Update README.md (#144)
Browse files- Update README.md (29aee6b8a7c9c86b46f63bf6fc2331151935026b)
README.md
CHANGED
|
@@ -114,68 +114,39 @@ license: apache-2.0
|
|
| 114 |
|
| 115 |
# Whisper
|
| 116 |
|
| 117 |
-
Whisper is a
|
| 118 |
-
|
| 119 |
-
|
|
|
|
| 120 |
|
| 121 |
-
Whisper
|
| 122 |
-
|
| 123 |
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
1. The input uses 128 Mel frequency bins instead of 80
|
| 127 |
2. A new language token for Cantonese
|
| 128 |
|
| 129 |
-
The Whisper
|
| 130 |
-
The model was trained for 2.0 epochs over this mixture dataset.
|
| 131 |
-
|
| 132 |
-
The `large-v3` model shows improved performance over a wide variety of languages, showing 10% to 20% reduction of errors compared to Whisper `large-v2`.
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
**Disclaimer**: Content for this model card has partly been written by the Hugging Face team, and parts of it were
|
| 136 |
-
copied and pasted from the original model card.
|
| 137 |
-
|
| 138 |
-
## Model details
|
| 139 |
-
|
| 140 |
-
Whisper is a Transformer based encoder-decoder model, also referred to as a _sequence-to-sequence_ model.
|
| 141 |
-
It was trained on 1 million hours of weakly labeled audio and 4 million hours of pseudolabeled audio collected using Whisper `large-v2`.
|
| 142 |
-
|
| 143 |
-
The models were trained on either English-only data or multilingual data. The English-only models were trained
|
| 144 |
-
on the task of speech recognition. The multilingual models were trained on both speech recognition and speech
|
| 145 |
-
translation. For speech recognition, the model predicts transcriptions in the *same* language as the audio.
|
| 146 |
-
For speech translation, the model predicts transcriptions to a *different* language to the audio.
|
| 147 |
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
The largest checkpoints are multilingual only. All ten of the pre-trained checkpoints
|
| 151 |
-
are available on the [Hugging Face Hub](https://huggingface.co/models?search=openai/whisper). The
|
| 152 |
-
checkpoints are summarised in the following table with links to the models on the Hub:
|
| 153 |
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
| tiny | 39 M | [✓](https://huggingface.co/openai/whisper-tiny.en) | [✓](https://huggingface.co/openai/whisper-tiny) |
|
| 157 |
-
| base | 74 M | [✓](https://huggingface.co/openai/whisper-base.en) | [✓](https://huggingface.co/openai/whisper-base) |
|
| 158 |
-
| small | 244 M | [✓](https://huggingface.co/openai/whisper-small.en) | [✓](https://huggingface.co/openai/whisper-small) |
|
| 159 |
-
| medium | 769 M | [✓](https://huggingface.co/openai/whisper-medium.en) | [✓](https://huggingface.co/openai/whisper-medium) |
|
| 160 |
-
| large | 1550 M | x | [✓](https://huggingface.co/openai/whisper-large) |
|
| 161 |
-
| large-v2 | 1550 M | x | [✓](https://huggingface.co/openai/whisper-large-v2) |
|
| 162 |
-
| large-v3 | 1550 M | x | [✓](https://huggingface.co/openai/whisper-large-v3) |
|
| 163 |
|
| 164 |
## Usage
|
| 165 |
|
| 166 |
-
Whisper
|
| 167 |
-
|
| 168 |
-
|
| 169 |
|
| 170 |
```bash
|
| 171 |
pip install --upgrade pip
|
| 172 |
-
pip install --upgrade
|
| 173 |
```
|
| 174 |
|
| 175 |
-
### Short-Form Transcription
|
| 176 |
-
|
| 177 |
The model can be used with the [`pipeline`](https://huggingface.co/docs/transformers/main_classes/pipelines#transformers.AutomaticSpeechRecognitionPipeline)
|
| 178 |
-
class to transcribe
|
| 179 |
|
| 180 |
```python
|
| 181 |
import torch
|
|
@@ -200,10 +171,6 @@ pipe = pipeline(
|
|
| 200 |
model=model,
|
| 201 |
tokenizer=processor.tokenizer,
|
| 202 |
feature_extractor=processor.feature_extractor,
|
| 203 |
-
max_new_tokens=128,
|
| 204 |
-
chunk_length_s=30,
|
| 205 |
-
batch_size=16,
|
| 206 |
-
return_timestamps=True,
|
| 207 |
torch_dtype=torch_dtype,
|
| 208 |
device=device,
|
| 209 |
)
|
|
@@ -216,9 +183,33 @@ print(result["text"])
|
|
| 216 |
```
|
| 217 |
|
| 218 |
To transcribe a local audio file, simply pass the path to your audio file when you call the pipeline:
|
| 219 |
-
|
| 220 |
-
|
| 221 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 222 |
```
|
| 223 |
|
| 224 |
Whisper predicts the language of the source audio automatically. If the source audio language is known *a-priori*, it
|
|
@@ -261,10 +252,6 @@ print(result["chunks"])
|
|
| 261 |
|
| 262 |
<summary> For more control over the generation parameters, use the model + processor API directly: </summary>
|
| 263 |
|
| 264 |
-
Ad-hoc generation arguments can be passed to `model.generate`, including `num_beams` for beam-search, `return_timestamps`
|
| 265 |
-
for segment-level timestamps, and `prompt_ids` for prompting. See the [docstrings](https://huggingface.co/docs/transformers/en/model_doc/whisper#transformers.WhisperForConditionalGeneration.generate)
|
| 266 |
-
for more details.
|
| 267 |
-
|
| 268 |
```python
|
| 269 |
import torch
|
| 270 |
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor
|
|
@@ -277,7 +264,7 @@ torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
|
| 277 |
model_id = "openai/whisper-large-v3"
|
| 278 |
|
| 279 |
model = AutoModelForSpeechSeq2Seq.from_pretrained(
|
| 280 |
-
model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True
|
| 281 |
)
|
| 282 |
model.to(device)
|
| 283 |
|
|
@@ -287,37 +274,58 @@ dataset = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", spl
|
|
| 287 |
dataset = dataset.cast_column("audio", Audio(processor.feature_extractor.sampling_rate))
|
| 288 |
sample = dataset[0]["audio"]
|
| 289 |
|
| 290 |
-
|
| 291 |
-
|
| 292 |
-
|
| 293 |
-
|
| 294 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 295 |
|
| 296 |
gen_kwargs = {
|
| 297 |
-
|
| 298 |
-
|
| 299 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 300 |
}
|
| 301 |
|
| 302 |
-
pred_ids = model.generate(
|
| 303 |
-
pred_text = processor.batch_decode(pred_ids, skip_special_tokens=True, decode_with_timestamps=
|
| 304 |
|
| 305 |
print(pred_text)
|
| 306 |
```
|
| 307 |
|
| 308 |
</details>
|
| 309 |
|
| 310 |
-
|
| 311 |
|
| 312 |
-
|
| 313 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 314 |
|
| 315 |
The sequential long-form algorithm should be used in either of the following scenarios:
|
| 316 |
-
1. Transcription accuracy is the most important factor, and
|
| 317 |
2. You are transcribing **batches** of long audio files, in which case the latency of sequential is comparable to chunked, while being up to 0.5% WER more accurate
|
| 318 |
|
| 319 |
-
|
| 320 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 321 |
|
| 322 |
```python
|
| 323 |
import torch
|
|
@@ -331,7 +339,7 @@ torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
|
| 331 |
model_id = "openai/whisper-large-v3"
|
| 332 |
|
| 333 |
model = AutoModelForSpeechSeq2Seq.from_pretrained(
|
| 334 |
-
model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True
|
| 335 |
)
|
| 336 |
model.to(device)
|
| 337 |
|
|
@@ -342,7 +350,8 @@ pipe = pipeline(
|
|
| 342 |
model=model,
|
| 343 |
tokenizer=processor.tokenizer,
|
| 344 |
feature_extractor=processor.feature_extractor,
|
| 345 |
-
|
|
|
|
| 346 |
torch_dtype=torch_dtype,
|
| 347 |
device=device,
|
| 348 |
)
|
|
@@ -354,76 +363,21 @@ result = pipe(sample)
|
|
| 354 |
print(result["text"])
|
| 355 |
```
|
| 356 |
|
| 357 |
-
|
| 358 |
-
|
| 359 |
-
<summary> For more control over the generation parameters, use the model + processor API directly: </summary>
|
| 360 |
-
|
| 361 |
-
```python
|
| 362 |
-
import torch
|
| 363 |
-
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor
|
| 364 |
-
from datasets import Audio, load_dataset
|
| 365 |
-
|
| 366 |
-
|
| 367 |
-
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
| 368 |
-
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
| 369 |
-
|
| 370 |
-
model_id = "openai/whisper-large-v3"
|
| 371 |
-
|
| 372 |
-
model = AutoModelForSpeechSeq2Seq.from_pretrained(
|
| 373 |
-
model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True
|
| 374 |
-
)
|
| 375 |
-
model.to(device)
|
| 376 |
-
|
| 377 |
-
processor = AutoProcessor.from_pretrained(model_id)
|
| 378 |
-
|
| 379 |
-
dataset = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
|
| 380 |
-
dataset = dataset.cast_column("audio", Audio(processor.feature_extractor.sampling_rate))
|
| 381 |
-
sample = dataset[0]["audio"]
|
| 382 |
-
|
| 383 |
-
inputs = processor(
|
| 384 |
-
sample["array"],
|
| 385 |
-
sampling_rate=sample["sampling_rate"],
|
| 386 |
-
return_tensors="pt",
|
| 387 |
-
truncation=False,
|
| 388 |
-
padding="longest",
|
| 389 |
-
return_attention_mask=True,
|
| 390 |
-
)
|
| 391 |
-
inputs = inputs.to(device, dtype=torch_dtype)
|
| 392 |
-
|
| 393 |
-
gen_kwargs = {
|
| 394 |
-
"max_new_tokens": 448,
|
| 395 |
-
"num_beams": 1,
|
| 396 |
-
"condition_on_prev_tokens": False,
|
| 397 |
-
"compression_ratio_threshold": 1.35, # zlib compression ratio threshold (in token space)
|
| 398 |
-
"temperature": (0.0, 0.2, 0.4, 0.6, 0.8, 1.0),
|
| 399 |
-
"logprob_threshold": -1.0,
|
| 400 |
-
"no_speech_threshold": 0.6,
|
| 401 |
-
"return_timestamps": True,
|
| 402 |
-
}
|
| 403 |
-
|
| 404 |
-
pred_ids = model.generate(**i nputs, **gen_kwargs)
|
| 405 |
-
pred_text = processor.batch_decode(pred_ids, skip_special_tokens=True, decode_with_timestamps=False)
|
| 406 |
-
|
| 407 |
-
print(pred_text)
|
| 408 |
-
```
|
| 409 |
-
|
| 410 |
-
</details>
|
| 411 |
-
|
| 412 |
-
### Chunked Long-Form
|
| 413 |
|
| 414 |
-
|
| 415 |
-
|
| 416 |
-
the chunked algorithm is up to 9x faster than OpenAI's sequential long-form implementation (see Table 7 of the
|
| 417 |
-
[Distil-Whisper paper](https://arxiv.org/pdf/2311.00430.pdf)).
|
| 418 |
|
| 419 |
-
|
| 420 |
-
is optimal. To activate batching over long audio files, pass the argument `batch_size`:
|
| 421 |
|
| 422 |
```python
|
| 423 |
import torch
|
|
|
|
| 424 |
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
|
| 425 |
from datasets import load_dataset
|
|
|
|
| 426 |
|
|
|
|
| 427 |
|
| 428 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
| 429 |
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
|
@@ -431,9 +385,12 @@ torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
|
| 431 |
model_id = "openai/whisper-large-v3"
|
| 432 |
|
| 433 |
model = AutoModelForSpeechSeq2Seq.from_pretrained(
|
| 434 |
-
model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True
|
| 435 |
-
)
|
| 436 |
-
|
|
|
|
|
|
|
|
|
|
| 437 |
|
| 438 |
processor = AutoProcessor.from_pretrained(model_id)
|
| 439 |
|
|
@@ -442,9 +399,6 @@ pipe = pipeline(
|
|
| 442 |
model=model,
|
| 443 |
tokenizer=processor.tokenizer,
|
| 444 |
feature_extractor=processor.feature_extractor,
|
| 445 |
-
max_new_tokens=128,
|
| 446 |
-
chunk_length_s=25,
|
| 447 |
-
batch_size=16,
|
| 448 |
torch_dtype=torch_dtype,
|
| 449 |
device=device,
|
| 450 |
)
|
|
@@ -452,20 +406,22 @@ pipe = pipeline(
|
|
| 452 |
dataset = load_dataset("distil-whisper/librispeech_long", "clean", split="validation")
|
| 453 |
sample = dataset[0]["audio"]
|
| 454 |
|
| 455 |
-
|
| 456 |
-
|
| 457 |
-
|
|
|
|
| 458 |
|
| 459 |
-
|
|
|
|
|
|
|
| 460 |
|
| 461 |
-
|
| 462 |
-
|
| 463 |
-
more efficient flash attention version.
|
| 464 |
|
| 465 |
#### Flash Attention 2
|
| 466 |
|
| 467 |
-
We recommend using [Flash-Attention 2](https://huggingface.co/docs/transformers/main/en/perf_infer_gpu_one#flashattention-2)
|
| 468 |
-
|
| 469 |
|
| 470 |
```
|
| 471 |
pip install flash-attn --no-build-isolation
|
|
@@ -473,9 +429,8 @@ pip install flash-attn --no-build-isolation
|
|
| 473 |
|
| 474 |
Then pass `attn_implementation="flash_attention_2"` to `from_pretrained`:
|
| 475 |
|
| 476 |
-
```
|
| 477 |
-
|
| 478 |
-
+ model = AutoModelForSpeechSeq2Seq.from_pretrained(model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True, attn_implementation="flash_attention_2")
|
| 479 |
```
|
| 480 |
|
| 481 |
#### Torch Scale-Product-Attention (SDPA)
|
|
@@ -496,20 +451,36 @@ returns `False`, you need to upgrade your PyTorch version according to the [offi
|
|
| 496 |
Once a valid PyTorch version is installed, SDPA is activated by default. It can also be set explicitly by specifying
|
| 497 |
`attn_implementation="sdpa"` as follows:
|
| 498 |
|
| 499 |
-
```
|
| 500 |
-
|
| 501 |
-
+ model = AutoModelForSpeechSeq2Seq.from_pretrained(model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True, attn_implementation="sdpa")
|
| 502 |
```
|
| 503 |
|
| 504 |
For more information about how to use the SDPA refer to the [Transformers SDPA documentation](https://huggingface.co/docs/transformers/en/perf_infer_gpu_one#pytorch-scaled-dot-product-attention).
|
| 505 |
|
| 506 |
-
#### Torch compile
|
| 507 |
|
| 508 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 509 |
|
| 510 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 511 |
|
| 512 |
-
Coming soon...
|
| 513 |
|
| 514 |
## Fine-Tuning
|
| 515 |
|
|
@@ -529,7 +500,7 @@ In particular, we caution against using Whisper models to transcribe recordings
|
|
| 529 |
|
| 530 |
## Training Data
|
| 531 |
|
| 532 |
-
The
|
| 533 |
|
| 534 |
As discussed in [the accompanying paper](https://cdn.openai.com/papers/whisper.pdf), we see that performance on transcription in a given language is directly correlated with the amount of training data we employ in that language.
|
| 535 |
|
|
|
|
| 114 |
|
| 115 |
# Whisper
|
| 116 |
|
| 117 |
+
Whisper is a state-of-the-art model for automatic speech recognition (ASR) and speech translation, proposed in the paper
|
| 118 |
+
[Robust Speech Recognition via Large-Scale Weak Supervision](https://huggingface.co/papers/2212.04356) by Alec Radford
|
| 119 |
+
et al. from OpenAI. Trained on >5M hours of labeled data, Whisper demonstrates a strong ability to generalise to many
|
| 120 |
+
datasets and domains in a zero-shot setting.
|
| 121 |
|
| 122 |
+
Whisper large-v3 has the same architecture as the previous [large](https://huggingface.co/openai/whisper-large) and [large-v2](https://huggingface.co/openai/whisper-large-v2)
|
| 123 |
+
models, except for the following minor differences:
|
| 124 |
|
| 125 |
+
1. The spectrogram input uses 128 Mel frequency bins instead of 80
|
|
|
|
|
|
|
| 126 |
2. A new language token for Cantonese
|
| 127 |
|
| 128 |
+
The Whisper large-v3 model was trained on 1 million hours of weakly labeled audio and 4 million hours of pseudo-labeled
|
| 129 |
+
audio collected using Whisper [large-v2](https://huggingface.co/openai/whisper-large-v2) . The model was trained for 2.0 epochs over this mixture dataset.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 130 |
|
| 131 |
+
The large-v3 model shows improved performance over a wide variety of languages, showing 10% to 20% reduction of errors
|
| 132 |
+
compared to Whisper [large-v2](https://huggingface.co/openai/whisper-large-v2) . For more details on the different checkpoints available, refer to the section [Model details](#model-details).
|
|
|
|
|
|
|
|
|
|
| 133 |
|
| 134 |
+
**Disclaimer**: Content for this model card has partly been written by the 🤗 Hugging Face team, and partly copied and
|
| 135 |
+
pasted from the original model card.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 136 |
|
| 137 |
## Usage
|
| 138 |
|
| 139 |
+
Whisper large-v3 is supported in Hugging Face 🤗 Transformers. To run the model, first install the Transformers
|
| 140 |
+
library. For this example, we'll also install 🤗 Datasets to load toy audio dataset from the Hugging Face Hub, and
|
| 141 |
+
🤗 Accelerate to reduce the model loading time:
|
| 142 |
|
| 143 |
```bash
|
| 144 |
pip install --upgrade pip
|
| 145 |
+
pip install --upgrade transformers datasets[audio] accelerate
|
| 146 |
```
|
| 147 |
|
|
|
|
|
|
|
| 148 |
The model can be used with the [`pipeline`](https://huggingface.co/docs/transformers/main_classes/pipelines#transformers.AutomaticSpeechRecognitionPipeline)
|
| 149 |
+
class to transcribe audios of arbitrary length:
|
| 150 |
|
| 151 |
```python
|
| 152 |
import torch
|
|
|
|
| 171 |
model=model,
|
| 172 |
tokenizer=processor.tokenizer,
|
| 173 |
feature_extractor=processor.feature_extractor,
|
|
|
|
|
|
|
|
|
|
|
|
|
| 174 |
torch_dtype=torch_dtype,
|
| 175 |
device=device,
|
| 176 |
)
|
|
|
|
| 183 |
```
|
| 184 |
|
| 185 |
To transcribe a local audio file, simply pass the path to your audio file when you call the pipeline:
|
| 186 |
+
|
| 187 |
+
```python
|
| 188 |
+
result = pipe("audio.mp3")
|
| 189 |
+
```
|
| 190 |
+
|
| 191 |
+
Multiple audio files can be transcribed in parallel by specifying them as a list and setting the `batch_size` parameter:
|
| 192 |
+
|
| 193 |
+
```python
|
| 194 |
+
result = pipe(["audio_1.mp3", "audio_2.mp3"], batch_size=2)
|
| 195 |
+
```
|
| 196 |
+
|
| 197 |
+
Transformers is compatible with all Whisper decoding strategies, such as temperature fallback and condition on previous
|
| 198 |
+
tokens. The following example demonstrates how to enable these heuristics:
|
| 199 |
+
|
| 200 |
+
```python
|
| 201 |
+
generate_kwargs = {
|
| 202 |
+
"max_new_tokens": 448,
|
| 203 |
+
"num_beams": 1,
|
| 204 |
+
"condition_on_prev_tokens": False,
|
| 205 |
+
"compression_ratio_threshold": 1.35, # zlib compression ratio threshold (in token space)
|
| 206 |
+
"temperature": (0.0, 0.2, 0.4, 0.6, 0.8, 1.0),
|
| 207 |
+
"logprob_threshold": -1.0,
|
| 208 |
+
"no_speech_threshold": 0.6,
|
| 209 |
+
"return_timestamps": True,
|
| 210 |
+
}
|
| 211 |
+
|
| 212 |
+
result = pipe(sample, generate_kwargs=generate_kwargs)
|
| 213 |
```
|
| 214 |
|
| 215 |
Whisper predicts the language of the source audio automatically. If the source audio language is known *a-priori*, it
|
|
|
|
| 252 |
|
| 253 |
<summary> For more control over the generation parameters, use the model + processor API directly: </summary>
|
| 254 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 255 |
```python
|
| 256 |
import torch
|
| 257 |
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor
|
|
|
|
| 264 |
model_id = "openai/whisper-large-v3"
|
| 265 |
|
| 266 |
model = AutoModelForSpeechSeq2Seq.from_pretrained(
|
| 267 |
+
model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True
|
| 268 |
)
|
| 269 |
model.to(device)
|
| 270 |
|
|
|
|
| 274 |
dataset = dataset.cast_column("audio", Audio(processor.feature_extractor.sampling_rate))
|
| 275 |
sample = dataset[0]["audio"]
|
| 276 |
|
| 277 |
+
inputs = processor(
|
| 278 |
+
sample["array"],
|
| 279 |
+
sampling_rate=sample["sampling_rate"],
|
| 280 |
+
return_tensors="pt",
|
| 281 |
+
truncation=False,
|
| 282 |
+
padding="longest",
|
| 283 |
+
return_attention_mask=True,
|
| 284 |
+
)
|
| 285 |
+
inputs = inputs.to(device, dtype=torch_dtype)
|
| 286 |
|
| 287 |
gen_kwargs = {
|
| 288 |
+
"max_new_tokens": 448,
|
| 289 |
+
"num_beams": 1,
|
| 290 |
+
"condition_on_prev_tokens": False,
|
| 291 |
+
"compression_ratio_threshold": 1.35, # zlib compression ratio threshold (in token space)
|
| 292 |
+
"temperature": (0.0, 0.2, 0.4, 0.6, 0.8, 1.0),
|
| 293 |
+
"logprob_threshold": -1.0,
|
| 294 |
+
"no_speech_threshold": 0.6,
|
| 295 |
+
"return_timestamps": True,
|
| 296 |
}
|
| 297 |
|
| 298 |
+
pred_ids = model.generate(**inputs, **gen_kwargs)
|
| 299 |
+
pred_text = processor.batch_decode(pred_ids, skip_special_tokens=True, decode_with_timestamps=False)
|
| 300 |
|
| 301 |
print(pred_text)
|
| 302 |
```
|
| 303 |
|
| 304 |
</details>
|
| 305 |
|
| 306 |
+
## Additional Speed & Memory Improvements
|
| 307 |
|
| 308 |
+
You can apply additional speed and memory improvements to Whisper to further reduce the inference speed and VRAM
|
| 309 |
+
requirements.
|
| 310 |
+
|
| 311 |
+
### Chunked Long-Form
|
| 312 |
+
|
| 313 |
+
Whisper has a receptive field of 30-seconds. To transcribe audios longer than this, one of two long-form algorithms are
|
| 314 |
+
required:
|
| 315 |
+
1. **Sequential:** uses a "sliding window" for buffered inference, transcribing 30-second slices one after the other
|
| 316 |
+
2. **Chunked:** splits long audio files into shorter ones (with a small overlap between segments), transcribes each segment independently, and stitches the resulting transcriptions at the boundaries
|
| 317 |
|
| 318 |
The sequential long-form algorithm should be used in either of the following scenarios:
|
| 319 |
+
1. Transcription accuracy is the most important factor, and speed is less of a consideration
|
| 320 |
2. You are transcribing **batches** of long audio files, in which case the latency of sequential is comparable to chunked, while being up to 0.5% WER more accurate
|
| 321 |
|
| 322 |
+
Conversely, the chunked algorithm should be used when:
|
| 323 |
+
1. Transcription speed is the most important factor
|
| 324 |
+
2. You are transcribing a **single** long audio file
|
| 325 |
+
|
| 326 |
+
By default, Transformers uses the sequential algorithm. To enable the chunked algorithm, pass the `chunk_length_s`
|
| 327 |
+
parameter to the `pipeline`. For large-v3, a chunk length of 30-seconds is optimal. To activate batching over long
|
| 328 |
+
audio files, pass the argument `batch_size`:
|
| 329 |
|
| 330 |
```python
|
| 331 |
import torch
|
|
|
|
| 339 |
model_id = "openai/whisper-large-v3"
|
| 340 |
|
| 341 |
model = AutoModelForSpeechSeq2Seq.from_pretrained(
|
| 342 |
+
model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True
|
| 343 |
)
|
| 344 |
model.to(device)
|
| 345 |
|
|
|
|
| 350 |
model=model,
|
| 351 |
tokenizer=processor.tokenizer,
|
| 352 |
feature_extractor=processor.feature_extractor,
|
| 353 |
+
chunk_length_s=30,
|
| 354 |
+
batch_size=16, # batch size for inference - set based on your device
|
| 355 |
torch_dtype=torch_dtype,
|
| 356 |
device=device,
|
| 357 |
)
|
|
|
|
| 363 |
print(result["text"])
|
| 364 |
```
|
| 365 |
|
| 366 |
+
#### Torch compile
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 367 |
|
| 368 |
+
The Whisper forward pass is compatible with [`torch.compile`](https://pytorch.org/docs/stable/generated/torch.compile.html)
|
| 369 |
+
for 4.5x speed-ups.
|
|
|
|
|
|
|
| 370 |
|
| 371 |
+
**Note:** `torch.compile` is currently not compatible with the Chunked long-form algorithm or Flash Attention 2 ⚠️
|
|
|
|
| 372 |
|
| 373 |
```python
|
| 374 |
import torch
|
| 375 |
+
from torch.nn.attention import SDPBackend, sdpa_kernel
|
| 376 |
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
|
| 377 |
from datasets import load_dataset
|
| 378 |
+
from tqdm import tqdm
|
| 379 |
|
| 380 |
+
torch.set_float32_matmul_precision("high")
|
| 381 |
|
| 382 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
| 383 |
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
|
|
|
| 385 |
model_id = "openai/whisper-large-v3"
|
| 386 |
|
| 387 |
model = AutoModelForSpeechSeq2Seq.from_pretrained(
|
| 388 |
+
model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True
|
| 389 |
+
).to(device)
|
| 390 |
+
|
| 391 |
+
# Enable static cache and compile the forward pass
|
| 392 |
+
model.generation_config.cache_implementation = "static"
|
| 393 |
+
model.forward = torch.compile(model.forward, mode="reduce-overhead", fullgraph=True)
|
| 394 |
|
| 395 |
processor = AutoProcessor.from_pretrained(model_id)
|
| 396 |
|
|
|
|
| 399 |
model=model,
|
| 400 |
tokenizer=processor.tokenizer,
|
| 401 |
feature_extractor=processor.feature_extractor,
|
|
|
|
|
|
|
|
|
|
| 402 |
torch_dtype=torch_dtype,
|
| 403 |
device=device,
|
| 404 |
)
|
|
|
|
| 406 |
dataset = load_dataset("distil-whisper/librispeech_long", "clean", split="validation")
|
| 407 |
sample = dataset[0]["audio"]
|
| 408 |
|
| 409 |
+
# 2 warmup steps
|
| 410 |
+
for _ in tqdm(range(2), desc="Warm-up step"):
|
| 411 |
+
with sdpa_kernel(SDPBackend.MATH):
|
| 412 |
+
result = pipe(sample.copy())
|
| 413 |
|
| 414 |
+
# fast run
|
| 415 |
+
with sdpa_kernel(SDPBackend.MATH):
|
| 416 |
+
result = pipe(sample.copy())
|
| 417 |
|
| 418 |
+
print(result["text"])
|
| 419 |
+
```
|
|
|
|
| 420 |
|
| 421 |
#### Flash Attention 2
|
| 422 |
|
| 423 |
+
We recommend using [Flash-Attention 2](https://huggingface.co/docs/transformers/main/en/perf_infer_gpu_one#flashattention-2) if your GPU supports it and you are not using [torch.compile](#torch-compile).
|
| 424 |
+
To do so, first install [Flash Attention](https://github.com/Dao-AILab/flash-attention):
|
| 425 |
|
| 426 |
```
|
| 427 |
pip install flash-attn --no-build-isolation
|
|
|
|
| 429 |
|
| 430 |
Then pass `attn_implementation="flash_attention_2"` to `from_pretrained`:
|
| 431 |
|
| 432 |
+
```python
|
| 433 |
+
model = AutoModelForSpeechSeq2Seq.from_pretrained(model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, attn_implementation="flash_attention_2")
|
|
|
|
| 434 |
```
|
| 435 |
|
| 436 |
#### Torch Scale-Product-Attention (SDPA)
|
|
|
|
| 451 |
Once a valid PyTorch version is installed, SDPA is activated by default. It can also be set explicitly by specifying
|
| 452 |
`attn_implementation="sdpa"` as follows:
|
| 453 |
|
| 454 |
+
```python
|
| 455 |
+
model = AutoModelForSpeechSeq2Seq.from_pretrained(model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, attn_implementation="sdpa")
|
|
|
|
| 456 |
```
|
| 457 |
|
| 458 |
For more information about how to use the SDPA refer to the [Transformers SDPA documentation](https://huggingface.co/docs/transformers/en/perf_infer_gpu_one#pytorch-scaled-dot-product-attention).
|
| 459 |
|
|
|
|
| 460 |
|
| 461 |
+
## Model details
|
| 462 |
+
|
| 463 |
+
Whisper is a Transformer based encoder-decoder model, also referred to as a _sequence-to-sequence_ model. There are two
|
| 464 |
+
flavours of Whisper model: English-only and multilingual. The English-only models were trained on the task of English
|
| 465 |
+
speech recognition. The multilingual models were trained simultaneously on multilingual speech recognition and speech
|
| 466 |
+
translation. For speech recognition, the model predicts transcriptions in the *same* language as the audio. For speech
|
| 467 |
+
translation, the model predicts transcriptions to a *different* language to the audio.
|
| 468 |
+
|
| 469 |
+
Whisper checkpoints come in five configurations of varying model sizes. The smallest four are available as English-only
|
| 470 |
+
and multilingual. The largest checkpoints are multilingual only. All ten of the pre-trained checkpoints
|
| 471 |
+
are available on the [Hugging Face Hub](https://huggingface.co/models?search=openai/whisper). The
|
| 472 |
+
checkpoints are summarised in the following table with links to the models on the Hub:
|
| 473 |
|
| 474 |
+
| Size | Parameters | English-only | Multilingual |
|
| 475 |
+
|----------|------------|------------------------------------------------------|-----------------------------------------------------|
|
| 476 |
+
| tiny | 39 M | [✓](https://huggingface.co/openai/whisper-tiny.en) | [✓](https://huggingface.co/openai/whisper-tiny) |
|
| 477 |
+
| base | 74 M | [✓](https://huggingface.co/openai/whisper-base.en) | [✓](https://huggingface.co/openai/whisper-base) |
|
| 478 |
+
| small | 244 M | [✓](https://huggingface.co/openai/whisper-small.en) | [✓](https://huggingface.co/openai/whisper-small) |
|
| 479 |
+
| medium | 769 M | [✓](https://huggingface.co/openai/whisper-medium.en) | [✓](https://huggingface.co/openai/whisper-medium) |
|
| 480 |
+
| large | 1550 M | x | [✓](https://huggingface.co/openai/whisper-large) |
|
| 481 |
+
| large-v2 | 1550 M | x | [✓](https://huggingface.co/openai/whisper-large-v2) |
|
| 482 |
+
| large-v3 | 1550 M | x | [✓](https://huggingface.co/openai/whisper-large-v3) |
|
| 483 |
|
|
|
|
| 484 |
|
| 485 |
## Fine-Tuning
|
| 486 |
|
|
|
|
| 500 |
|
| 501 |
## Training Data
|
| 502 |
|
| 503 |
+
The large-v3 checkpoint is trained on 1 million hours of weakly labeled audio and 4 million hours of pseudo-labeled audio collected using Whisper large-v2.
|
| 504 |
|
| 505 |
As discussed in [the accompanying paper](https://cdn.openai.com/papers/whisper.pdf), we see that performance on transcription in a given language is directly correlated with the amount of training data we employ in that language.
|
| 506 |
|