Update README.md
Browse files
    	
        README.md
    CHANGED
    
    | 
         @@ -16,7 +16,7 @@ tags: 
     | 
|
| 16 | 
         
             
            </div>
         
     | 
| 17 | 
         | 
| 18 | 
         
             
            <p align="center">
         
     | 
| 19 | 
         
            -
            <a href=" 
     | 
| 20 | 
         
             
            <a href="https://github.com/OpenBMB/OmniLMM/" target="_blank">OmniLMM 多模态模型 Multi-modal Model</a> |
         
     | 
| 21 | 
         
             
            <a href="https://luca.cn/" target="_blank">CPM-C 千亿模型试用 ~100B Model Trial </a> 
         
     | 
| 22 | 
         
             
            </p>
         
     | 
| 
         @@ -51,8 +51,13 @@ We release all model parameters for research and limited commercial use. We also 
     | 
|
| 51 | 
         
             
            - The INT4 quantized version **MiniCPM-2B-SFT/DPO-Int4** based on MiniCPM-2B-SFT/DPO
         
     | 
| 52 | 
         
             
            - Mobile phone application based on MLC-LLM and LLMFarm. Both language model and multimodel model can conduct inference on smartphones.
         
     | 
| 53 | 
         | 
| 
         | 
|
| 54 | 
         | 
| 55 | 
         
            -
             
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 56 | 
         | 
| 57 | 
         
             
            - 受限于模型规模,模型可能出现幻觉性问题。其中由于DPO模型生成的回复内容更长,更容易出现幻觉。我们也将持续进行MiniCPM模型的迭代改进;
         
     | 
| 58 | 
         
             
            - 为了保证在学术研究用途上模型的通用性,我们未对模型进行任何身份认同训练。同时由于我们用ShareGPT开源语料作为部分训练数据,模型可能会输出类似GPT系列模型的身份认同信息;
         
     | 
| 
         @@ -129,8 +134,8 @@ print(responds) 
     | 
|
| 129 | 
         | 
| 130 | 
         
             
            ## 工作引用 Citation
         
     | 
| 131 | 
         | 
| 132 | 
         
            -
            * 如果觉得MiniCPM有助于您的工作,请考虑引用下列[技术报告]( 
     | 
| 133 | 
         
            -
            * Please cite our [techinical report]() if you find our work valuable.
         
     | 
| 134 | 
         | 
| 135 | 
         
             
            ```
         
     | 
| 136 | 
         
             
            @inproceedings{minicpm2024,
         
     | 
| 
         | 
|
| 16 | 
         
             
            </div>
         
     | 
| 17 | 
         | 
| 18 | 
         
             
            <p align="center">
         
     | 
| 19 | 
         
            +
            <a href="https://shengdinghu.notion.site/MiniCPM-c805a17c5c8046398914e47f0542095a?pvs=4" target="_blank">MiniCPM 技术报告</a><a href="https://shengdinghu.notion.site/MiniCPM-Unveiling-the-Potential-of-End-side-Large-Language-Models-d4d3a8c426424654a4e80e42a711cb20?pvs=4" target="_blank"> Technical Report</a> |
         
     | 
| 20 | 
         
             
            <a href="https://github.com/OpenBMB/OmniLMM/" target="_blank">OmniLMM 多模态模型 Multi-modal Model</a> |
         
     | 
| 21 | 
         
             
            <a href="https://luca.cn/" target="_blank">CPM-C 千亿模型试用 ~100B Model Trial </a> 
         
     | 
| 22 | 
         
             
            </p>
         
     | 
| 
         | 
|
| 51 | 
         
             
            - The INT4 quantized version **MiniCPM-2B-SFT/DPO-Int4** based on MiniCPM-2B-SFT/DPO
         
     | 
| 52 | 
         
             
            - Mobile phone application based on MLC-LLM and LLMFarm. Both language model and multimodel model can conduct inference on smartphones.
         
     | 
| 53 | 
         | 
| 54 | 
         
            +
            ### 评测结果 Evaluation Results
         
     | 
| 55 | 
         | 
| 56 | 
         
            +
              详细的评测结果位于[github仓库](https://github.com/OpenBMB/MiniCPM?tab=readme-ov-file#%E8%AF%84%E6%B5%8B%E7%BB%93%E6%9E%9C)
         
     | 
| 57 | 
         
            +
             
     | 
| 58 | 
         
            +
              Detailed evaluation results are in [github repo](https://github.com/OpenBMB/MiniCPM?tab=readme-ov-file#%E8%AF%84%E6%B5%8B%E7%BB%93%E6%9E%9C)
         
     | 
| 59 | 
         
            +
             
     | 
| 60 | 
         
            +
            ### 局限性 Limitations
         
     | 
| 61 | 
         | 
| 62 | 
         
             
            - 受限于模型规模,模型可能出现幻觉性问题。其中由于DPO模型生成的回复内容更长,更容易出现幻觉。我们也将持续进行MiniCPM模型的迭代改进;
         
     | 
| 63 | 
         
             
            - 为了保证在学术研究用途上模型的通用性,我们未对模型进行任何身份认同训练。同时由于我们用ShareGPT开源语料作为部分训练数据,模型可能会输出类似GPT系列模型的身份认同信息;
         
     | 
| 
         | 
|
| 134 | 
         | 
| 135 | 
         
             
            ## 工作引用 Citation
         
     | 
| 136 | 
         | 
| 137 | 
         
            +
            * 如果觉得MiniCPM有助于您的工作,请考虑引用下列[技术报告](https://shengdinghu.notion.site/MiniCPM-c805a17c5c8046398914e47f0542095a?pvs=4)
         
     | 
| 138 | 
         
            +
            * Please cite our [techinical report](https://shengdinghu.notion.site/MiniCPM-Unveiling-the-Potential-of-End-side-Large-Language-Models-d4d3a8c426424654a4e80e42a711cb20?pvs=4) if you find our work valuable.
         
     | 
| 139 | 
         | 
| 140 | 
         
             
            ```
         
     | 
| 141 | 
         
             
            @inproceedings{minicpm2024,
         
     |