Update README.md
Browse files
README.md
CHANGED
|
@@ -54,7 +54,213 @@ The inference code for this model is available through the NeMo Curator GitHub r
|
|
| 54 |
To use the prompt task and complexity classifier, use the following code:
|
| 55 |
|
| 56 |
```python
|
| 57 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 58 |
```
|
| 59 |
|
| 60 |
# Input & Output
|
|
|
|
| 54 |
To use the prompt task and complexity classifier, use the following code:
|
| 55 |
|
| 56 |
```python
|
| 57 |
+
import numpy as np
|
| 58 |
+
import torch
|
| 59 |
+
import torch.nn as nn
|
| 60 |
+
from huggingface_hub import PyTorchModelHubMixin
|
| 61 |
+
from transformers import AutoConfig, AutoModel, AutoTokenizer
|
| 62 |
+
|
| 63 |
+
|
| 64 |
+
class MeanPooling(nn.Module):
|
| 65 |
+
def __init__(self):
|
| 66 |
+
super(MeanPooling, self).__init__()
|
| 67 |
+
|
| 68 |
+
def forward(self, last_hidden_state, attention_mask):
|
| 69 |
+
input_mask_expanded = (
|
| 70 |
+
attention_mask.unsqueeze(-1).expand(last_hidden_state.size()).float()
|
| 71 |
+
)
|
| 72 |
+
sum_embeddings = torch.sum(last_hidden_state * input_mask_expanded, 1)
|
| 73 |
+
|
| 74 |
+
sum_mask = input_mask_expanded.sum(1)
|
| 75 |
+
sum_mask = torch.clamp(sum_mask, min=1e-9)
|
| 76 |
+
|
| 77 |
+
mean_embeddings = sum_embeddings / sum_mask
|
| 78 |
+
return mean_embeddings
|
| 79 |
+
|
| 80 |
+
|
| 81 |
+
class MulticlassHead(nn.Module):
|
| 82 |
+
def __init__(self, input_size, num_classes):
|
| 83 |
+
super(MulticlassHead, self).__init__()
|
| 84 |
+
self.fc = nn.Linear(input_size, num_classes)
|
| 85 |
+
|
| 86 |
+
def forward(self, x):
|
| 87 |
+
x = self.fc(x)
|
| 88 |
+
return x
|
| 89 |
+
|
| 90 |
+
|
| 91 |
+
class CustomModel(nn.Module, PyTorchModelHubMixin):
|
| 92 |
+
def __init__(self, target_sizes, task_type_map, weights_map, divisor_map):
|
| 93 |
+
super(CustomModel, self).__init__()
|
| 94 |
+
|
| 95 |
+
self.backbone = AutoModel.from_pretrained("microsoft/DeBERTa-v3-base")
|
| 96 |
+
self.target_sizes = target_sizes.values()
|
| 97 |
+
self.task_type_map = task_type_map
|
| 98 |
+
self.weights_map = weights_map
|
| 99 |
+
self.divisor_map = divisor_map
|
| 100 |
+
|
| 101 |
+
self.heads = [
|
| 102 |
+
MulticlassHead(self.backbone.config.hidden_size, sz)
|
| 103 |
+
for sz in self.target_sizes
|
| 104 |
+
]
|
| 105 |
+
|
| 106 |
+
for i, head in enumerate(self.heads):
|
| 107 |
+
self.add_module(f"head_{i}", head)
|
| 108 |
+
|
| 109 |
+
self.pool = MeanPooling()
|
| 110 |
+
|
| 111 |
+
def compute_results(self, preds, target, decimal=4):
|
| 112 |
+
if target == "task_type":
|
| 113 |
+
task_type = {}
|
| 114 |
+
|
| 115 |
+
top2_indices = torch.topk(preds, k=2, dim=1).indices
|
| 116 |
+
softmax_probs = torch.softmax(preds, dim=1)
|
| 117 |
+
top2_probs = softmax_probs.gather(1, top2_indices)
|
| 118 |
+
top2 = top2_indices.detach().cpu().tolist()
|
| 119 |
+
top2_prob = top2_probs.detach().cpu().tolist()
|
| 120 |
+
|
| 121 |
+
top2_strings = [
|
| 122 |
+
[self.task_type_map[str(idx)] for idx in sample] for sample in top2
|
| 123 |
+
]
|
| 124 |
+
top2_prob_rounded = [
|
| 125 |
+
[round(value, 3) for value in sublist] for sublist in top2_prob
|
| 126 |
+
]
|
| 127 |
+
|
| 128 |
+
counter = 0
|
| 129 |
+
for sublist in top2_prob_rounded:
|
| 130 |
+
if sublist[1] < 0.1:
|
| 131 |
+
top2_strings[counter][1] = "NA"
|
| 132 |
+
counter += 1
|
| 133 |
+
|
| 134 |
+
task_type_1 = [sublist[0] for sublist in top2_strings]
|
| 135 |
+
task_type_2 = [sublist[1] for sublist in top2_strings]
|
| 136 |
+
task_type_prob = [sublist[0] for sublist in top2_prob_rounded]
|
| 137 |
+
|
| 138 |
+
return (task_type_1, task_type_2, task_type_prob)
|
| 139 |
+
|
| 140 |
+
else:
|
| 141 |
+
preds = torch.softmax(preds, dim=1)
|
| 142 |
+
|
| 143 |
+
weights = np.array(self.weights_map[target])
|
| 144 |
+
weighted_sum = np.sum(np.array(preds.detach().cpu()) * weights, axis=1)
|
| 145 |
+
scores = weighted_sum / self.divisor_map[target]
|
| 146 |
+
|
| 147 |
+
scores = [round(value, decimal) for value in scores]
|
| 148 |
+
if target == "number_of_few_shots":
|
| 149 |
+
scores = [x if x >= 0.05 else 0 for x in scores]
|
| 150 |
+
return scores
|
| 151 |
+
|
| 152 |
+
def process_logits(self, logits):
|
| 153 |
+
result = {}
|
| 154 |
+
|
| 155 |
+
# Round 1: "task_type"
|
| 156 |
+
task_type_logits = logits[0]
|
| 157 |
+
task_type_results = self.compute_results(task_type_logits, target="task_type")
|
| 158 |
+
result["task_type_1"] = task_type_results[0]
|
| 159 |
+
result["task_type_2"] = task_type_results[1]
|
| 160 |
+
result["task_type_prob"] = task_type_results[2]
|
| 161 |
+
|
| 162 |
+
# Round 2: "creativity_scope"
|
| 163 |
+
creativity_scope_logits = logits[1]
|
| 164 |
+
target = "creativity_scope"
|
| 165 |
+
result[target] = self.compute_results(creativity_scope_logits, target=target)
|
| 166 |
+
|
| 167 |
+
# Round 3: "reasoning"
|
| 168 |
+
reasoning_logits = logits[2]
|
| 169 |
+
target = "reasoning"
|
| 170 |
+
result[target] = self.compute_results(reasoning_logits, target=target)
|
| 171 |
+
|
| 172 |
+
# Round 4: "contextual_knowledge"
|
| 173 |
+
contextual_knowledge_logits = logits[3]
|
| 174 |
+
target = "contextual_knowledge"
|
| 175 |
+
result[target] = self.compute_results(
|
| 176 |
+
contextual_knowledge_logits, target=target
|
| 177 |
+
)
|
| 178 |
+
|
| 179 |
+
# Round 5: "number_of_few_shots"
|
| 180 |
+
number_of_few_shots_logits = logits[4]
|
| 181 |
+
target = "number_of_few_shots"
|
| 182 |
+
result[target] = self.compute_results(number_of_few_shots_logits, target=target)
|
| 183 |
+
|
| 184 |
+
# Round 6: "domain_knowledge"
|
| 185 |
+
domain_knowledge_logits = logits[5]
|
| 186 |
+
target = "domain_knowledge"
|
| 187 |
+
result[target] = self.compute_results(domain_knowledge_logits, target=target)
|
| 188 |
+
|
| 189 |
+
# Round 7: "no_label_reason"
|
| 190 |
+
no_label_reason_logits = logits[6]
|
| 191 |
+
target = "no_label_reason"
|
| 192 |
+
result[target] = self.compute_results(no_label_reason_logits, target=target)
|
| 193 |
+
|
| 194 |
+
# Round 8: "constraint_ct"
|
| 195 |
+
constraint_ct_logits = logits[7]
|
| 196 |
+
target = "constraint_ct"
|
| 197 |
+
result[target] = self.compute_results(constraint_ct_logits, target=target)
|
| 198 |
+
|
| 199 |
+
# Round 9: "prompt_complexity_score"
|
| 200 |
+
result["prompt_complexity_score"] = [
|
| 201 |
+
round(
|
| 202 |
+
0.35 * creativity
|
| 203 |
+
+ 0.25 * reasoning
|
| 204 |
+
+ 0.15 * constraint
|
| 205 |
+
+ 0.15 * domain_knowledge
|
| 206 |
+
+ 0.05 * contextual_knowledge
|
| 207 |
+
+ 0.05 * few_shots,
|
| 208 |
+
5,
|
| 209 |
+
)
|
| 210 |
+
for creativity, reasoning, constraint, domain_knowledge, contextual_knowledge, few_shots in zip(
|
| 211 |
+
result["creativity_scope"],
|
| 212 |
+
result["reasoning"],
|
| 213 |
+
result["constraint_ct"],
|
| 214 |
+
result["domain_knowledge"],
|
| 215 |
+
result["contextual_knowledge"],
|
| 216 |
+
result["number_of_few_shots"],
|
| 217 |
+
)
|
| 218 |
+
]
|
| 219 |
+
|
| 220 |
+
return result
|
| 221 |
+
|
| 222 |
+
def forward(self, batch):
|
| 223 |
+
input_ids = batch["input_ids"]
|
| 224 |
+
attention_mask = batch["attention_mask"]
|
| 225 |
+
outputs = self.backbone(input_ids=input_ids, attention_mask=attention_mask)
|
| 226 |
+
|
| 227 |
+
last_hidden_state = outputs.last_hidden_state
|
| 228 |
+
mean_pooled_representation = self.pool(last_hidden_state, attention_mask)
|
| 229 |
+
|
| 230 |
+
logits = [
|
| 231 |
+
self.heads[k](mean_pooled_representation)
|
| 232 |
+
for k in range(len(self.target_sizes))
|
| 233 |
+
]
|
| 234 |
+
|
| 235 |
+
return self.process_logits(logits)
|
| 236 |
+
|
| 237 |
+
|
| 238 |
+
config = AutoConfig.from_pretrained("nvidia/prompt-task-and-complexity-classifier")
|
| 239 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
| 240 |
+
"nvidia/prompt-task-and-complexity-classifier"
|
| 241 |
+
)
|
| 242 |
+
model = CustomModel(
|
| 243 |
+
target_sizes=config.target_sizes,
|
| 244 |
+
task_type_map=config.task_type_map,
|
| 245 |
+
weights_map=config.weights_map,
|
| 246 |
+
divisor_map=config.divisor_map,
|
| 247 |
+
).from_pretrained("nvidia/prompt-task-and-complexity-classifier")
|
| 248 |
+
model.eval()
|
| 249 |
+
|
| 250 |
+
prompt = ["Prompt: Write a Python script that uses a for loop."]
|
| 251 |
+
|
| 252 |
+
encoded_texts = tokenizer(
|
| 253 |
+
prompt,
|
| 254 |
+
return_tensors="pt",
|
| 255 |
+
add_special_tokens=True,
|
| 256 |
+
max_length=512,
|
| 257 |
+
padding="max_length",
|
| 258 |
+
truncation=True,
|
| 259 |
+
)
|
| 260 |
+
|
| 261 |
+
result = model(encoded_texts)
|
| 262 |
+
print(result)
|
| 263 |
+
# {'task_type_1': ['Code Generation'], 'task_type_2': ['Text Generation'], 'task_type_prob': [0.767], 'creativity_scope': [0.0826], 'reasoning': [0.0632], 'contextual_knowledge': [0.056], 'number_of_few_shots': [0], 'domain_knowledge': [0.9803], 'no_label_reason': [0.0], 'constraint_ct': [0.5578], 'prompt_complexity_score': [0.27822]}
|
| 264 |
```
|
| 265 |
|
| 266 |
# Input & Output
|