| 1282 | 
         
            +
                                sparse_vectors = self.process_sparse_embedding(sparse_vectors, batch_dict["input_ids"])
         
     | 
| 1283 | 
         
            +
                                sparse_vectors_list.extend(sparse_vectors)
         
     | 
| 1284 | 
         
            +
                            else:
         
     | 
| 1285 | 
         
            +
                                sparse_vectors_list.append(sparse_vectors)
         
     | 
| 1286 | 
         
            +
                           
         
     | 
| 1287 | 
         
            +
                    if convert_to_numpy:
         
     | 
| 1288 | 
         
            +
                        dense_vectors_list = np.concatenate(dense_vectors_list, axis=0)
         
     | 
| 1289 | 
         
            +
                    else:
         
     | 
| 1290 | 
         
            +
                        dense_vectors_list = torch.cat(dense_vectors_list, dim=0)
         
     | 
| 1291 | 
         
            +
                        sparse_vectors_list = torch.cat(sparse_vectors_list, dim=0)
         
     | 
| 1292 | 
         
            +
                    if len(sparse_vectors_list) == 0:
         
     | 
| 1293 | 
         
            +
                        sparse_vectors_list = None
         
     | 
| 1294 | 
         
            +
                    if len(dense_vectors_list) == 0:
         
     | 
| 1295 | 
         
            +
                        dense_vectors_list = None
         
     | 
| 1296 | 
         
            +
                    return dense_vectors_list, sparse_vectors_list
         
     | 
| 1297 | 
         
            +
                
         
     | 
| 1298 | 
         
            +
               
         
     | 
| 1299 | 
         
            +
                """Compute similarity scores between queries and documents using dense and/or sparse embeddings.
         
     | 
| 1300 | 
         
            +
             
     | 
| 1301 | 
         
            +
                This method computes similarity scores between query-document pairs using a combination of dense and sparse embeddings.
         
     | 
| 1302 | 
         
            +
                It supports both single strings and lists of strings as input.
         
     | 
| 1303 | 
         
            +
             
     | 
| 1304 | 
         
            +
                Args:
         
     | 
| 1305 | 
         
            +
                    queries (Union[str, List[str]]): Query text or list of query texts
         
     | 
| 1306 | 
         
            +
                    documents (Union[str, List[str]]): Document text or list of document texts
         
     | 
| 1307 | 
         
            +
                    show_progress_bar (Optional[bool]): Whether to show progress bar during encoding. Defaults to True.
         
     | 
| 1308 | 
         
            +
                    batch_size (int): Batch size for encoding. Defaults to 32.
         
     | 
| 1309 | 
         
            +
                    query_instruction (str): Instruction prefix for query encoding. Defaults to "Query:".
         
     | 
| 1310 | 
         
            +
                    return_dense_score (bool): Whether to compute and return dense embedding similarity scores. Defaults to True.
         
     | 
| 1311 | 
         
            +
                    return_sparse_score (bool): Whether to compute and return sparse embedding similarity scores. Defaults to True.
         
     | 
| 1312 | 
         
            +
                    weight_for_sparse_score (float): Weight factor for sparse scores when computing mixed scores. Defaults to 0.3.
         
     | 
| 1313 | 
         
            +
                    max_length (int): Maximum sequence length for tokenization. Defaults to 512.
         
     | 
| 1314 | 
         
            +
                    dense_dim (int): Dimension of dense embeddings. Defaults to 1024.
         
     | 
| 1315 | 
         
            +
             
     | 
| 1316 | 
         
            +
                Returns:
         
     | 
| 1317 | 
         
            +
                    Tuple containing:
         
     | 
| 1318 | 
         
            +
                        dense_score (numpy.ndarray or None): Dense similarity scores if return_dense_score is True, else None
         
     | 
| 1319 | 
         
            +
                        sparse_score (numpy.ndarray or None): Sparse similarity scores if return_sparse_score is True, else None
         
     | 
| 1320 | 
         
            +
                        mix_score (numpy.ndarray or None): Weighted combination of dense and sparse scores if both are computed, else None
         
     | 
| 1321 | 
         
            +
             
     | 
| 1322 | 
         
            +
                Note:
         
     | 
| 1323 | 
         
            +
                    - Dense scores are computed using dot product between query and document embeddings
         
     | 
| 1324 | 
         
            +
                    - Sparse scores are computed in chunks to handle memory efficiently
         
     | 
| 1325 | 
         
            +
                    - Mix scores are computed as: weight_for_sparse_score * sparse_score + dense_score
         
     | 
| 1326 | 
         
            +
                """
         
     | 
| 1327 | 
         
            +
                @torch.no_grad()
         
     | 
| 1328 | 
         
            +
                def compute_score(self,
         
     | 
| 1329 | 
         
            +
                                  queries: Union[str, List[str]],
         
     | 
| 1330 | 
         
            +
                                  documents: Union[str, List[str]],
         
     | 
| 1331 | 
         
            +
                                  show_progress_bar: Optional[bool] = True,
         
     | 
| 1332 | 
         
            +
                                  batch_size: int = 32,
         
     | 
| 1333 | 
         
            +
                                  query_instruction:str = "Query:",
         
     | 
| 1334 | 
         
            +
                                  return_dense_score: bool = True,
         
     | 
| 1335 | 
         
            +
                                  return_sparse_score: bool = True,
         
     | 
| 1336 | 
         
            +
                                  weight_for_sparse_score: float = 0.3,
         
     | 
| 1337 | 
         
            +
                                  max_length: int = 512,
         
     | 
| 1338 | 
         
            +
                                  dense_dim: int = 1024):
         
     | 
| 1339 | 
         
            +
                    query_embeddings_dense, query_embeddings_sparse = self.encode_query(queries, batch_size, show_progress_bar,
         
     | 
| 1340 | 
         
            +
                                                                                        convert_to_numpy=False,
         
     | 
| 1341 | 
         
            +
                                                                                        return_dense_vectors=return_dense_score,
         
     | 
| 1342 | 
         
            +
                                                                                        return_sparse_vectors=return_sparse_score,
         
     | 
| 1343 | 
         
            +
                                                                                        max_length=max_length,
         
     | 
| 1344 | 
         
            +
                                                                                        dense_dim=dense_dim,
         
     | 
| 1345 | 
         
            +
                                                                                        query_instruction=query_instruction,
         
     | 
| 1346 | 
         
            +
                                                                                        )
         
     | 
| 1347 | 
         
            +
                    corpus_embeddings_dense, corpus_embeddings_sparse = self.encode_corpus(documents, batch_size, show_progress_bar,
         
     | 
| 1348 | 
         
            +
                                                                                            convert_to_numpy=False,
         
     | 
| 1349 | 
         
            +
                                                                                            return_dense_vectors=return_dense_score,
         
     | 
| 1350 | 
         
            +
                                                                                            return_sparse_vectors=return_sparse_score,
         
     | 
| 1351 | 
         
            +
                                                                                            max_length=max_length,
         
     | 
| 1352 | 
         
            +
                                                                                            dense_dim=dense_dim,
         
     | 
| 1353 | 
         
            +
                                                                                            )
         
     | 
| 1354 | 
         
            +
                    dense_score = None
         
     | 
| 1355 | 
         
            +
                    sparse_score = None
         
     | 
| 1356 | 
         
            +
                    mix_score = None
         
     | 
| 1357 | 
         
            +
                    if return_dense_score:
         
     | 
| 1358 | 
         
            +
                        dense_score = query_embeddings_dense @ corpus_embeddings_dense.T
         
     | 
| 1359 | 
         
            +
                        dense_score = dense_score.cpu().numpy()
         
     | 
| 1360 | 
         
            +
                    if return_sparse_score:
         
     | 
| 1361 | 
         
            +
                        min_chunk_size = 1024
         
     | 
| 1362 | 
         
            +
                        for i in range(0, query_embeddings_sparse.size(0), min_chunk_size):
         
     | 
| 1363 | 
         
            +
                            now_chunk_size = min(min_chunk_size, query_embeddings_sparse.size(0) - i)
         
     | 
| 1364 | 
         
            +
                            sparse_score_now_chunk = None
         
     | 
| 1365 | 
         
            +
                            for j in range(0, corpus_embeddings_sparse.size(0), min_chunk_size):
         
     | 
| 1366 | 
         
            +
                                sparse_score_chunk = query_embeddings_sparse[i:i+now_chunk_size] @ corpus_embeddings_sparse[j:j+min_chunk_size].T
         
     | 
| 1367 | 
         
            +
                                if sparse_score_now_chunk is None:
         
     | 
| 1368 | 
         
            +
                                    sparse_score_now_chunk = sparse_score_chunk
         
     | 
| 1369 | 
         
            +
                                else:
         
     | 
| 1370 | 
         
            +
                                    sparse_score_now_chunk = torch.cat((sparse_score_now_chunk, sparse_score_chunk), dim=1)
         
     | 
| 1371 | 
         
            +
                            if sparse_score is None:
         
     | 
| 1372 | 
         
            +
                                sparse_score = sparse_score_now_chunk
         
     | 
| 1373 | 
         
            +
                            else:
         
     | 
| 1374 | 
         
            +
                                sparse_score = torch.cat((sparse_score, sparse_score_now_chunk), dim=0)
         
     | 
| 1375 | 
         
            +
                        sparse_score = sparse_score.cpu().numpy()
         
     | 
| 1376 | 
         
            +
                    if return_sparse_score and return_dense_score:
         
     | 
| 1377 | 
         
            +
                        mix_score = weight_for_sparse_score * sparse_score + dense_score
         
     | 
| 1378 | 
         
            +
                    return dense_score, sparse_score, mix_score
         
     | 
| 1379 | 
         
            +
                
         
     | 
| 1380 | 
         
            +
               
         
     | 
| 1381 | 
         
            +
                """
         
     | 
| 1382 | 
         
            +
                Encodes query sentences into vector representations.
         
     | 
| 1383 | 
         
            +
             
     | 
| 1384 | 
         
            +
                Args:
         
     | 
| 1385 | 
         
            +
                    sentences (Union[str, List[str]]): Input query sentence(s) to encode. Can be a single string or list of strings.
         
     | 
| 1386 | 
         
            +
                    batch_size (int, optional): Batch size for processing. Defaults to 32.
         
     | 
| 1387 | 
         
            +
                    show_progress_bar (Optional[bool], optional): Whether to display a progress bar. Defaults to True.
         
     | 
| 1388 | 
         
            +
                    convert_to_numpy (bool, optional): Whether to convert outputs to numpy arrays. Defaults to True.
         
     | 
| 1389 | 
         
            +
                    return_dense_vectors (bool, optional): Whether to return dense vector representations. Defaults to True.
         
     | 
| 1390 | 
         
            +
                    return_sparse_vectors (bool, optional): Whether to return sparse vector representations. Defaults to False.
         
     | 
| 1391 | 
         
            +
                    max_length (int, optional): Maximum sequence length for tokenization. Defaults to 512.
         
     | 
| 1392 | 
         
            +
                    dense_dim (int, optional): Dimension of dense output vectors. Defaults to 1024.
         
     | 
| 1393 | 
         
            +
                    query_instruction (str, optional): Instruction prefix to prepend to queries. Defaults to "Query:".
         
     | 
| 1394 | 
         
            +
             
     | 
| 1395 | 
         
            +
                Returns:
         
     | 
| 1396 | 
         
            +
                    Same output format as the encode() method, with vector representations of the input queries.
         
     | 
| 1397 | 
         
            +
             
     | 
| 1398 | 
         
            +
                Notes:
         
     | 
| 1399 | 
         
            +
                    This is a no-grad operation that wraps the encode() method by prepending a query instruction
         
     | 
| 1400 | 
         
            +
                    to each input sentence before encoding.
         
     | 
| 1401 | 
         
            +
                """
         
     | 
| 1402 | 
         
            +
                @torch.no_grad()
         
     | 
| 1403 | 
         
            +
                def encode_query(self,
         
     | 
| 1404 | 
         
            +
                    sentences: Union[str, List[str]],
         
     | 
| 1405 | 
         
            +
                    batch_size: int = 32,
         
     | 
| 1406 | 
         
            +
                    show_progress_bar: Optional[bool] = True,
         
     | 
| 1407 | 
         
            +
                    convert_to_numpy: bool = True,
         
     | 
| 1408 | 
         
            +
                    return_dense_vectors: bool = True,
         
     | 
| 1409 | 
         
            +
                    return_sparse_vectors: bool = False,
         
     | 
| 1410 | 
         
            +
                    max_length: int = 512,
         
     | 
| 1411 | 
         
            +
                    dense_dim: int = 1024,
         
     | 
| 1412 | 
         
            +
                    query_instruction:str = "Query:"
         
     | 
| 1413 | 
         
            +
                ):
         
     | 
| 1414 | 
         
            +
                    new_sentences = [" ".join([query_instruction, sentence]) for sentence in sentences]
         
     | 
| 1415 | 
         
            +
                    return self.encode(new_sentences, batch_size, show_progress_bar, convert_to_numpy, return_dense_vectors, return_sparse_vectors, max_length, dense_dim)
         
     | 
| 1416 | 
         
            +
                
         
     | 
| 1417 | 
         
            +
               
         
     | 
| 1418 | 
         
            +
                """Encodes a corpus of text sentences into vector representations.
         
     | 
| 1419 | 
         
            +
             
     | 
| 1420 | 
         
            +
                This method provides a wrapper for the encode method, specifically designed for corpus encoding.
         
     | 
| 1421 | 
         
            +
                It processes text input into dense and/or sparse vector representations suitable for semantic search
         
     | 
| 1422 | 
         
            +
                and other NLP tasks.
         
     | 
| 1423 | 
         
            +
             
     | 
| 1424 | 
         
            +
                Args:
         
     | 
| 1425 | 
         
            +
                    sentences (Union[str, List[str]]): Input text or list of texts to encode.
         
     | 
| 1426 | 
         
            +
                    batch_size (int, optional): Number of sentences to encode in each batch. Defaults to 32.
         
     | 
| 1427 | 
         
            +
                    show_progress_bar (bool, optional): Whether to display a progress bar during encoding. 
         
     | 
| 1428 | 
         
            +
                        Defaults to True.
         
     | 
| 1429 | 
         
            +
                    convert_to_numpy (bool, optional): Whether to convert the output tensors to numpy arrays.
         
     | 
| 1430 | 
         
            +
                        Defaults to True.
         
     | 
| 1431 | 
         
            +
                    return_dense_vectors (bool, optional): Whether to return dense vector representations.
         
     | 
| 1432 | 
         
            +
                        Defaults to True.
         
     | 
| 1433 | 
         
            +
                    return_sparse_vectors (bool, optional): Whether to return sparse vector representations.
         
     | 
| 1434 | 
         
            +
                        Defaults to False.
         
     | 
| 1435 | 
         
            +
                    max_length (int, optional): Maximum length of input sequences. Texts will be truncated
         
     | 
| 1436 | 
         
            +
                        to this length. Defaults to 512.
         
     | 
| 1437 | 
         
            +
                    dense_dim (int, optional): Dimension of the dense output vectors. Defaults to 1024.
         
     | 
| 1438 | 
         
            +
             
     | 
| 1439 | 
         
            +
                Returns:
         
     | 
| 1440 | 
         
            +
                    The encoded representations as specified by return_dense_vectors and return_sparse_vectors
         
     | 
| 1441 | 
         
            +
                    parameters. Output format matches that of the encode method.
         
     | 
| 1442 | 
         
            +
             
     | 
| 1443 | 
         
            +
                Note:
         
     | 
| 1444 | 
         
            +
                    This method is decorated with @torch.no_grad() for inference-only operation,
         
     | 
| 1445 | 
         
            +
                    ensuring no gradients are computed during encoding.
         
     | 
| 1446 | 
         
            +
                """
         
     | 
| 1447 | 
         
            +
                @torch.no_grad()
         
     | 
| 1448 | 
         
            +
                def encode_corpus(self,
         
     | 
| 1449 | 
         
            +
                    sentences: Union[str, List[str]],
         
     | 
| 1450 | 
         
            +
                    batch_size: int = 32,
         
     | 
| 1451 | 
         
            +
                    show_progress_bar: Optional[bool] = True,
         
     | 
| 1452 | 
         
            +
                    convert_to_numpy: bool = True,
         
     | 
| 1453 | 
         
            +
                    return_dense_vectors: bool = True,
         
     | 
| 1454 | 
         
            +
                    return_sparse_vectors: bool = False,
         
     | 
| 1455 | 
         
            +
                    max_length: int = 512,
         
     | 
| 1456 | 
         
            +
                    dense_dim: int = 1024,
         
     | 
| 1457 | 
         
            +
                ):
         
     | 
| 1458 | 
         
            +
                    return self.encode(sentences, batch_size, show_progress_bar, convert_to_numpy, return_dense_vectors, return_sparse_vectors, max_length, dense_dim)
         
     | 
| 1459 | 
         
            +
                
         
     | 
| 1460 | 
         
            +
                @staticmethod
         
     | 
| 1461 | 
         
            +
                def compute_sparse_score_dicts(dicts_query, dicts_corpus):
         
     | 
| 1462 | 
         
            +
                    scores_list = []
         
     | 
| 1463 | 
         
            +
                    for dict_q in dicts_query:
         
     | 
| 1464 | 
         
            +
                        scores = []
         
     | 
| 1465 | 
         
            +
                        for dict_d in dicts_corpus:
         
     | 
| 1466 | 
         
            +
                            score = 0
         
     | 
| 1467 | 
         
            +
                            for key in dict_q:
         
     | 
| 1468 | 
         
            +
                                if key in dict_d:
         
     | 
| 1469 | 
         
            +
                                    score += dict_q[key] * dict_d[key]
         
     | 
| 1470 | 
         
            +
                            scores.append(score)
         
     | 
| 1471 | 
         
            +
                        scores_list.append(deepcopy(scores))      
         
     | 
| 1472 | 
         
            +
                    return np.array(scores_list)
         
     | 
| 1473 | 
         
            +
                    
         
     | 
| 1474 | 
         
            +
                
         
     | 
| 1475 | 
         
            +
             
     | 
| 1476 | 
         
            +
            class MiniCPMForCausalLM(MiniCPMPreTrainedModel):
         
     | 
| 1477 | 
         
            +
                _tied_weights_keys = ["lm_head.weight"]
         
     | 
| 1478 | 
         
            +
             
     | 
| 1479 | 
         
            +
                def __init__(self, config):
         
     | 
| 1480 | 
         
            +
                    super().__init__(config)
         
     | 
| 1481 | 
         
            +
                    self.model = MiniCPMModel(config)
         
     | 
| 1482 | 
         
            +
                    self.vocab_size = config.vocab_size
         
     | 
| 1483 | 
         
            +
                    self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
         
     | 
| 1484 | 
         
            +
             
     | 
| 1485 | 
         
            +
                    # Initialize weights and apply final processing
         
     | 
| 1486 | 
         
            +
                    self.post_init()
         
     | 
| 1487 | 
         
            +
             
     | 
| 1488 | 
         
            +
                def get_input_embeddings(self):
         
     | 
| 1489 | 
         
            +
                    return self.model.embed_tokens
         
     | 
| 1490 | 
         
            +
             
     | 
| 1491 | 
         
            +
                def set_input_embeddings(self, value):
         
     | 
| 1492 | 
         
            +
                    self.model.embed_tokens = value
         
     | 
| 1493 | 
         
            +
             
     | 
| 1494 | 
         
            +
                def get_output_embeddings(self):
         
     | 
| 1495 | 
         
            +
                    return self.lm_head
         
     | 
| 1496 | 
         
            +
             
     | 
| 1497 | 
         
            +
                def set_output_embeddings(self, new_embeddings):
         
     | 
| 1498 | 
         
            +
                    self.lm_head = new_embeddings
         
     | 
| 1499 | 
         
            +
             
     | 
| 1500 | 
         
            +
                def set_decoder(self, decoder):
         
     | 
| 1501 | 
         
            +
                    self.model = decoder
         
     | 
| 1502 | 
         
            +
             
     | 
| 1503 | 
         
            +
                def get_decoder(self):
         
     | 
| 1504 | 
         
            +
                    return self.model
         
     | 
| 1505 | 
         
            +
             
     | 
| 1506 | 
         
            +
                @add_start_docstrings_to_model_forward(MINICPM_INPUTS_DOCSTRING)
         
     | 
| 1507 | 
         
            +
                @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
         
     | 
| 1508 | 
         
            +
                def forward(
         
     | 
| 1509 | 
         
            +
                    self,
         
     | 
| 1510 | 
         
            +
                    input_ids: torch.LongTensor = None,
         
     | 
| 1511 | 
         
            +
                    attention_mask: Optional[torch.Tensor] = None,
         
     | 
| 1512 | 
         
            +
                    position_ids: Optional[torch.LongTensor] = None,
         
     | 
| 1513 | 
         
            +
                    past_key_values: Optional[List[torch.FloatTensor]] = None,
         
     | 
| 1514 | 
         
            +
                    inputs_embeds: Optional[torch.FloatTensor] = None,
         
     | 
| 1515 | 
         
            +
                    labels: Optional[torch.LongTensor] = None,
         
     | 
| 1516 | 
         
            +
                    use_cache: Optional[bool] = None,
         
     | 
| 1517 | 
         
            +
                    output_attentions: Optional[bool] = None,
         
     | 
| 1518 | 
         
            +
                    output_hidden_states: Optional[bool] = None,
         
     | 
| 1519 | 
         
            +
                    return_dict: Optional[bool] = None,
         
     | 
| 1520 | 
         
            +
                ) -> Union[Tuple, CausalLMOutputWithPast]:
         
     | 
| 1521 | 
         
            +
                    r"""
         
     | 
| 1522 | 
         
            +
                    Args:
         
     | 
| 1523 | 
         
            +
                        labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
         
     | 
| 1524 | 
         
            +
                            Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
         
     | 
| 1525 | 
         
            +
                            config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
         
     | 
| 1526 | 
         
            +
                            (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
         
     | 
| 1527 | 
         
            +
             
     | 
| 1528 | 
         
            +
                    Returns:
         
     | 
| 1529 | 
         
            +
             
     | 
| 1530 | 
         
            +
                    Example:
         
     | 
| 1531 | 
         
            +
             
     | 
| 1532 | 
         
            +
                    ```python
         
     | 
| 1533 | 
         
            +
                    >>> from transformers import AutoTokenizer, MiniCPMForCausalLM
         
     | 
| 1534 | 
         
            +
             
     | 
| 1535 | 
         
            +
                    >>> model = MiniCPMForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
         
     | 
| 1536 | 
         
            +
                    >>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
         
     | 
| 1537 | 
         
            +
             
     | 
| 1538 | 
         
            +
                    >>> prompt = "Hey, are you conscious? Can you talk to me?"
         
     | 
| 1539 | 
         
            +
                    >>> inputs = tokenizer(prompt, return_tensors="pt")
         
     | 
| 1540 | 
         
            +
             
     | 
| 1541 | 
         
            +
                    >>> # Generate
         
     | 
| 1542 | 
         
            +
                    >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
         
     | 
| 1543 | 
         
            +
                    >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
         
     | 
| 1544 | 
         
            +
                    "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
         
     | 
| 1545 | 
         
            +
                    ```"""
         
     | 
| 1546 | 
         
            +
                    output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
         
     | 
| 1547 | 
         
            +
                    output_hidden_states = (
         
     | 
| 1548 | 
         
            +
                        output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
         
     | 
| 1549 | 
         
            +
                    )
         
     | 
| 1550 | 
         
            +
                    return_dict = return_dict if return_dict is not None else self.config.use_return_dict
         
     | 
| 1551 | 
         
            +
             
     | 
| 1552 | 
         
            +
                    # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
         
     | 
| 1553 | 
         
            +
                    outputs = self.model(
         
     | 
| 1554 | 
         
            +
                        input_ids=input_ids,
         
     | 
| 1555 | 
         
            +
                        attention_mask=attention_mask,
         
     | 
| 1556 | 
         
            +
                        position_ids=position_ids,
         
     | 
| 1557 | 
         
            +
                        past_key_values=past_key_values,
         
     | 
| 1558 | 
         
            +
                        inputs_embeds=inputs_embeds,
         
     | 
| 1559 | 
         
            +
                        use_cache=use_cache,
         
     | 
| 1560 | 
         
            +
                        output_attentions=output_attentions,
         
     | 
| 1561 | 
         
            +
                        output_hidden_states=output_hidden_states,
         
     | 
| 1562 | 
         
            +
                        return_dict=return_dict,
         
     | 
| 1563 | 
         
            +
                    )
         
     | 
| 1564 | 
         
            +
             
     | 
| 1565 | 
         
            +
                    hidden_states = outputs[0]
         
     | 
| 1566 | 
         
            +
                    if self.config.pretraining_tp > 1:
         
     | 
| 1567 | 
         
            +
                        lm_head_slices = self.lm_head.weight.split(self.vocab_size // self.config.pretraining_tp, dim=0)
         
     | 
| 1568 | 
         
            +
                        logits = [F.linear(hidden_states, lm_head_slices[i]) for i in range(self.config.pretraining_tp)]
         
     | 
| 1569 | 
         
            +
                        logits = torch.cat(logits, dim=-1)
         
     | 
| 1570 | 
         
            +
                    else:
         
     | 
| 1571 | 
         
            +
                        logits = self.lm_head(hidden_states / (self.config.hidden_size / self.config.dim_model_base))
         
     | 
| 1572 | 
         
            +
                    logits = logits.float()
         
     | 
| 1573 | 
         
            +
             
     | 
| 1574 | 
         
            +
                    loss = None
         
     | 
| 1575 | 
         
            +
                    if labels is not None:
         
     | 
| 1576 | 
         
            +
                        # Shift so that tokens < n predict n
         
     | 
| 1577 | 
         
            +
                        shift_logits = logits[..., :-1, :].contiguous()
         
     | 
| 1578 | 
         
            +
                        shift_labels = labels[..., 1:].contiguous()
         
     | 
| 1579 | 
         
            +
                        # Flatten the tokens
         
     | 
| 1580 | 
         
            +
                        loss_fct = CrossEntropyLoss()
         
     | 
| 1581 | 
         
            +
                        shift_logits = shift_logits.view(-1, self.config.vocab_size)
         
     | 
| 1582 | 
         
            +
                        shift_labels = shift_labels.view(-1)
         
     | 
| 1583 | 
         
            +
                        # Enable model parallelism
         
     | 
| 1584 | 
         
            +
                        shift_labels = shift_labels.to(shift_logits.device)
         
     | 
| 1585 | 
         
            +
                        loss = loss_fct(shift_logits, shift_labels)
         
     | 
| 1586 | 
         
            +
             
     | 
| 1587 | 
         
            +
                    if not return_dict:
         
     | 
| 1588 | 
         
            +
                        output = (logits,) + outputs[1:]
         
     | 
| 1589 | 
         
            +
                        return (loss,) + output if loss is not None else output
         
     | 
| 1590 | 
         
            +
             
     | 
| 1591 | 
         
            +
                    return CausalLMOutputWithPast(
         
     | 
| 1592 | 
         
            +
                        loss=loss,
         
     | 
| 1593 | 
         
            +
                        logits=logits,
         
     | 
| 1594 | 
         
            +
                        past_key_values=outputs.past_key_values,
         
     | 
| 1595 | 
         
            +
                        hidden_states=outputs.hidden_states,
         
     | 
| 1596 | 
         
            +
                        attentions=outputs.attentions,
         
     | 
| 1597 | 
         
            +
                    )
         
     | 
| 1598 | 
         
            +
             
     | 
| 1599 | 
         
            +
                def prepare_inputs_for_generation(
         
     | 
| 1600 | 
         
            +
                    self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
         
     | 
| 1601 | 
         
            +
                ):
         
     | 
| 1602 | 
         
            +
                    if past_key_values is not None:
         
     | 
| 1603 | 
         
            +
                        if isinstance(past_key_values, Cache):
         
     | 
| 1604 | 
         
            +
                            cache_length = past_key_values.get_seq_length()
         
     | 
| 1605 | 
         
            +
                            past_length = past_key_values.seen_tokens
         
     | 
| 1606 | 
         
            +
                            max_cache_length = past_key_values.get_max_length()
         
     | 
| 1607 | 
         
            +
                        else:
         
     | 
| 1608 | 
         
            +
                            cache_length = past_length = past_key_values[0][0].shape[2]
         
     | 
| 1609 | 
         
            +
                            max_cache_length = None
         
     | 
| 1610 | 
         
            +
             
     | 
| 1611 | 
         
            +
                        # Keep only the unprocessed tokens:
         
     | 
| 1612 | 
         
            +
                        # 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
         
     | 
| 1613 | 
         
            +
                        # some of the inputs are exclusivelly passed as part of the cache (e.g. when passing input_embeds as
         
     | 
| 1614 | 
         
            +
                        # input)
         
     | 
| 1615 | 
         
            +
                        if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
         
     | 
| 1616 | 
         
            +
                            input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
         
     | 
| 1617 | 
         
            +
                        # 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
         
     | 
| 1618 | 
         
            +
                        # input_ids based on the past_length.
         
     | 
| 1619 | 
         
            +
                        elif past_length < input_ids.shape[1]:
         
     | 
| 1620 | 
         
            +
                            input_ids = input_ids[:, past_length:]
         
     | 
| 1621 | 
         
            +
                        # 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
         
     | 
| 1622 | 
         
            +
             
     | 
| 1623 | 
         
            +
                        # If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
         
     | 
| 1624 | 
         
            +
                        if (
         
     | 
| 1625 | 
         
            +
                            max_cache_length is not None
         
     | 
| 1626 | 
         
            +
                            and attention_mask is not None
         
     | 
| 1627 | 
         
            +
                            and cache_length + input_ids.shape[1] > max_cache_length
         
     | 
| 1628 | 
         
            +
                        ):
         
     | 
| 1629 | 
         
            +
                            attention_mask = attention_mask[:, -max_cache_length:]
         
     | 
| 1630 | 
         
            +
             
     | 
| 1631 | 
         
            +
                    position_ids = kwargs.get("position_ids", None)
         
     | 
| 1632 | 
         
            +
                    if attention_mask is not None and position_ids is None:
         
     | 
| 1633 | 
         
            +
                        # create position_ids on the fly for batch generation
         
     | 
| 1634 | 
         
            +
                        position_ids = attention_mask.long().cumsum(-1) - 1
         
     | 
| 1635 | 
         
            +
                        position_ids.masked_fill_(attention_mask == 0, 1)
         
     | 
| 1636 | 
         
            +
                        if past_key_values:
         
     | 
| 1637 | 
         
            +
                            position_ids = position_ids[:, -input_ids.shape[1] :]
         
     | 
| 1638 | 
         
            +
             
     | 
| 1639 | 
         
            +
                    # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
         
     | 
| 1640 | 
         
            +
                    if inputs_embeds is not None and past_key_values is None:
         
     | 
| 1641 | 
         
            +
                        model_inputs = {"inputs_embeds": inputs_embeds}
         
     | 
| 1642 | 
         
            +
                    else:
         
     | 
| 1643 | 
         
            +
                        model_inputs = {"input_ids": input_ids}
         
     | 
| 1644 | 
         
            +
             
     | 
| 1645 | 
         
            +
                    model_inputs.update(
         
     | 
| 1646 | 
         
            +
                        {
         
     | 
| 1647 | 
         
            +
                            "position_ids": position_ids,
         
     | 
| 1648 | 
         
            +
                            "past_key_values": past_key_values,
         
     | 
| 1649 | 
         
            +
                            "use_cache": kwargs.get("use_cache"),
         
     | 
| 1650 | 
         
            +
                            "attention_mask": attention_mask,
         
     | 
| 1651 | 
         
            +
                        }
         
     | 
| 1652 | 
         
            +
                    )
         
     | 
| 1653 | 
         
            +
                    return model_inputs
         
     | 
| 1654 | 
         
            +
             
     | 
| 1655 | 
         
            +
                @staticmethod
         
     | 
| 1656 | 
         
            +
                def _reorder_cache(past_key_values, beam_idx):
         
     | 
| 1657 | 
         
            +
                    reordered_past = ()
         
     | 
| 1658 | 
         
            +
                    for layer_past in past_key_values:
         
     | 
| 1659 | 
         
            +
                        reordered_past += (
         
     | 
| 1660 | 
         
            +
                            tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
         
     | 
| 1661 | 
         
            +
                        )
         
     | 
| 1662 | 
         
            +
                    return reordered_past
         
     | 
| 1663 | 
         
            +
                
         
     | 
| 1664 | 
         
            +
                @torch.inference_mode()
         
     | 
| 1665 | 
         
            +
                def chat(self, tokenizer, query: str, history: List[Dict] = None, role: str = "user",
         
     | 
| 1666 | 
         
            +
                         max_length: int = 4096, num_beams=1, do_sample=True, top_p=0.8, temperature=0.3, logits_processor=None,
         
     | 
| 1667 | 
         
            +
                         **kwargs):
         
     | 
| 1668 | 
         
            +
                    if history is None:
         
     | 
| 1669 | 
         
            +
                        history = []
         
     | 
| 1670 | 
         
            +
                    if logits_processor:
         
     | 
| 1671 | 
         
            +
                        gen_kwargs = {"max_length": max_length, "num_beams": num_beams, "do_sample": do_sample, "top_p": top_p,
         
     | 
| 1672 | 
         
            +
                                    "temperature": temperature, "logits_processor": logits_processor, **kwargs}
         
     | 
| 1673 | 
         
            +
                    else:
         
     | 
| 1674 | 
         
            +
                        gen_kwargs = {"max_length": max_length, "num_beams": num_beams, "do_sample": do_sample, "top_p": top_p,
         
     | 
| 1675 | 
         
            +
                                    "temperature": temperature, "logits_processor": logits_processor, **kwargs}
         
     | 
| 1676 | 
         
            +
                    
         
     | 
| 1677 | 
         
            +
                    history.append({"role": role, "content": query})
         
     | 
| 1678 | 
         
            +
                    history_str = tokenizer.apply_chat_template(history, tokenize=False, add_generation_prompt=False)
         
     | 
| 1679 | 
         
            +
                    inputs = tokenizer(history_str, return_tensors='pt').to(self.device)
         
     | 
| 1680 | 
         
            +
                    outputs = self.generate(**inputs, **gen_kwargs)
         
     | 
| 1681 | 
         
            +
                    outputs = outputs.tolist()[0][len(inputs["input_ids"][0]):-1]
         
     | 
| 1682 | 
         
            +
                    response = tokenizer.decode(outputs)
         
     | 
| 1683 | 
         
            +
                    pattern = re.compile(r".*?(?=<AI>|<用户>)", re.DOTALL)
         
     | 
| 1684 | 
         
            +
                    matches = pattern.findall(response)
         
     | 
| 1685 | 
         
            +
                    if len(matches) > 0:
         
     | 
| 1686 | 
         
            +
                        response = matches[0]
         
     | 
| 1687 | 
         
            +
                    history.append({"role": "assistant", "content": response})
         
     | 
| 1688 | 
         
            +
                    return response, history
         
     | 
| 1689 | 
         
            +
             
     | 
| 1690 | 
         
            +
             
     | 
| 1691 | 
         
            +
            @add_start_docstrings(
         
     | 
| 1692 | 
         
            +
                """
         
     | 
| 1693 | 
         
            +
                The MiniCPM Model transformer with a sequence classification head on top (linear layer).
         
     | 
| 1694 | 
         
            +
             
     | 
| 1695 | 
         
            +
                [`MiniCPMForSequenceClassification`] uses the first token in order to do the classification, as other models
         
     | 
| 1696 | 
         
            +
                (e.g. Roberta) do.
         
     | 
| 1697 | 
         
            +
                """,
         
     | 
| 1698 | 
         
            +
                MINICPM_START_DOCSTRING,
         
     | 
| 1699 | 
         
            +
            )
         
     | 
| 1700 | 
         
            +
            class MiniCPMForSequenceClassification(MiniCPMPreTrainedModel):
         
     | 
| 1701 | 
         
            +
                def __init__(self, config):
         
     | 
| 1702 | 
         
            +
                    super().__init__(config)
         
     | 
| 1703 | 
         
            +
                    self.num_labels = config.num_labels
         
     | 
| 1704 | 
         
            +
                    self.model = MiniCPMModel(config)
         
     | 
| 1705 | 
         
            +
                    self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
         
     | 
| 1706 | 
         
            +
             
     | 
| 1707 | 
         
            +
                    # Initialize weights and apply final processing
         
     | 
| 1708 | 
         
            +
                    self.post_init()
         
     | 
| 1709 | 
         
            +
             
     | 
| 1710 | 
         
            +
                def get_input_embeddings(self):
         
     | 
| 1711 | 
         
            +
                    return self.model.embed_tokens
         
     | 
| 1712 | 
         
            +
             
     | 
| 1713 | 
         
            +
                def set_input_embeddings(self, value):
         
     | 
| 1714 | 
         
            +
                    self.model.embed_tokens = value
         
     | 
| 1715 | 
         
            +
             
     | 
| 1716 | 
         
            +
                @add_start_docstrings_to_model_forward(MINICPM_INPUTS_DOCSTRING)
         
     | 
| 1717 | 
         
            +
                def forward(
         
     | 
| 1718 | 
         
            +
                    self,
         
     | 
| 1719 | 
         
            +
                    input_ids: torch.LongTensor = None,
         
     | 
| 1720 | 
         
            +
                    attention_mask: Optional[torch.Tensor] = None,
         
     | 
| 1721 | 
         
            +
                    position_ids: Optional[torch.LongTensor] = None,
         
     | 
| 1722 | 
         
            +
                    past_key_values: Optional[List[torch.FloatTensor]] = None,
         
     | 
| 1723 | 
         
            +
                    inputs_embeds: Optional[torch.FloatTensor] = None,
         
     | 
| 1724 | 
         
            +
                    labels: Optional[torch.LongTensor] = None,
         
     | 
| 1725 | 
         
            +
                    use_cache: Optional[bool] = None,
         
     | 
| 1726 | 
         
            +
                    output_attentions: Optional[bool] = None,
         
     | 
| 1727 | 
         
            +
                    output_hidden_states: Optional[bool] = None,
         
     | 
| 1728 | 
         
            +
                    return_dict: Optional[bool] = None,
         
     | 
| 1729 | 
         
            +
                ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
         
     | 
| 1730 | 
         
            +
                    r"""
         
     | 
| 1731 | 
         
            +
                    labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
         
     | 
| 1732 | 
         
            +
                        Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
         
     | 
| 1733 | 
         
            +
                        config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
         
     | 
| 1734 | 
         
            +
                        `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
         
     | 
| 1735 | 
         
            +
                    """
         
     | 
| 1736 | 
         
            +
                    return_dict = return_dict if return_dict is not None else self.config.use_return_dict
         
     | 
| 1737 | 
         
            +
             
     | 
| 1738 | 
         
            +
                    transformer_outputs = self.model(
         
     | 
| 1739 | 
         
            +
                        input_ids,
         
     | 
| 1740 | 
         
            +
                        attention_mask=attention_mask,
         
     | 
| 1741 | 
         
            +
                        position_ids=position_ids,
         
     | 
| 1742 | 
         
            +
                        past_key_values=past_key_values,
         
     | 
| 1743 | 
         
            +
                        inputs_embeds=inputs_embeds,
         
     | 
| 1744 | 
         
            +
                        use_cache=use_cache,
         
     | 
| 1745 | 
         
            +
                        output_attentions=output_attentions,
         
     | 
| 1746 | 
         
            +
                        output_hidden_states=output_hidden_states,
         
     | 
| 1747 | 
         
            +
                        return_dict=return_dict,
         
     | 
| 1748 | 
         
            +
                    )
         
     | 
| 1749 | 
         
            +
                    hidden_states = transformer_outputs[0]
         
     | 
| 1750 | 
         
            +
                    # logits = self.score(hidden_states)
         
     | 
| 1751 | 
         
            +
                    logits = self.score(hidden_states[:,0,:])
         
     | 
| 1752 | 
         
            +
                    pooled_logits = logits
         
     | 
| 1753 | 
         
            +
             
     | 
| 1754 | 
         
            +
                    # if input_ids is not None:
         
     | 
| 1755 | 
         
            +
                    #     batch_size = input_ids.shape[0]
         
     | 
| 1756 | 
         
            +
                    # else:
         
     | 
| 1757 | 
         
            +
                    #     batch_size = inputs_embeds.shape[0]
         
     | 
| 1758 | 
         
            +
             
     | 
| 1759 | 
         
            +
                    # if self.config.pad_token_id is None and batch_size != 1:
         
     | 
| 1760 | 
         
            +
                    #     raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
         
     | 
| 1761 | 
         
            +
                    # if self.config.pad_token_id is None:
         
     | 
| 1762 | 
         
            +
                    #     sequence_lengths = -1
         
     | 
| 1763 | 
         
            +
                    # else:
         
     | 
| 1764 | 
         
            +
                    #     if input_ids is not None:
         
     | 
| 1765 | 
         
            +
                    #         sequence_lengths = (torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1).to(
         
     | 
| 1766 | 
         
            +
                    #             logits.device
         
     | 
| 1767 | 
         
            +
                    #         )
         
     | 
| 1768 | 
         
            +
                    #     else:
         
     | 
| 1769 | 
         
            +
                    #         sequence_lengths = -1
         
     | 
| 1770 | 
         
            +
             
     | 
| 1771 | 
         
            +
                    # pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
         
     | 
| 1772 | 
         
            +
             
     | 
| 1773 | 
         
            +
                    loss = None
         
     | 
| 1774 | 
         
            +
                    # if labels is not None:
         
     | 
| 1775 | 
         
            +
                    #     labels = labels.to(logits.device)
         
     | 
| 1776 | 
         
            +
                    #     if self.config.problem_type is None:
         
     | 
| 1777 | 
         
            +
                    #         if self.num_labels == 1:
         
     | 
| 1778 | 
         
            +
                    #             self.config.problem_type = "regression"
         
     | 
| 1779 | 
         
            +
                    #         elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
         
     | 
| 1780 | 
         
            +
                    #             self.config.problem_type = "single_label_classification"
         
     | 
| 1781 | 
         
            +
                    #         else:
         
     | 
| 1782 | 
         
            +
                    #             self.config.problem_type = "multi_label_classification"
         
     | 
| 1783 | 
         
            +
             
     | 
| 1784 | 
         
            +
                    #     if self.config.problem_type == "regression":
         
     | 
| 1785 | 
         
            +
                    #         loss_fct = MSELoss()
         
     | 
| 1786 | 
         
            +
                    #         if self.num_labels == 1:
         
     | 
| 1787 | 
         
            +
                    #             loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
         
     | 
| 1788 | 
         
            +
                    #         else:
         
     | 
| 1789 | 
         
            +
                    #             loss = loss_fct(pooled_logits, labels)
         
     | 
| 1790 | 
         
            +
                    #     elif self.config.problem_type == "single_label_classification":
         
     | 
| 1791 | 
         
            +
                    #         loss_fct = CrossEntropyLoss()
         
     | 
| 1792 | 
         
            +
                    #         loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
         
     | 
| 1793 | 
         
            +
                    #     elif self.config.problem_type == "multi_label_classification":
         
     | 
| 1794 | 
         
            +
                    #         loss_fct = BCEWithLogitsLoss()
         
     | 
| 1795 | 
         
            +
                    #         loss = loss_fct(pooled_logits, labels)
         
     | 
| 1796 | 
         
            +
                    # if not return_dict:
         
     | 
| 1797 | 
         
            +
                    #     output = (pooled_logits,) + transformer_outputs[1:]
         
     | 
| 1798 | 
         
            +
                    #     return ((loss,) + output) if loss is not None else output
         
     | 
| 1799 | 
         
            +
             
     | 
| 1800 | 
         
            +
                    return SequenceClassifierOutputWithPast(
         
     | 
| 1801 | 
         
            +
                        loss=loss,
         
     | 
| 1802 | 
         
            +
                        logits=pooled_logits,
         
     | 
| 1803 | 
         
            +
                        past_key_values=transformer_outputs.past_key_values,
         
     | 
| 1804 | 
         
            +
                        hidden_states=transformer_outputs.hidden_states,
         
     | 
| 1805 | 
         
            +
                        attentions=transformer_outputs.attentions,
         
     | 
| 1806 | 
         
            +
                    )
         
     | 
    	
        modules.json
    ADDED
    
    | 
         @@ -0,0 +1,20 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            [
         
     | 
| 2 | 
         
            +
                {
         
     | 
| 3 | 
         
            +
                  "idx": 0,
         
     | 
| 4 | 
         
            +
                  "name": "0",
         
     | 
| 5 | 
         
            +
                  "path": "",
         
     | 
| 6 | 
         
            +
                  "type": "sentence_transformers.models.Transformer"
         
     | 
| 7 | 
         
            +
                },
         
     | 
| 8 | 
         
            +
                {
         
     | 
| 9 | 
         
            +
                  "idx": 1,
         
     | 
| 10 | 
         
            +
                  "name": "1",
         
     | 
| 11 | 
         
            +
                  "path": "1_Pooling",
         
     | 
| 12 | 
         
            +
                  "type": "sentence_transformers.models.Pooling"
         
     | 
| 13 | 
         
            +
                },
         
     | 
| 14 | 
         
            +
                {
         
     | 
| 15 | 
         
            +
                  "idx": 2,
         
     | 
| 16 | 
         
            +
                  "name": "2",
         
     | 
| 17 | 
         
            +
                  "path": "2_Normalize",
         
     | 
| 18 | 
         
            +
                  "type": "sentence_transformers.models.Normalize"
         
     | 
| 19 | 
         
            +
                }
         
     | 
| 20 | 
         
            +
              ]
         
     | 
    	
        results/dense.md
    ADDED
    
    | 
         The diff for this file is too large to render. 
		See raw diff 
     | 
| 
         | 
    	
        results/dense_sparse.md
    ADDED
    
    | 
         The diff for this file is too large to render. 
		See raw diff 
     | 
| 
         | 
    	
        results/sparse.md
    ADDED
    
    | 
         The diff for this file is too large to render. 
		See raw diff 
     | 
| 
         | 
    	
        scripts/flagembedding_demo.py
    ADDED
    
    | 
         @@ -0,0 +1,27 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            from FlagEmbedding import FlagModel
         
     | 
| 2 | 
         
            +
             
     | 
| 3 | 
         
            +
             
     | 
| 4 | 
         
            +
            model = FlagModel("openbmb/UltraRAG-Embedding", 
         
     | 
| 5 | 
         
            +
                                      query_instruction_for_retrieval="Query: ",
         
     | 
| 6 | 
         
            +
                                      pooling_method="mean",
         
     | 
| 7 | 
         
            +
                                      trust_remote_code=True,
         
     | 
| 8 | 
         
            +
                                      normalize_embeddings=True,
         
     | 
| 9 | 
         
            +
                                      use_fp16=True)
         
     | 
| 10 | 
         
            +
            # You can hack the __init__() method of the FlagEmbedding BaseEmbedder class to use flash_attention_2 for faster inference
         
     | 
| 11 | 
         
            +
            #  self.model = AutoModel.from_pretrained(
         
     | 
| 12 | 
         
            +
            #             model_name_or_path,
         
     | 
| 13 | 
         
            +
            #             trust_remote_code=trust_remote_code,
         
     | 
| 14 | 
         
            +
            #             cache_dir=cache_dir,
         
     | 
| 15 | 
         
            +
            #             # torch_dtype=torch.float16, # we need to add this line to use fp16
         
     | 
| 16 | 
         
            +
            #             # attn_implementation="flash_attention_2", # we need to add this line to use flash_attention_2
         
     | 
| 17 | 
         
            +
            #         )
         
     | 
| 18 | 
         
            +
             
     | 
| 19 | 
         
            +
            queries = ["中国的首都是哪里?"] # "What is the capital of China?"
         
     | 
| 20 | 
         
            +
            passages = ["beijing", "shanghai"] # "北京", "上海"
         
     | 
| 21 | 
         
            +
             
     | 
| 22 | 
         
            +
             
     | 
| 23 | 
         
            +
            embeddings_query = model.encode_queries(queries)
         
     | 
| 24 | 
         
            +
            embeddings_doc = model.encode_corpus(passages)
         
     | 
| 25 | 
         
            +
             
     | 
| 26 | 
         
            +
            scores = (embeddings_query @ embeddings_doc.T)
         
     | 
| 27 | 
         
            +
            print(scores.tolist())  # [[0.40356746315956116, 0.36183440685272217]]
         
     | 
    	
        scripts/infinity_demo.py
    ADDED
    
    | 
         @@ -0,0 +1,24 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            import asyncio
         
     | 
| 2 | 
         
            +
            from infinity_emb import AsyncEngineArray, EngineArgs, AsyncEmbeddingEngine
         
     | 
| 3 | 
         
            +
            import numpy as np
         
     | 
| 4 | 
         
            +
             
     | 
| 5 | 
         
            +
            array = AsyncEngineArray.from_args([
         
     | 
| 6 | 
         
            +
              EngineArgs(model_name_or_path = "OpenBMB/UltraRAG-Embedding", engine="torch", dtype="float16", bettertransformer=False, pooling_method="mean", trust_remote_code=True),
         
     | 
| 7 | 
         
            +
            ])
         
     | 
| 8 | 
         
            +
            queries = ["中国的首都是哪里?"] # "What is the capital of China?"
         
     | 
| 9 | 
         
            +
            passages = ["beijing", "shanghai"] # "北京", "上海"
         
     | 
| 10 | 
         
            +
             
     | 
| 11 | 
         
            +
            INSTRUCTION = "Query:"
         
     | 
| 12 | 
         
            +
            queries = [f"{INSTRUCTION} {query}" for query in queries]
         
     | 
| 13 | 
         
            +
             
     | 
| 14 | 
         
            +
             
     | 
| 15 | 
         
            +
            async def embed_text(engine: AsyncEmbeddingEngine,sentences): 
         
     | 
| 16 | 
         
            +
                async with engine: 
         
     | 
| 17 | 
         
            +
                    embeddings, usage = await engine.embed(sentences=sentences)
         
     | 
| 18 | 
         
            +
                return embeddings
         
     | 
| 19 | 
         
            +
             
     | 
| 20 | 
         
            +
            queries_embedding = asyncio.run(embed_text(array[0],queries))
         
     | 
| 21 | 
         
            +
            passages_embedding = asyncio.run(embed_text(array[0],passages))
         
     | 
| 22 | 
         
            +
             
     | 
| 23 | 
         
            +
            scores = (np.array(queries_embedding) @ np.array(passages_embedding).T)
         
     | 
| 24 | 
         
            +
            print(scores.tolist())  # [[0.40356746315956116, 0.36183443665504456]]
         
     | 
    	
        scripts/sentence_transformers_demo.py
    ADDED
    
    | 
         @@ -0,0 +1,20 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            import torch
         
     | 
| 2 | 
         
            +
            from sentence_transformers import SentenceTransformer
         
     | 
| 3 | 
         
            +
             
     | 
| 4 | 
         
            +
             
     | 
| 5 | 
         
            +
            model_name = "openbmb/UltraRAG-Embedding"
         
     | 
| 6 | 
         
            +
            model = SentenceTransformer(model_name, trust_remote_code=True, model_kwargs={"torch_dtype": torch.float16})
         
     | 
| 7 | 
         
            +
             
     | 
| 8 | 
         
            +
            # you can use flash_attention_2 for faster inference
         
     | 
| 9 | 
         
            +
            # model = SentenceTransformer(model_name, trust_remote_code=True, model_kwargs={"attn_implementation": "flash_attention_2", "torch_dtype": torch.float16})
         
     | 
| 10 | 
         
            +
             
     | 
| 11 | 
         
            +
            queries = ["中国的首都是哪里?"] # "What is the capital of China?"
         
     | 
| 12 | 
         
            +
            passages = ["beijing", "shanghai"] # "北京", "上海"
         
     | 
| 13 | 
         
            +
             
     | 
| 14 | 
         
            +
            INSTRUCTION = "Query: "
         
     | 
| 15 | 
         
            +
             
     | 
| 16 | 
         
            +
            embeddings_query = model.encode(queries, prompt=INSTRUCTION)
         
     | 
| 17 | 
         
            +
            embeddings_doc = model.encode(passages)
         
     | 
| 18 | 
         
            +
             
     | 
| 19 | 
         
            +
            scores = (embeddings_query @ embeddings_doc.T)
         
     | 
| 20 | 
         
            +
            print(scores.tolist())  # [[0.40356746315956116, 0.36183440685272217]]
         
     | 
    	
        scripts/test_mteb.py
    ADDED
    
    | 
         @@ -0,0 +1,475 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            # copy from https://huggingface.co/Alibaba-NLP/gte-Qwen2-1.5B-instruct/blob/main/scripts/eval_mteb.py
         
     | 
| 2 | 
         
            +
             
     | 
| 3 | 
         
            +
            #### ATTENTION ####
         
     | 
| 4 | 
         
            +
            # To Reproduce the results of Sparse and Dense + Sparse, you need to hack the MTEB RetrievalEvaluator
         
     | 
| 5 | 
         
            +
            # in mteb/evaluation/evaluators/RetrievalEvaluator.py
         
     | 
| 6 | 
         
            +
            # class RetrievalEvaluator(Evaluator):
         
     | 
| 7 | 
         
            +
                # def __init__(
         
     | 
| 8 | 
         
            +
                #     self,
         
     | 
| 9 | 
         
            +
                #     retriever=None,
         
     | 
| 10 | 
         
            +
                #     task_name: str | None = None,
         
     | 
| 11 | 
         
            +
                #     k_values: list[int] = [1, 3, 5, 10, 20, 100, 1000],
         
     | 
| 12 | 
         
            +
                #     score_function: str = "cos_sim",
         
     | 
| 13 | 
         
            +
                #     encode_kwargs: dict[str, Any] = {},
         
     | 
| 14 | 
         
            +
                #     **kwargs,
         
     | 
| 15 | 
         
            +
                # ):
         
     | 
| 16 | 
         
            +
            # you need to change default score_function to "dot" to reproduce the results of Sparse and Dense + Sparse
         
     | 
| 17 | 
         
            +
            MODE = "Dense" # "Dense" or "Sparse" or "Dense + Sparse"
         
     | 
| 18 | 
         
            +
             
     | 
| 19 | 
         
            +
            TASK_LIST_CLASSIFICATION = [
         
     | 
| 20 | 
         
            +
                "AmazonCounterfactualClassification",
         
     | 
| 21 | 
         
            +
                "AmazonPolarityClassification",
         
     | 
| 22 | 
         
            +
                "AmazonReviewsClassification",
         
     | 
| 23 | 
         
            +
                "Banking77Classification",
         
     | 
| 24 | 
         
            +
                "EmotionClassification",
         
     | 
| 25 | 
         
            +
                "ImdbClassification",
         
     | 
| 26 | 
         
            +
                "MassiveIntentClassification",
         
     | 
| 27 | 
         
            +
                "MassiveScenarioClassification",
         
     | 
| 28 | 
         
            +
                "MTOPDomainClassification",
         
     | 
| 29 | 
         
            +
                "MTOPIntentClassification",
         
     | 
| 30 | 
         
            +
                "ToxicConversationsClassification",
         
     | 
| 31 | 
         
            +
                "TweetSentimentExtractionClassification",
         
     | 
| 32 | 
         
            +
            ]
         
     | 
| 33 | 
         
            +
             
     | 
| 34 | 
         
            +
            TASK_LIST_CLUSTERING = [
         
     | 
| 35 | 
         
            +
                "ArxivClusteringP2P",
         
     | 
| 36 | 
         
            +
                "ArxivClusteringS2S",
         
     | 
| 37 | 
         
            +
                "BiorxivClusteringP2P",
         
     | 
| 38 | 
         
            +
                "BiorxivClusteringS2S",
         
     | 
| 39 | 
         
            +
                "MedrxivClusteringP2P",
         
     | 
| 40 | 
         
            +
                "MedrxivClusteringS2S",
         
     | 
| 41 | 
         
            +
                "RedditClustering",
         
     | 
| 42 | 
         
            +
                "RedditClusteringP2P",
         
     | 
| 43 | 
         
            +
                "StackExchangeClustering",
         
     | 
| 44 | 
         
            +
                "StackExchangeClusteringP2P",
         
     | 
| 45 | 
         
            +
                "TwentyNewsgroupsClustering",
         
     | 
| 46 | 
         
            +
            ]
         
     | 
| 47 | 
         
            +
             
     | 
| 48 | 
         
            +
            TASK_LIST_PAIR_CLASSIFICATION = [
         
     | 
| 49 | 
         
            +
                "SprintDuplicateQuestions",
         
     | 
| 50 | 
         
            +
                "TwitterSemEval2015",
         
     | 
| 51 | 
         
            +
                "TwitterURLCorpus",
         
     | 
| 52 | 
         
            +
            ]
         
     | 
| 53 | 
         
            +
             
     | 
| 54 | 
         
            +
            TASK_LIST_RERANKING = [
         
     | 
| 55 | 
         
            +
                "AskUbuntuDupQuestions",
         
     | 
| 56 | 
         
            +
                "MindSmallReranking",
         
     | 
| 57 | 
         
            +
                "SciDocsRR",
         
     | 
| 58 | 
         
            +
                "StackOverflowDupQuestions",
         
     | 
| 59 | 
         
            +
            ]
         
     | 
| 60 | 
         
            +
             
     | 
| 61 | 
         
            +
            TASK_LIST_RETRIEVAL = [
         
     | 
| 62 | 
         
            +
                "ArguAna",
         
     | 
| 63 | 
         
            +
                "FiQA2018",
         
     | 
| 64 | 
         
            +
                "QuoraRetrieval",
         
     | 
| 65 | 
         
            +
                "SCIDOCS",
         
     | 
| 66 | 
         
            +
                "SciFact",
         
     | 
| 67 | 
         
            +
                "Touche2020",
         
     | 
| 68 | 
         
            +
                "TRECCOVID",
         
     | 
| 69 | 
         
            +
                "NFCorpus",
         
     | 
| 70 | 
         
            +
                "NQ",
         
     | 
| 71 | 
         
            +
                "ClimateFEVER",
         
     | 
| 72 | 
         
            +
                "CQADupstackAndroidRetrieval",
         
     | 
| 73 | 
         
            +
                "CQADupstackEnglishRetrieval",
         
     | 
| 74 | 
         
            +
                "CQADupstackGamingRetrieval",
         
     | 
| 75 | 
         
            +
                "CQADupstackGisRetrieval",
         
     | 
| 76 | 
         
            +
                "CQADupstackMathematicaRetrieval",
         
     | 
| 77 | 
         
            +
                "CQADupstackPhysicsRetrieval",
         
     | 
| 78 | 
         
            +
                "CQADupstackProgrammersRetrieval",
         
     | 
| 79 | 
         
            +
                "CQADupstackStatsRetrieval",
         
     | 
| 80 | 
         
            +
                "CQADupstackTexRetrieval",
         
     | 
| 81 | 
         
            +
                "CQADupstackUnixRetrieval",
         
     | 
| 82 | 
         
            +
                "CQADupstackWebmastersRetrieval",
         
     | 
| 83 | 
         
            +
                "CQADupstackWordpressRetrieval",
         
     | 
| 84 | 
         
            +
                "DBPedia",
         
     | 
| 85 | 
         
            +
                "HotpotQA",
         
     | 
| 86 | 
         
            +
                "MSMARCO",
         
     | 
| 87 | 
         
            +
                "FEVER",
         
     | 
| 88 | 
         
            +
            ]
         
     | 
| 89 | 
         
            +
             
     | 
| 90 | 
         
            +
            TASK_LIST_STS = [
         
     | 
| 91 | 
         
            +
                "BIOSSES",
         
     | 
| 92 | 
         
            +
                "SICK-R",
         
     | 
| 93 | 
         
            +
                "STS12",
         
     | 
| 94 | 
         
            +
                "STS13",
         
     | 
| 95 | 
         
            +
                "STS14",
         
     | 
| 96 | 
         
            +
                "STS15",
         
     | 
| 97 | 
         
            +
                "STS16",
         
     | 
| 98 | 
         
            +
                "STS17",
         
     | 
| 99 | 
         
            +
                "STS22",
         
     | 
| 100 | 
         
            +
                "STSBenchmark",
         
     | 
| 101 | 
         
            +
                "SummEval",
         
     | 
| 102 | 
         
            +
            ]
         
     | 
| 103 | 
         
            +
             
     | 
| 104 | 
         
            +
            MTEB_TASK_LIST = (
         
     | 
| 105 | 
         
            +
                 TASK_LIST_RETRIEVAL
         
     | 
| 106 | 
         
            +
                + TASK_LIST_CLASSIFICATION
         
     | 
| 107 | 
         
            +
                + TASK_LIST_CLUSTERING
         
     | 
| 108 | 
         
            +
                + TASK_LIST_PAIR_CLASSIFICATION
         
     | 
| 109 | 
         
            +
                + TASK_LIST_RERANKING
         
     | 
| 110 | 
         
            +
                + TASK_LIST_STS
         
     | 
| 111 | 
         
            +
            )
         
     | 
| 112 | 
         
            +
             
     | 
| 113 | 
         
            +
             
     | 
| 114 | 
         
            +
            CMTEB_TASK_LIST = [
         
     | 
| 115 | 
         
            +
                "TNews",
         
     | 
| 116 | 
         
            +
                "IFlyTek",
         
     | 
| 117 | 
         
            +
                "MultilingualSentiment",
         
     | 
| 118 | 
         
            +
                "JDReview",
         
     | 
| 119 | 
         
            +
                "OnlineShopping",
         
     | 
| 120 | 
         
            +
                "Waimai",
         
     | 
| 121 | 
         
            +
                "AmazonReviewsClassification",
         
     | 
| 122 | 
         
            +
                "MassiveIntentClassification",
         
     | 
| 123 | 
         
            +
                "MassiveScenarioClassification",
         
     | 
| 124 | 
         
            +
                "MultilingualSentiment",
         
     | 
| 125 | 
         
            +
                "CLSClusteringS2S",
         
     | 
| 126 | 
         
            +
                "CLSClusteringP2P",
         
     | 
| 127 | 
         
            +
                "ThuNewsClusteringS2S",
         
     | 
| 128 | 
         
            +
                "ThuNewsClusteringP2P",
         
     | 
| 129 | 
         
            +
                "Ocnli",
         
     | 
| 130 | 
         
            +
                "Cmnli",
         
     | 
| 131 | 
         
            +
                "T2Reranking",
         
     | 
| 132 | 
         
            +
                "MMarcoReranking",
         
     | 
| 133 | 
         
            +
                "CMedQAv1-reranking",
         
     | 
| 134 | 
         
            +
                "CMedQAv2-reranking",
         
     | 
| 135 | 
         
            +
                "T2Retrieval",
         
     | 
| 136 | 
         
            +
                "MMarcoRetrieval",
         
     | 
| 137 | 
         
            +
                "DuRetrieval",
         
     | 
| 138 | 
         
            +
                "CovidRetrieval",
         
     | 
| 139 | 
         
            +
                "CmedqaRetrieval",
         
     | 
| 140 | 
         
            +
                "EcomRetrieval",
         
     | 
| 141 | 
         
            +
                "MedicalRetrieval",
         
     | 
| 142 | 
         
            +
                "VideoRetrieval",
         
     | 
| 143 | 
         
            +
                "ATEC",
         
     | 
| 144 | 
         
            +
                "BQ",
         
     | 
| 145 | 
         
            +
                "LCQMC",
         
     | 
| 146 | 
         
            +
                "PAWSX",
         
     | 
| 147 | 
         
            +
                "STSB",
         
     | 
| 148 | 
         
            +
                "AFQMC",
         
     | 
| 149 | 
         
            +
                "QBQTC",
         
     | 
| 150 | 
         
            +
                "STS22",
         
     | 
| 151 | 
         
            +
            ]
         
     | 
| 152 | 
         
            +
             
     | 
| 153 | 
         
            +
            MTEB_TASK_LIST = CMTEB_TASK_LIST + MTEB_TASK_LIST
         
     | 
| 154 | 
         
            +
             
     | 
| 155 | 
         
            +
            import torch
         
     | 
| 156 | 
         
            +
            import torch.nn.functional as F
         
     | 
| 157 | 
         
            +
            import tqdm
         
     | 
| 158 | 
         
            +
            import numpy as np
         
     | 
| 159 | 
         
            +
            import math
         
     | 
| 160 | 
         
            +
             
     | 
| 161 | 
         
            +
            from functools import partial
         
     | 
| 162 | 
         
            +
            from torch.utils.data import DataLoader
         
     | 
| 163 | 
         
            +
            from datasets import Dataset
         
     | 
| 164 | 
         
            +
            from transformers import AutoModel, AutoTokenizer, DataCollatorWithPadding, PreTrainedTokenizerFast, BatchEncoding
         
     | 
| 165 | 
         
            +
            from transformers.modeling_outputs import BaseModelOutput
         
     | 
| 166 | 
         
            +
            from typing import List, Dict
         
     | 
| 167 | 
         
            +
            from mteb import MTEB
         
     | 
| 168 | 
         
            +
             
     | 
| 169 | 
         
            +
            def get_detailed_instruct(task_description: str) -> str:
         
     | 
| 170 | 
         
            +
                if not task_description:
         
     | 
| 171 | 
         
            +
                    return ""
         
     | 
| 172 | 
         
            +
             
     | 
| 173 | 
         
            +
                return "Instruction: {} Query: ".format(task_description)
         
     | 
| 174 | 
         
            +
             
     | 
| 175 | 
         
            +
             
     | 
| 176 | 
         
            +
             
     | 
| 177 | 
         
            +
            def get_task_def_by_task_name_and_type(
         
     | 
| 178 | 
         
            +
                task_name: str,
         
     | 
| 179 | 
         
            +
                task_type: str,
         
     | 
| 180 | 
         
            +
                default_instruct="",
         
     | 
| 181 | 
         
            +
            ):
         
     | 
| 182 | 
         
            +
                if task_type in ["STS"]:
         
     | 
| 183 | 
         
            +
                    return None
         
     | 
| 184 | 
         
            +
             
     | 
| 185 | 
         
            +
                if task_type in ["Summarization"]:
         
     | 
| 186 | 
         
            +
                    return "Given a news summary, retrieve other semantically similar summaries"
         
     | 
| 187 | 
         
            +
             
     | 
| 188 | 
         
            +
                if task_type in ["Classification"]:
         
     | 
| 189 | 
         
            +
                    task_name_to_instruct: Dict[str, str] = {
         
     | 
| 190 | 
         
            +
                        "AmazonCounterfactualClassification": "Classify a given Amazon customer review text as either counterfactual or not-counterfactual.",
         
     | 
| 191 | 
         
            +
                        "AmazonPolarityClassification": "Classify Amazon reviews into positive or negative sentiment.",
         
     | 
| 192 | 
         
            +
                        "AmazonReviewsClassification": "Classify the given Amazon review into its appropriate rating category.",
         
     | 
| 193 | 
         
            +
                        "Banking77Classification": "Given a online banking query, find the corresponding intents.",
         
     | 
| 194 | 
         
            +
                        "EmotionClassification": "Classify the emotion expressed in the given Twitter message into one of the six emotions: anger, fear, joy, love, sadness, and surprise.",
         
     | 
| 195 | 
         
            +
                        "ImdbClassification": "Classify the sentiment expressed in the given movie review text from the IMDB dataset.",
         
     | 
| 196 | 
         
            +
                        "MassiveIntentClassification": "Given a user utterance as query, find the user intents.",
         
     | 
| 197 | 
         
            +
                        "MassiveScenarioClassification": "Given a user utterance as query, find the user scenarios.",
         
     | 
| 198 | 
         
            +
                        "MTOPDomainClassification": "Classify the intent domain of the given utterance in task-oriented conversation.",
         
     | 
| 199 | 
         
            +
                        "MTOPIntentClassification": "Classify the intent of the given utterance in task-oriented conversation.",
         
     | 
| 200 | 
         
            +
                        "ToxicConversationsClassification": "Classify the given comments as either toxic or not toxic.",
         
     | 
| 201 | 
         
            +
                        "TweetSentimentExtractionClassification": "Classify the sentiment of a given tweet as either positive, negative, or neutral.",
         
     | 
| 202 | 
         
            +
                        # C-MTEB eval instructions
         
     | 
| 203 | 
         
            +
                        "TNews": "根据标题确定新闻的类别。",
         
     | 
| 204 | 
         
            +
                        "IFlyTek": "根据描述确定APP的类别。",
         
     | 
| 205 | 
         
            +
                        "MultilingualSentiment": "将亚马逊评论分为积极、消极或中立情绪。",
         
     | 
| 206 | 
         
            +
                        "JDReview": "将商品评论分为积极或消极情绪。",
         
     | 
| 207 | 
         
            +
                        "OnlineShopping": "将商品评论分为积极或消极情绪。",
         
     | 
| 208 | 
         
            +
                        "Waimai": "将外卖评论分为积极或消极情绪。",
         
     | 
| 209 | 
         
            +
                    }
         
     | 
| 210 | 
         
            +
                    return task_name_to_instruct.get(task_name,None)
         
     | 
| 211 | 
         
            +
             
     | 
| 212 | 
         
            +
                if task_type in ["Clustering"]:
         
     | 
| 213 | 
         
            +
                    task_name_to_instruct: Dict[str, str] = {
         
     | 
| 214 | 
         
            +
                        "ArxivClusteringP2P": "Identify the main and secondary category of Arxiv papers based on the titles and abstracts.",
         
     | 
| 215 | 
         
            +
                        "ArxivClusteringS2S": "Identify the main and secondary category of Arxiv papers based on the titles.",
         
     | 
| 216 | 
         
            +
                        "BiorxivClusteringP2P": "Identify the main category of Biorxiv papers based on the titles and abstracts.",
         
     | 
| 217 | 
         
            +
                        "BiorxivClusteringS2S": "Identify the main category of Biorxiv papers based on the titles.",
         
     | 
| 218 | 
         
            +
                        "MedrxivClusteringP2P": "Identify the main category of Medrxiv papers based on the titles and abstracts.",
         
     | 
| 219 | 
         
            +
                        "MedrxivClusteringS2S": "Identify the main category of Medrxiv papers based on the titles.",
         
     | 
| 220 | 
         
            +
                        "RedditClustering": "Identify the topic or theme of Reddit posts based on the titles.",
         
     | 
| 221 | 
         
            +
                        "RedditClusteringP2P": "Identify the topic or theme of Reddit posts based on the titles and posts.",
         
     | 
| 222 | 
         
            +
                        "StackExchangeClustering": "Identify the topic or theme of StackExchange posts based on the titles.",
         
     | 
| 223 | 
         
            +
                        "StackExchangeClusteringP2P": "Identify the topic or theme of StackExchange posts based on the given paragraphs.",
         
     | 
| 224 | 
         
            +
                        "TwentyNewsgroupsClustering": "Identify the topic or theme of the given news articles.",
         
     | 
| 225 | 
         
            +
                        # C-MTEB eval instructions
         
     | 
| 226 | 
         
            +
                        "CLSClusteringS2S": "根据标题确定文章的类别。",
         
     | 
| 227 | 
         
            +
                        "CLSClusteringP2P": "根据标题和摘要确定文章的类别。",
         
     | 
| 228 | 
         
            +
                        "ThuNewsClusteringS2S": "根据标题确定新闻的类别。",
         
     | 
| 229 | 
         
            +
                        "ThuNewsClusteringP2P": "根据标题和摘要确定新闻的类别。",
         
     | 
| 230 | 
         
            +
                    }
         
     | 
| 231 | 
         
            +
                    return task_name_to_instruct.get(task_name,None)
         
     | 
| 232 | 
         
            +
             
     | 
| 233 | 
         
            +
                if task_type in ["Reranking", "PairClassification"]:
         
     | 
| 234 | 
         
            +
                    task_name_to_instruct: Dict[str, str] = {
         
     | 
| 235 | 
         
            +
                        "AskUbuntuDupQuestions": "Retrieve duplicate questions from AskUbuntu forum.",
         
     | 
| 236 | 
         
            +
                        "MindSmallReranking": "Retrieve relevant news articles based on user browsing history.",
         
     | 
| 237 | 
         
            +
                        "SciDocsRR": "Given a title of a scientific paper, retrieve the titles of other relevant papers.",
         
     | 
| 238 | 
         
            +
                        "StackOverflowDupQuestions": "Retrieve duplicate questions from StackOverflow forum.",
         
     | 
| 239 | 
         
            +
                        "SprintDuplicateQuestions": "Retrieve duplicate questions from Sprint forum.",
         
     | 
| 240 | 
         
            +
                        "TwitterSemEval2015": "Retrieve tweets that are semantically similar to the given tweet.",
         
     | 
| 241 | 
         
            +
                        "TwitterURLCorpus": "Retrieve tweets that are semantically similar to the given tweet.",
         
     | 
| 242 | 
         
            +
                        # C-MTEB eval instructions
         
     | 
| 243 | 
         
            +
                        "T2Reranking": "为这个问题检索相关段落。",
         
     | 
| 244 | 
         
            +
                        "MMarcoReranking": "为这个查询检索相关段落。",
         
     | 
| 245 | 
         
            +
                        "CMedQAv1-reranking": "为这个医疗问题检索相关回答。",
         
     | 
| 246 | 
         
            +
                        "CMedQAv2-reranking": "为这个医疗问题检索相关回答。",
         
     | 
| 247 | 
         
            +
                    }
         
     | 
| 248 | 
         
            +
             
     | 
| 249 | 
         
            +
                    return task_name_to_instruct.get(task_name,None)
         
     | 
| 250 | 
         
            +
             
     | 
| 251 | 
         
            +
                if task_type in ["Retrieval"]:
         
     | 
| 252 | 
         
            +
                    if task_name.lower().startswith("cqadupstack"):
         
     | 
| 253 | 
         
            +
                        return "Given a question, retrieve detailed question descriptions from Stackexchange that are duplicates to the given question"
         
     | 
| 254 | 
         
            +
             
     | 
| 255 | 
         
            +
                    task_name_to_instruct: Dict[str, str] = {
         
     | 
| 256 | 
         
            +
                        "ArguAna": "Given a claim, find documents that refute the claim.",
         
     | 
| 257 | 
         
            +
                        "ClimateFEVER": "Given a claim about climate change, retrieve documents that support or refute the claim.",
         
     | 
| 258 | 
         
            +
                        "DBPedia": "Given a query, retrieve relevant entity descriptions from DBPedia.",
         
     | 
| 259 | 
         
            +
                        "FEVER": "Given a claim, retrieve documents that support or refute the claim.",
         
     | 
| 260 | 
         
            +
                        "FiQA2018": "Given a financial question, retrieve user replies that best answer the question.",
         
     | 
| 261 | 
         
            +
                        "HotpotQA": "Given a multi-hop question, retrieve documents that can help answer the question.",
         
     | 
| 262 | 
         
            +
                        "MSMARCO": "Given a web search query, retrieve relevant passages that answer the query.",
         
     | 
| 263 | 
         
            +
                        "NFCorpus": "Given a question, retrieve relevant documents that best answer the question.",
         
     | 
| 264 | 
         
            +
                        "NQ": "Given a question, retrieve Wikipedia passages that answer the question.",
         
     | 
| 265 | 
         
            +
                        "QuoraRetrieval": "Given a question, retrieve questions that are semantically equivalent to the given question.",
         
     | 
| 266 | 
         
            +
                        "SCIDOCS": "Given a scientific paper title, retrieve paper abstracts that are cited by the given paper.",
         
     | 
| 267 | 
         
            +
                        "SciFact": "Given a scientific claim, retrieve documents that support or refute the claim.",
         
     | 
| 268 | 
         
            +
                        "Touche2020": "Given a question, retrieve detailed and persuasive arguments that answer the question.",
         
     | 
| 269 | 
         
            +
                        "TRECCOVID": "Given a query on COVID-19, retrieve documents that answer the query.",
         
     | 
| 270 | 
         
            +
                        # C-MTEB eval instructions
         
     | 
| 271 | 
         
            +
                        "T2Retrieval": "为这个问题检索相关段落。",
         
     | 
| 272 | 
         
            +
                        "MMarcoRetrieval": "为这个查询检索相关段落。",
         
     | 
| 273 | 
         
            +
                        "DuRetrieval": "为这个问题检索相关百度知道回答。",
         
     | 
| 274 | 
         
            +
                        "CovidRetrieval": "为这个问题检索相关政策回答。",
         
     | 
| 275 | 
         
            +
                        "CmedqaRetrieval": "为这个医疗问题检索相关回答。",
         
     | 
| 276 | 
         
            +
                        "EcomRetrieval": "为这个查询检索相关商品标题。",
         
     | 
| 277 | 
         
            +
                        "MedicalRetrieval": "为这个医疗问题检索相关回答。",
         
     | 
| 278 | 
         
            +
                        "VideoRetrieval": "为这个电影标题检索相关段落。",
         
     | 
| 279 | 
         
            +
                    }
         
     | 
| 280 | 
         
            +
             
     | 
| 281 | 
         
            +
                    task_name_to_instruct.update({k.lower(): v for k, v in task_name_to_instruct.items()})
         
     | 
| 282 | 
         
            +
             
     | 
| 283 | 
         
            +
                    return task_name_to_instruct.get(task_name,None)
         
     | 
| 284 | 
         
            +
                return default_instruct
         
     | 
| 285 | 
         
            +
            def _transform_func(tokenizer: PreTrainedTokenizerFast,
         
     | 
| 286 | 
         
            +
                                examples: Dict[str, List]) -> BatchEncoding:
         
     | 
| 287 | 
         
            +
                batch_dict = tokenizer(examples['input_texts'],
         
     | 
| 288 | 
         
            +
                                       max_length=1024,
         
     | 
| 289 | 
         
            +
                                       padding=True,
         
     | 
| 290 | 
         
            +
                                       truncation=True)
         
     | 
| 291 | 
         
            +
             
     | 
| 292 | 
         
            +
                return batch_dict
         
     | 
| 293 | 
         
            +
             
     | 
| 294 | 
         
            +
            # def weighted_mean_pooling(hidden,attention_mask):
         
     | 
| 295 | 
         
            +
            #     # print(hidden.shape,attention_mask.shape)
         
     | 
| 296 | 
         
            +
            #     attention_mask_ = attention_mask * attention_mask.cumsum(dim=1)
         
     | 
| 297 | 
         
            +
            #     s = torch.sum(hidden * attention_mask_.unsqueeze(-1).float(), dim=1)
         
     | 
| 298 | 
         
            +
            #     d = attention_mask_.sum(dim=1, keepdim=True).float()
         
     | 
| 299 | 
         
            +
            #     reps = s / d
         
     | 
| 300 | 
         
            +
            #     return reps
         
     | 
| 301 | 
         
            +
             
     | 
| 302 | 
         
            +
            def mean_pooling(hidden,attention_mask):
         
     | 
| 303 | 
         
            +
                # print(hidden.shape,attention_mask.shape)
         
     | 
| 304 | 
         
            +
                s = torch.sum(hidden * attention_mask.unsqueeze(-1).float(), dim=1)
         
     | 
| 305 | 
         
            +
                d = attention_mask.sum(dim=1, keepdim=True).float()
         
     | 
| 306 | 
         
            +
                return s / d
         
     | 
| 307 | 
         
            +
             
     | 
| 308 | 
         
            +
            def wmean_pooling(hidden,attention_mask):
         
     | 
| 309 | 
         
            +
                attention_mask_ = attention_mask * attention_mask.cumsum(dim=1)
         
     | 
| 310 | 
         
            +
                hidden_masked = hidden * attention_mask_.unsqueeze(-1).float()
         
     | 
| 311 | 
         
            +
                s = torch.sum(hidden_masked, dim=1)
         
     | 
| 312 | 
         
            +
                d = attention_mask_.sum(dim=1, keepdim=True).float()
         
     | 
| 313 | 
         
            +
                reps = s / d
         
     | 
| 314 | 
         
            +
                return reps
         
     | 
| 315 | 
         
            +
             
     | 
| 316 | 
         
            +
            def reverse_wmean_pooling(hidden,attention_mask):
         
     | 
| 317 | 
         
            +
                attention_mask_ = attention_mask * attention_mask.cumsum(dim=1)
         
     | 
| 318 | 
         
            +
                d = attention_mask_.sum(dim=1, keepdim=True).unsqueeze(1).float() / attention_mask.sum(dim=1, keepdim=True).unsqueeze(1).float()
         
     | 
| 319 | 
         
            +
                hidden = hidden.float() * d
         
     | 
| 320 | 
         
            +
                return hidden / torch.clamp(attention_mask_.unsqueeze(-1).float(),min=1e-9)
         
     | 
| 321 | 
         
            +
             
     | 
| 322 | 
         
            +
             
     | 
| 323 | 
         
            +
            def sparse_pooling(head,model,items,hidden,attention_mask):
         
     | 
| 324 | 
         
            +
                hidden = reverse_wmean_pooling(hidden,attention_mask) # reverse weighted mean pooling, beacuse the hidden states are modified in the model
         
     | 
| 325 | 
         
            +
                max_hidden_norm = torch.max(torch.norm(hidden,dim=-1),dim = -1).values
         
     | 
| 326 | 
         
            +
                token_weights = torch.relu(head(hidden.float()/max_hidden_norm.unsqueeze(-1).unsqueeze(-1)))
         
     | 
| 327 | 
         
            +
                vocab_size = model.embed_tokens.weight.size(0)
         
     | 
| 328 | 
         
            +
                input_ids = items["input_ids"]
         
     | 
| 329 | 
         
            +
                sparse_embedding_chunks = []
         
     | 
| 330 | 
         
            +
                mini_chunk_size = 1
         
     | 
| 331 | 
         
            +
                mini_chunk_size = min(mini_chunk_size,hidden.shape[0])
         
     | 
| 332 | 
         
            +
                for i in range(0, token_weights.size(0), mini_chunk_size):
         
     | 
| 333 | 
         
            +
                    now_chunk_size = min(mini_chunk_size, token_weights.size(0) - i)
         
     | 
| 334 | 
         
            +
                    sparse_embedding = torch.zeros(now_chunk_size , input_ids.size(1), vocab_size,
         
     | 
| 335 | 
         
            +
                                               dtype=token_weights.dtype,
         
     | 
| 336 | 
         
            +
                                               device=token_weights.device)
         
     | 
| 337 | 
         
            +
                    sparse_embedding_chunks.append(torch.max((torch.scatter(sparse_embedding, dim=-1, index=input_ids[i:i+now_chunk_size, :].unsqueeze(-1), src=token_weights[i:i+now_chunk_size, :])), dim=1).values)
         
     | 
| 338 | 
         
            +
                sparse_embedding = torch.concat(sparse_embedding_chunks, dim=0)
         
     | 
| 339 | 
         
            +
                unused_tokens = [0,1,2,73440]
         
     | 
| 340 | 
         
            +
                sparse_embedding[:, unused_tokens] *= 0.
         
     | 
| 341 | 
         
            +
                return sparse_embedding
         
     | 
| 342 | 
         
            +
             
     | 
| 343 | 
         
            +
            def concat_pooling(head,model,items,hidden,attention_mask):
         
     | 
| 344 | 
         
            +
                mean_reps = mean_pooling(hidden,attention_mask)
         
     | 
| 345 | 
         
            +
                mean_reps = F.normalize(mean_reps, p=2, dim=1)
         
     | 
| 346 | 
         
            +
                sparse_reps = sparse_pooling(head,model,items,hidden,attention_mask) * math.sqrt(0.3)
         
     | 
| 347 | 
         
            +
                return torch.cat([mean_reps,sparse_reps],dim=-1)
         
     | 
| 348 | 
         
            +
             
     | 
| 349 | 
         
            +
            #
         
     | 
| 350 | 
         
            +
             
     | 
| 351 | 
         
            +
            class DenseEncoder(torch.nn.Module):
         
     | 
| 352 | 
         
            +
                def __init__(self, **kwargs):
         
     | 
| 353 | 
         
            +
                    super().__init__()
         
     | 
| 354 | 
         
            +
                    
         
     | 
| 355 | 
         
            +
                    model_path = "openbmb/UltraRAG-Embedding"
         
     | 
| 356 | 
         
            +
                    self.encoder = AutoModel.from_pretrained(model_path, trust_remote_code=True,attn_implementation="flash_attention_2", torch_dtype=torch.float16).to("cuda")
         
     | 
| 357 | 
         
            +
                    self.tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
         
     | 
| 358 | 
         
            +
                    self.gpu_count = torch.cuda.device_count()
         
     | 
| 359 | 
         
            +
                    self.instruction = ""
         
     | 
| 360 | 
         
            +
             
     | 
| 361 | 
         
            +
                    self.encoder.eval()
         
     | 
| 362 | 
         
            +
                    self.encoder.cuda()
         
     | 
| 363 | 
         
            +
             
     | 
| 364 | 
         
            +
                    if self.gpu_count > 1:
         
     | 
| 365 | 
         
            +
                        self.encoder = torch.nn.DataParallel(self.encoder)
         
     | 
| 366 | 
         
            +
                
         
     | 
| 367 | 
         
            +
                @torch.no_grad()
         
     | 
| 368 | 
         
            +
                def encode(self, sentences,is_query=None, **kwargs) -> np.ndarray:
         
     | 
| 369 | 
         
            +
                    """ Returns a list of embeddings for the given sentences.
         
     | 
| 370 | 
         
            +
                    Args:
         
     | 
| 371 | 
         
            +
                        sentences (`List[str]`): List of sentences to encode
         
     | 
| 372 | 
         
            +
                        batch_size (`int`): Batch size for the encoding
         
     | 
| 373 | 
         
            +
             
     | 
| 374 | 
         
            +
                    Returns:
         
     | 
| 375 | 
         
            +
                        `List[np.ndarray]` or `List[tensor]`: List of embeddings for the given sentences
         
     | 
| 376 | 
         
            +
                    """
         
     | 
| 377 | 
         
            +
                    if is_query is not False:
         
     | 
| 378 | 
         
            +
                        sentences = [self.instruction + s for s in sentences]
         
     | 
| 379 | 
         
            +
                    dataset: Dataset = Dataset.from_dict({'input_texts': sentences})
         
     | 
| 380 | 
         
            +
                    # dataset: Dataset = Dataset.from_dict({'input_texts': ["Query: " + s for s in sentences]})
         
     | 
| 381 | 
         
            +
                    
         
     | 
| 382 | 
         
            +
                    dataset.set_transform(partial(_transform_func, self.tokenizer))
         
     | 
| 383 | 
         
            +
             
     | 
| 384 | 
         
            +
                    data_collator = DataCollatorWithPadding(self.tokenizer, pad_to_multiple_of=8)
         
     | 
| 385 | 
         
            +
                    data_loader = DataLoader(
         
     | 
| 386 | 
         
            +
                        dataset,
         
     | 
| 387 | 
         
            +
                        batch_size=128* self.gpu_count,
         
     | 
| 388 | 
         
            +
                        shuffle=False,
         
     | 
| 389 | 
         
            +
                        drop_last=False,
         
     | 
| 390 | 
         
            +
                        num_workers=2,
         
     | 
| 391 | 
         
            +
                        collate_fn=data_collator,
         
     | 
| 392 | 
         
            +
                        pin_memory=True)
         
     | 
| 393 | 
         
            +
             
     | 
| 394 | 
         
            +
                    encoded_embeds = []
         
     | 
| 395 | 
         
            +
                    for batch_dict in tqdm.tqdm(data_loader, desc='encoding', mininterval=10):
         
     | 
| 396 | 
         
            +
             
     | 
| 397 | 
         
            +
                        with torch.cuda.amp.autocast() and torch.no_grad():
         
     | 
| 398 | 
         
            +
                            for key in batch_dict:
         
     | 
| 399 | 
         
            +
                                batch_dict[key] = batch_dict[key].to("cuda")
         
     | 
| 400 | 
         
            +
                            outputs: BaseModelOutput = self.encoder(**batch_dict)
         
     | 
| 401 | 
         
            +
                            if MODE == "Dense":
         
     | 
| 402 | 
         
            +
                                embeds = mean_pooling(outputs.last_hidden_state, batch_dict['attention_mask'])
         
     | 
| 403 | 
         
            +
                                embeds = F.normalize(embeds, p=2, dim=1)
         
     | 
| 404 | 
         
            +
                            elif MODE == "Sparse":
         
     | 
| 405 | 
         
            +
                                embeds = sparse_pooling(self.encoder.module.head,self.encoder.module, batch_dict, outputs.last_hidden_state, batch_dict['attention_mask'])
         
     | 
| 406 | 
         
            +
                            else:
         
     | 
| 407 | 
         
            +
                                embeds = concat_pooling(self.encoder.module.head,self.encoder.module, batch_dict, outputs.last_hidden_state, batch_dict['attention_mask'])
         
     | 
| 408 | 
         
            +
                            encoded_embeds.append(embeds.cpu().numpy())
         
     | 
| 409 | 
         
            +
             
     | 
| 410 | 
         
            +
                    return np.concatenate(encoded_embeds, axis=0)
         
     | 
| 411 | 
         
            +
                
         
     | 
| 412 | 
         
            +
                @torch.no_grad()
         
     | 
| 413 | 
         
            +
                def encode_queries(self, queries: list[str], **kwargs) -> list[np.ndarray] | list[torch.Tensor]:
         
     | 
| 414 | 
         
            +
                    """
         
     | 
| 415 | 
         
            +
                    Returns a list of embeddings for the given sentences.
         
     | 
| 416 | 
         
            +
                    Args:
         
     | 
| 417 | 
         
            +
                        queries: List of sentences to encode
         
     | 
| 418 | 
         
            +
             
     | 
| 419 | 
         
            +
                    Returns:
         
     | 
| 420 | 
         
            +
                        List of embeddings for the given sentences
         
     | 
| 421 | 
         
            +
                    """
         
     | 
| 422 | 
         
            +
             
     | 
| 423 | 
         
            +
             
     | 
| 424 | 
         
            +
                    queries = [query for query in queries]
         
     | 
| 425 | 
         
            +
                    return self.encode(queries, is_query=True, **kwargs)
         
     | 
| 426 | 
         
            +
                
         
     | 
| 427 | 
         
            +
                @torch.no_grad()
         
     | 
| 428 | 
         
            +
                def encode_corpus(self, corpus: List[Dict[str, str]], **kwargs):
         
     | 
| 429 | 
         
            +
                    # borrowed from mteb.abstasks.AbsTaskRetrieval.DRESModel
         
     | 
| 430 | 
         
            +
                    if type(corpus) is dict:
         
     | 
| 431 | 
         
            +
                        sentences = [
         
     | 
| 432 | 
         
            +
                            (corpus["title"][i] + " " + corpus["text"][i]).strip()
         
     | 
| 433 | 
         
            +
                            if "title" in corpus
         
     | 
| 434 | 
         
            +
                            else corpus["text"][i].strip()
         
     | 
| 435 | 
         
            +
                            for i in range(len(corpus["text"]))
         
     | 
| 436 | 
         
            +
                        ]
         
     | 
| 437 | 
         
            +
                    elif isinstance(corpus[0], dict):
         
     | 
| 438 | 
         
            +
                        sentences = [
         
     | 
| 439 | 
         
            +
                            (doc["title"] + " " + doc["text"]).strip()
         
     | 
| 440 | 
         
            +
                            if "title" in doc
         
     | 
| 441 | 
         
            +
                            else doc["text"].strip()
         
     | 
| 442 | 
         
            +
                            for doc in corpus
         
     | 
| 443 | 
         
            +
                        ]
         
     | 
| 444 | 
         
            +
                    else:
         
     | 
| 445 | 
         
            +
                        sentences = corpus
         
     | 
| 446 | 
         
            +
                    is_query = False
         
     | 
| 447 | 
         
            +
                    return self.encode(sentences, is_query=is_query, **kwargs)
         
     | 
| 448 | 
         
            +
             
     | 
| 449 | 
         
            +
             
     | 
| 450 | 
         
            +
            model = DenseEncoder()
         
     | 
| 451 | 
         
            +
            task_names = MTEB_TASK_LIST
         
     | 
| 452 | 
         
            +
            task_names = ["NFCorpus"]
         
     | 
| 453 | 
         
            +
            lang = ["en","zh", "zh-CN"]
         
     | 
| 454 | 
         
            +
             
     | 
| 455 | 
         
            +
            for task in task_names:
         
     | 
| 456 | 
         
            +
                try:
         
     | 
| 457 | 
         
            +
                    evaluation = MTEB(tasks=[task], task_langs=lang)
         
     | 
| 458 | 
         
            +
                    task_cls = evaluation.tasks[0]
         
     | 
| 459 | 
         
            +
                    task_name: str = task_cls.metadata_dict["name"]
         
     | 
| 460 | 
         
            +
                    task_type: str = task_cls.metadata_dict["type"]
         
     | 
| 461 | 
         
            +
                    instruction = get_task_def_by_task_name_and_type(task_name, task_type)
         
     | 
| 462 | 
         
            +
                    model.instruction = get_detailed_instruct(instruction)
         
     | 
| 463 | 
         
            +
                    print(model.instruction)
         
     | 
| 464 | 
         
            +
                    if task == "MSMARCO":
         
     | 
| 465 | 
         
            +
                        eval_splits = ["dev"]
         
     | 
| 466 | 
         
            +
                    elif task in CMTEB_TASK_LIST:
         
     | 
| 467 | 
         
            +
                        eval_splits = task_cls.metadata_dict["eval_splits"]
         
     | 
| 468 | 
         
            +
                    else:
         
     | 
| 469 | 
         
            +
                        eval_splits = ["test"]
         
     | 
| 470 | 
         
            +
                    evaluation.run(model, eval_splits=eval_splits, overwrite_results=True)
         
     | 
| 471 | 
         
            +
                    
         
     | 
| 472 | 
         
            +
                except Exception as e:
         
     | 
| 473 | 
         
            +
                    import traceback
         
     | 
| 474 | 
         
            +
                    print(traceback.format_exc())
         
     | 
| 475 | 
         
            +
                    continue
         
     | 
    	
        scripts/transformers_demo.py
    ADDED
    
    | 
         @@ -0,0 +1,26 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
             
     | 
| 2 | 
         
            +
            from transformers import AutoModel
         
     | 
| 3 | 
         
            +
            import torch
         
     | 
| 4 | 
         
            +
             
     | 
| 5 | 
         
            +
            model_name = "openbmb/UltraRAG-Embedding"
         
     | 
| 6 | 
         
            +
            model = AutoModel.from_pretrained(model_name, trust_remote_code=True, torch_dtype=torch.float16).to("cuda")
         
     | 
| 7 | 
         
            +
             
     | 
| 8 | 
         
            +
            # you can use flash_attention_2 for faster inference
         
     | 
| 9 | 
         
            +
            # model = AutoModel.from_pretrained(model_name, trust_remote_code=True, attn_implementation="flash_attention_2", torch_dtype=torch.float16).to("cuda") 
         
     | 
| 10 | 
         
            +
             
     | 
| 11 | 
         
            +
            model.eval()
         
     | 
| 12 | 
         
            +
             
     | 
| 13 | 
         
            +
            queries = ["MiniCPM-o 2.6 A GPT-4o Level MLLM for Vision, Speech and Multimodal Live Streaming on Your Phone"]
         
     | 
| 14 | 
         
            +
            passages = ["MiniCPM-o 2.6 is the latest and most capable model in the MiniCPM-o series. The model is built in an end-to-end fashion based on SigLip-400M, Whisper-medium-300M, ChatTTS-200M, and Qwen2.5-7B with a total of 8B parameters. It exhibits a significant performance improvement over MiniCPM-V 2.6, and introduces new features for real-time speech conversation and multimodal live streaming."]
         
     | 
| 15 | 
         
            +
             
     | 
| 16 | 
         
            +
            embeddings_query_dense, embeddings_query_sparse = model.encode_query(queries, return_sparse_vectors=True, max_length=8192, dense_dim=1024)
         
     | 
| 17 | 
         
            +
            embeddings_doc_dense, embeddings_doc_sparse = model.encode_corpus(passages, return_sparse_vectors=True)
         
     | 
| 18 | 
         
            +
             
     | 
| 19 | 
         
            +
            dense_scores = (embeddings_query_dense @ embeddings_doc_dense.T)
         
     | 
| 20 | 
         
            +
            print(dense_scores.tolist())  # [[0.6512398719787598]]
         
     | 
| 21 | 
         
            +
            print(model.compute_sparse_score_dicts(embeddings_query_sparse,  embeddings_doc_sparse)) # [[0.27202296]]
         
     | 
| 22 | 
         
            +
             
     | 
| 23 | 
         
            +
            dense_scores, sparse_scores, mixed_scores = model.compute_score(queries, passages)
         
     | 
| 24 | 
         
            +
            print(dense_scores) # [[0.65123993]]
         
     | 
| 25 | 
         
            +
            print(sparse_scores) # [[0.27202296]]
         
     | 
| 26 | 
         
            +
            print(mixed_scores) # [[0.73284686]]
         
     | 
    	
        sentence_bert_config.json
    ADDED
    
    | 
         @@ -0,0 +1,3 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            {
         
     | 
| 2 | 
         
            +
                "max_seq_length": 8192
         
     | 
| 3 | 
         
            +
            }
         
     | 
    	
        special_tokens_map.json
    ADDED
    
    | 
         @@ -0,0 +1,40 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            {
         
     | 
| 2 | 
         
            +
              "additional_special_tokens": [
         
     | 
| 3 | 
         
            +
                "<|im_end|>",
         
     | 
| 4 | 
         
            +
                "<|im_start|>",
         
     | 
| 5 | 
         
            +
                "<|tool_call|>",
         
     | 
| 6 | 
         
            +
                "<|execute_start|>",
         
     | 
| 7 | 
         
            +
                "<|execute_end|>",
         
     | 
| 8 | 
         
            +
                "<|fim_prefix|>",
         
     | 
| 9 | 
         
            +
                "<|fim_middle|>",
         
     | 
| 10 | 
         
            +
                "<|fim_suffix|>"
         
     | 
| 11 | 
         
            +
              ],
         
     | 
| 12 | 
         
            +
              "bos_token": {
         
     | 
| 13 | 
         
            +
                "content": "<s>",
         
     | 
| 14 | 
         
            +
                "lstrip": false,
         
     | 
| 15 | 
         
            +
                "normalized": false,
         
     | 
| 16 | 
         
            +
                "rstrip": false,
         
     | 
| 17 | 
         
            +
                "single_word": false
         
     | 
| 18 | 
         
            +
              },
         
     | 
| 19 | 
         
            +
              "eos_token": {
         
     | 
| 20 | 
         
            +
                "content": "<|im_end|>",
         
     | 
| 21 | 
         
            +
                "lstrip": false,
         
     | 
| 22 | 
         
            +
                "normalized": false,
         
     | 
| 23 | 
         
            +
                "rstrip": false,
         
     | 
| 24 | 
         
            +
                "single_word": false
         
     | 
| 25 | 
         
            +
              },
         
     | 
| 26 | 
         
            +
              "pad_token": {
         
     | 
| 27 | 
         
            +
                "content": "<unk>",
         
     | 
| 28 | 
         
            +
                "lstrip": false,
         
     | 
| 29 | 
         
            +
                "normalized": false,
         
     | 
| 30 | 
         
            +
                "rstrip": false,
         
     | 
| 31 | 
         
            +
                "single_word": false
         
     | 
| 32 | 
         
            +
              },
         
     | 
| 33 | 
         
            +
              "unk_token": {
         
     | 
| 34 | 
         
            +
                "content": "<unk>",
         
     | 
| 35 | 
         
            +
                "lstrip": false,
         
     | 
| 36 | 
         
            +
                "normalized": false,
         
     | 
| 37 | 
         
            +
                "rstrip": false,
         
     | 
| 38 | 
         
            +
                "single_word": false
         
     | 
| 39 | 
         
            +
              }
         
     | 
| 40 | 
         
            +
            }
         
     | 
    	
        tokenizer.model
    ADDED
    
    | 
         @@ -0,0 +1,3 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            version https://git-lfs.github.com/spec/v1
         
     | 
| 2 | 
         
            +
            oid sha256:bb74d51116831c3bf65db812c553f94ab0c88dcf97a5bbb37e3504f6d359c530
         
     | 
| 3 | 
         
            +
            size 1181204
         
     | 
    	
        tokenizer_config.json
    ADDED
    
    | 
         @@ -0,0 +1,116 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            {
         
     | 
| 2 | 
         
            +
              "add_bos_token": true,
         
     | 
| 3 | 
         
            +
              "add_eos_token": true,
         
     | 
| 4 | 
         
            +
              "added_tokens_decoder": {
         
     | 
| 5 | 
         
            +
                "0": {
         
     | 
| 6 | 
         
            +
                  "content": "<unk>",
         
     | 
| 7 | 
         
            +
                  "lstrip": false,
         
     | 
| 8 | 
         
            +
                  "normalized": false,
         
     | 
| 9 | 
         
            +
                  "rstrip": false,
         
     | 
| 10 | 
         
            +
                  "single_word": false,
         
     | 
| 11 | 
         
            +
                  "special": true
         
     | 
| 12 | 
         
            +
                },
         
     | 
| 13 | 
         
            +
                "1": {
         
     | 
| 14 | 
         
            +
                  "content": "<s>",
         
     | 
| 15 | 
         
            +
                  "lstrip": false,
         
     | 
| 16 | 
         
            +
                  "normalized": false,
         
     | 
| 17 | 
         
            +
                  "rstrip": false,
         
     | 
| 18 | 
         
            +
                  "single_word": false,
         
     | 
| 19 | 
         
            +
                  "special": true
         
     | 
| 20 | 
         
            +
                },
         
     | 
| 21 | 
         
            +
                "2": {
         
     | 
| 22 | 
         
            +
                  "content": "</s>",
         
     | 
| 23 | 
         
            +
                  "lstrip": false,
         
     | 
| 24 | 
         
            +
                  "normalized": false,
         
     | 
| 25 | 
         
            +
                  "rstrip": false,
         
     | 
| 26 | 
         
            +
                  "single_word": false,
         
     | 
| 27 | 
         
            +
                  "special": true
         
     | 
| 28 | 
         
            +
                },
         
     | 
| 29 | 
         
            +
                "73440": {
         
     | 
| 30 | 
         
            +
                  "content": "<|im_end|>",
         
     | 
| 31 | 
         
            +
                  "lstrip": false,
         
     | 
| 32 | 
         
            +
                  "normalized": false,
         
     | 
| 33 | 
         
            +
                  "rstrip": false,
         
     | 
| 34 | 
         
            +
                  "single_word": false,
         
     | 
| 35 | 
         
            +
                  "special": true
         
     | 
| 36 | 
         
            +
                },
         
     | 
| 37 | 
         
            +
                "73441": {
         
     | 
| 38 | 
         
            +
                  "content": "<|im_start|>",
         
     | 
| 39 | 
         
            +
                  "lstrip": false,
         
     | 
| 40 | 
         
            +
                  "normalized": false,
         
     | 
| 41 | 
         
            +
                  "rstrip": false,
         
     | 
| 42 | 
         
            +
                  "single_word": false,
         
     | 
| 43 | 
         
            +
                  "special": true
         
     | 
| 44 | 
         
            +
                },
         
     | 
| 45 | 
         
            +
                "73442": {
         
     | 
| 46 | 
         
            +
                  "content": "<|tool_call|>",
         
     | 
| 47 | 
         
            +
                  "lstrip": false,
         
     | 
| 48 | 
         
            +
                  "normalized": false,
         
     | 
| 49 | 
         
            +
                  "rstrip": false,
         
     | 
| 50 | 
         
            +
                  "single_word": false,
         
     | 
| 51 | 
         
            +
                  "special": true
         
     | 
| 52 | 
         
            +
                },
         
     | 
| 53 | 
         
            +
                "73443": {
         
     | 
| 54 | 
         
            +
                  "content": "<|execute_start|>",
         
     | 
| 55 | 
         
            +
                  "lstrip": false,
         
     | 
| 56 | 
         
            +
                  "normalized": false,
         
     | 
| 57 | 
         
            +
                  "rstrip": false,
         
     | 
| 58 | 
         
            +
                  "single_word": false,
         
     | 
| 59 | 
         
            +
                  "special": true
         
     | 
| 60 | 
         
            +
                },
         
     | 
| 61 | 
         
            +
                "73444": {
         
     | 
| 62 | 
         
            +
                  "content": "<|execute_end|>",
         
     | 
| 63 | 
         
            +
                  "lstrip": false,
         
     | 
| 64 | 
         
            +
                  "normalized": false,
         
     | 
| 65 | 
         
            +
                  "rstrip": false,
         
     | 
| 66 | 
         
            +
                  "single_word": false,
         
     | 
| 67 | 
         
            +
                  "special": true
         
     | 
| 68 | 
         
            +
                },
         
     | 
| 69 | 
         
            +
                "73445": {
         
     | 
| 70 | 
         
            +
                  "content": "<|fim_prefix|>",
         
     | 
| 71 | 
         
            +
                  "lstrip": false,
         
     | 
| 72 | 
         
            +
                  "normalized": false,
         
     | 
| 73 | 
         
            +
                  "rstrip": false,
         
     | 
| 74 | 
         
            +
                  "single_word": false,
         
     | 
| 75 | 
         
            +
                  "special": true
         
     | 
| 76 | 
         
            +
                },
         
     | 
| 77 | 
         
            +
                "73446": {
         
     | 
| 78 | 
         
            +
                  "content": "<|fim_middle|>",
         
     | 
| 79 | 
         
            +
                  "lstrip": false,
         
     | 
| 80 | 
         
            +
                  "normalized": false,
         
     | 
| 81 | 
         
            +
                  "rstrip": false,
         
     | 
| 82 | 
         
            +
                  "single_word": false,
         
     | 
| 83 | 
         
            +
                  "special": true
         
     | 
| 84 | 
         
            +
                },
         
     | 
| 85 | 
         
            +
                "73447": {
         
     | 
| 86 | 
         
            +
                  "content": "<|fim_suffix|>",
         
     | 
| 87 | 
         
            +
                  "lstrip": false,
         
     | 
| 88 | 
         
            +
                  "normalized": false,
         
     | 
| 89 | 
         
            +
                  "rstrip": false,
         
     | 
| 90 | 
         
            +
                  "single_word": false,
         
     | 
| 91 | 
         
            +
                  "special": true
         
     | 
| 92 | 
         
            +
                }
         
     | 
| 93 | 
         
            +
              },
         
     | 
| 94 | 
         
            +
              "additional_special_tokens": [
         
     | 
| 95 | 
         
            +
                "<|im_end|>",
         
     | 
| 96 | 
         
            +
                "<|im_start|>",
         
     | 
| 97 | 
         
            +
                "<|tool_call|>",
         
     | 
| 98 | 
         
            +
                "<|execute_start|>",
         
     | 
| 99 | 
         
            +
                "<|execute_end|>",
         
     | 
| 100 | 
         
            +
                "<|fim_prefix|>",
         
     | 
| 101 | 
         
            +
                "<|fim_middle|>",
         
     | 
| 102 | 
         
            +
                "<|fim_suffix|>"
         
     | 
| 103 | 
         
            +
              ],
         
     | 
| 104 | 
         
            +
              "bos_token": "<s>",
         
     | 
| 105 | 
         
            +
              "chat_template": "{% for message in messages %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}",
         
     | 
| 106 | 
         
            +
              "clean_up_tokenization_spaces": false,
         
     | 
| 107 | 
         
            +
              "eos_token": "<|im_end|>",
         
     | 
| 108 | 
         
            +
              "legacy": true,
         
     | 
| 109 | 
         
            +
              "model_max_length": 1000000000000000019884624838656,
         
     | 
| 110 | 
         
            +
              "pad_token": "<unk>",
         
     | 
| 111 | 
         
            +
              "sp_model_kwargs": {},
         
     | 
| 112 | 
         
            +
              "spaces_between_special_tokens": false,
         
     | 
| 113 | 
         
            +
              "tokenizer_class": "LlamaTokenizer",
         
     | 
| 114 | 
         
            +
              "unk_token": "<unk>",
         
     | 
| 115 | 
         
            +
              "use_default_system_prompt": false
         
     | 
| 116 | 
         
            +
            }
         
     |