nithinraok commited on
Commit
47a82b3
·
unverified ·
1 Parent(s): 3f6aa9a

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +513 -3
README.md CHANGED
@@ -1,3 +1,513 @@
1
- ---
2
- license: cc-by-4.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: cc-by-4.0
3
+ language:
4
+ - en
5
+ - es
6
+ - fr
7
+ - de
8
+ - bg
9
+ - hr
10
+ - cs
11
+ - da
12
+ - nl
13
+ - et
14
+ - fi
15
+ - el
16
+ - hu
17
+ - it
18
+ - lv
19
+ - lt
20
+ - mt
21
+ - pl
22
+ - pt
23
+ - ro
24
+ - sk
25
+ - sl
26
+ - sv
27
+ - ru
28
+ - uk
29
+
30
+ pipeline_tag: automatic-speech-recognition
31
+ library_name: nemo
32
+ datasets:
33
+ - granary
34
+ - librispeech_asr
35
+ - fisher_corpus
36
+ - mozilla-foundation/common_voice_8_0
37
+ - National-Singapore-Corpus-Part-1
38
+ - vctk
39
+ - voxpopuli
40
+ - europarl
41
+ - multilingual_librispeech
42
+ thumbnail: null
43
+ tags:
44
+ - automatic-speech-recognition
45
+ - speech
46
+ - audio
47
+ - Transducer
48
+ - TDT
49
+ - FastConformer
50
+ - Conformer
51
+ - pytorch
52
+ - NeMo
53
+ - hf-asr-leaderboard
54
+ widget:
55
+ - example_title: Librispeech sample 1
56
+ src: https://cdn-media.huggingface.co/speech_samples/sample1.flac
57
+ - example_title: Librispeech sample 2
58
+ src: https://cdn-media.huggingface.co/speech_samples/sample2.flac
59
+ model-index:
60
+ - name: parakeet-tdt-0.6b-v2
61
+ results:
62
+ - task:
63
+ name: Automatic Speech Recognition
64
+ type: automatic-speech-recognition
65
+ dataset:
66
+ name: AMI (Meetings test)
67
+ type: edinburghcstr/ami
68
+ config: ihm
69
+ split: test
70
+ args:
71
+ language: en
72
+ metrics:
73
+ - name: Test WER
74
+ type: wer
75
+ value: 11.16
76
+ - task:
77
+ name: Automatic Speech Recognition
78
+ type: automatic-speech-recognition
79
+ dataset:
80
+ name: Earnings-22
81
+ type: revdotcom/earnings22
82
+ split: test
83
+ args:
84
+ language: en
85
+ metrics:
86
+ - name: Test WER
87
+ type: wer
88
+ value: 11.15
89
+ - task:
90
+ name: Automatic Speech Recognition
91
+ type: automatic-speech-recognition
92
+ dataset:
93
+ name: GigaSpeech
94
+ type: speechcolab/gigaspeech
95
+ split: test
96
+ args:
97
+ language: en
98
+ metrics:
99
+ - name: Test WER
100
+ type: wer
101
+ value: 9.74
102
+ - task:
103
+ name: Automatic Speech Recognition
104
+ type: automatic-speech-recognition
105
+ dataset:
106
+ name: LibriSpeech (clean)
107
+ type: librispeech_asr
108
+ config: other
109
+ split: test
110
+ args:
111
+ language: en
112
+ metrics:
113
+ - name: Test WER
114
+ type: wer
115
+ value: 1.69
116
+ - task:
117
+ name: Automatic Speech Recognition
118
+ type: automatic-speech-recognition
119
+ dataset:
120
+ name: LibriSpeech (other)
121
+ type: librispeech_asr
122
+ config: other
123
+ split: test
124
+ args:
125
+ language: en
126
+ metrics:
127
+ - name: Test WER
128
+ type: wer
129
+ value: 3.19
130
+ - task:
131
+ type: Automatic Speech Recognition
132
+ name: automatic-speech-recognition
133
+ dataset:
134
+ name: SPGI Speech
135
+ type: kensho/spgispeech
136
+ config: test
137
+ split: test
138
+ args:
139
+ language: en
140
+ metrics:
141
+ - name: Test WER
142
+ type: wer
143
+ value: 2.17
144
+ - task:
145
+ type: Automatic Speech Recognition
146
+ name: automatic-speech-recognition
147
+ dataset:
148
+ name: tedlium-v3
149
+ type: LIUM/tedlium
150
+ config: release1
151
+ split: test
152
+ args:
153
+ language: en
154
+ metrics:
155
+ - name: Test WER
156
+ type: wer
157
+ value: 3.38
158
+ - task:
159
+ name: Automatic Speech Recognition
160
+ type: automatic-speech-recognition
161
+ dataset:
162
+ name: Vox Populi
163
+ type: facebook/voxpopuli
164
+ config: en
165
+ split: test
166
+ args:
167
+ language: en
168
+ metrics:
169
+ - name: Test WER
170
+ type: wer
171
+ value: 5.95
172
+ metrics:
173
+ - wer
174
+ ---
175
+
176
+ # **Parakeet TDT 0.6B V3 (En)**
177
+
178
+ <style>
179
+ img {
180
+ display: inline;
181
+ }
182
+ </style>
183
+
184
+ [![Model architecture](https://img.shields.io/badge/Model_Arch-FastConformer--TDT-blue#model-badge)](#model-architecture)
185
+ | [![Model size](https://img.shields.io/badge/Params-0.6B-green#model-badge)](#model-architecture)
186
+ | [![Language](https://img.shields.io/badge/Language-en-orange#model-badge)](#datasets)
187
+
188
+ ## <span style="color:#76b900;">🦜 parakeet-tdt-0.6b-v3: Multilingual Speech-to-Text Model</span>
189
+
190
+ ## <span style="color:#466f00;">Description:</span>
191
+
192
+ `parakeet-tdt-0.6b-v3` is a 600-million-parameter multilingual automatic speech recognition (ASR) model designed for high-throughput speech-to-text transcription. It extends the [parakeet-tdt-0.6b-v2](https://huggingface.co/nvidia/parakeet-tdt-0.6b-v2) model by expanding language support from English to 25 European languages. The model automatically detects the language of the audio and transcribes it without requiring additional prompting. It is part of a series of models that leverage the [Granary](https://huggingface.co/datasets/nvidia/Granary) [1, 2] multilingual corpus as their primary training dataset.
193
+
194
+ 🗣️ Try Demo here: https://huggingface.co/spaces/nvidia/parakeet-tdt-0.6b-v3
195
+
196
+ **Supported Languages:**
197
+ Bulgarian (**bg**), Croatian (**hr**), Czech (**cs**), Danish (**da**), Dutch (**nl**), English (**en**), Estonian (**et**), Finnish (**fi**), French (**fr**), German (**de**), Greek (**el**), Hungarian (**hu**), Italian (**it**), Latvian (**lv**), Lithuanian (**lt**), Maltese (**mt**), Polish (**pl**), Portuguese (**pt**), Romanian (**ro**), Slovak (**sk**), Slovenian (**sl**), Spanish (**es**), Swedish (**sv**), Russian (**ru**), Ukrainian (**uk**)
198
+
199
+
200
+ ## <span style="color:#466f00;">Key Features:</span>
201
+
202
+ `parakeet-tdt-0.6b-v3`'s key features are built on the foundation of its predecessor, [parakeet-tdt-0.6b-v2](https://huggingface.co/nvidia/parakeet-tdt-0.6b-v2), and include:
203
+
204
+ * Automatic **punctuation** and **capitalization**
205
+ * Accurate **word-level** and **segment-level** timestamps
206
+ * **Long audio** transcription, supporting audio **up to 24 minutes** long with full attention (on A100 80GB) or up to 3 hours with local attention.
207
+ * Released under a **permissive CC BY 4.0 license**
208
+
209
+ This model is ready for commercial/non-commercial use.
210
+
211
+ ## <span style="color:#466f00;">License/Terms of Use:</span>
212
+
213
+ GOVERNING TERMS: Use of this model is governed by the [CC-BY-4.0](https://creativecommons.org/licenses/by/4.0/legalcode.en) license.
214
+
215
+
216
+ ### <span style="color:#466f00;">Deployment Geography:</span>
217
+ Global
218
+
219
+
220
+ ### <span style="color:#466f00;">Use Case:</span>
221
+
222
+ This model serves developers, researchers, academics, and industries building applications that require speech-to-text capabilities, including but not limited to: conversational AI, voice assistants, transcription services, subtitle generation, and voice analytics platforms.
223
+
224
+
225
+ ### <span style="color:#466f00;">Release Date:</span>
226
+
227
+ 08/14/2025
228
+
229
+ ### <span style="color:#466f00;">Model Architecture:</span>
230
+
231
+ **Architecture Type**:
232
+
233
+ FastConformer-TDT
234
+
235
+ **Network Architecture**:
236
+
237
+ * This model was developed based on [FastConformer encoder](https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/main/asr/models.html#fast-conformer) architecture[3] and TDT decoder[4]
238
+ * This model has 600 million model parameters.
239
+
240
+ ### <span style="color:#466f00;">Input:</span>
241
+ **Input Type(s):** 16kHz Audio
242
+ **Input Format(s):** `.wav` and `.flac` audio formats
243
+ **Input Parameters:** 1D (audio signal)
244
+ **Other Properties Related to Input:** Monochannel audio
245
+
246
+ ### <span style="color:#466f00;">Output:</span>
247
+ **Output Type(s):** Text
248
+ **Output Format:** String
249
+ **Output Parameters:** 1D (text)
250
+ **Other Properties Related to Output:** Punctuations and Capitalizations included.
251
+
252
+ Our AI models are designed and/or optimized to run on NVIDIA GPU-accelerated systems. By leveraging NVIDIA's hardware (e.g. GPU cores) and software frameworks (e.g., CUDA libraries), the model achieves faster training and inference times compared to CPU-only solutions.
253
+
254
+ For more information, refer to the [NeMo documentation](https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/main/asr/models.html#fast-conformer).
255
+
256
+ ## <span style="color:#466f00;">How to Use this Model:</span>
257
+
258
+ To train, fine-tune or play with the model you will need to install [NVIDIA NeMo](https://github.com/NVIDIA/NeMo). We recommend you install it after you've installed latest PyTorch version.
259
+ ```bash
260
+ pip install -U nemo_toolkit['asr']
261
+ ```
262
+ The model is available for use in the NeMo toolkit [5], and can be used as a pre-trained checkpoint for inference or for fine-tuning on another dataset.
263
+
264
+ #### Automatically instantiate the model
265
+
266
+ ```python
267
+ import nemo.collections.asr as nemo_asr
268
+ asr_model = nemo_asr.models.ASRModel.from_pretrained(model_name="nvidia/parakeet-tdt-0.6b-v3")
269
+ ```
270
+
271
+ #### Transcribing using Python
272
+ First, let's get a sample
273
+ ```bash
274
+ wget https://dldata-public.s3.us-east-2.amazonaws.com/2086-149220-0033.wav
275
+ ```
276
+ Then simply do:
277
+ ```python
278
+ output = asr_model.transcribe(['2086-149220-0033.wav'])
279
+ print(output[0].text)
280
+ ```
281
+
282
+ #### Transcribing with timestamps
283
+
284
+ To transcribe with timestamps:
285
+ ```python
286
+ output = asr_model.transcribe(['2086-149220-0033.wav'], timestamps=True)
287
+ # by default, timestamps are enabled for char, word and segment level
288
+ word_timestamps = output[0].timestamp['word'] # word level timestamps for first sample
289
+ segment_timestamps = output[0].timestamp['segment'] # segment level timestamps
290
+ char_timestamps = output[0].timestamp['char'] # char level timestamps
291
+
292
+ for stamp in segment_timestamps:
293
+ print(f"{stamp['start']}s - {stamp['end']}s : {stamp['segment']}")
294
+ ```
295
+
296
+ #### Transcribing long-form audio
297
+
298
+ ```python
299
+ #updating self-attention model of fast-conformer encoder
300
+ #setting attention left and right context sizes to 256
301
+ asr_model.change_attention_model(self_attention_model="rel_pos_local_attn", att_context_size=[256, 256])
302
+
303
+ output = asr_model.transcribe(['2086-149220-0033.wav'])
304
+
305
+ print(output[0].text)
306
+ ```
307
+
308
+
309
+
310
+
311
+ ## <span style="color:#466f00;">Software Integration:</span>
312
+
313
+ **Runtime Engine(s):**
314
+ * NeMo 2.2
315
+
316
+
317
+ **Supported Hardware Microarchitecture Compatibility:**
318
+ * NVIDIA Ampere
319
+ * NVIDIA Blackwell
320
+ * NVIDIA Hopper
321
+ * NVIDIA Volta
322
+
323
+ **[Preferred/Supported] Operating System(s):**
324
+
325
+ - Linux
326
+
327
+ **Hardware Specific Requirements:**
328
+
329
+ Atleast 2GB RAM for model to load. The bigger the RAM, the larger audio input it supports.
330
+
331
+ #### Model Version
332
+
333
+ Current version: `parakeet-tdt-0.6b-v3`. Previous versions can be [accessed](https://huggingface.co/collections/nvidia/parakeet-659711f49d1469e51546e021) here.
334
+
335
+ ## <span style="color:#466f00;">Training and Evaluation Datasets:</span>
336
+
337
+ ### <span style="color:#466f00;">Training</span>
338
+
339
+ This model was trained using the NeMo toolkit [5], following the strategies below:
340
+
341
+ - Initialized from a CTC multilingual checkpoint pretrained on the Granary dataset \[1] \[2].
342
+ - Trained for 150,000 steps on 128 A100 GPUs.
343
+ - Dataset corpora and languages were balanced using a temperature sampling value of 0.5.
344
+ - Stage 2 fine-tuning was performed for 5,000 steps on 4 A100 GPUs using approximately 7,500 hours of high-quality, human-transcribed data of NeMo ASR Set 3.0.
345
+
346
+ Training was conducted using this [example script](https://github.com/NVIDIA/NeMo/blob/main/examples/asr/asr_transducer/speech_to_text_rnnt_bpe.py) and [TDT configuration](https://github.com/NVIDIA/NeMo/blob/main/examples/asr/conf/fastconformer/hybrid_transducer_ctc/fastconformer_hybrid_tdt_ctc_bpe.yaml).
347
+
348
+ During the training, a unified SentencePiece Tokenizer \[6] with a vocabulary of **8,192 tokens** was used. The unified tokenizer was constructed from the training set transcripts using this [script](https://github.com/NVIDIA/NeMo/blob/main/scripts/tokenizers/process_asr_text_tokenizer.py) and was optimized across all 25 supported languages.
349
+
350
+ ### <span style="color:#466f00;">Training Dataset</span>
351
+ The model was trained on the combination of [Granary dataset's ASR subset](https://huggingface.co/datasets/nvidia/Granary) and in-house dataset NeMo ASR Set 3.0:
352
+
353
+ - 10,000 hours from human-transcribed NeMo ASR Set 3.0, including:
354
+ - LibriSpeech (960 hours)
355
+ - Fisher Corpus
356
+ - National Speech Corpus Part 1
357
+ - VCTK
358
+ - Europarl-ASR
359
+ - Multilingual LibriSpeech
360
+ - Mozilla Common Voice (v7.0)
361
+ - AMI
362
+
363
+ - 660,000 hours of pseudo-labeled data from Granary \[1] \[2], including:
364
+ - [YTC](https://huggingface.co/datasets/FBK-MT/mosel) \[7]
365
+ - [MOSEL](https://huggingface.co/datasets/FBK-MT/mosel) \[8]
366
+ - [YODAS](https://huggingface.co/datasets/espnet/yodas-granary) \[9]
367
+
368
+ All transcriptions preserve punctuation and capitalization. The Granary dataset will be made publicly available after presentation at Interspeech 2025.
369
+
370
+ **Data Collection Method by dataset**
371
+
372
+ * Hybrid: Automated, Human
373
+
374
+ **Labeling Method by dataset**
375
+
376
+ * Hybrid: Synthetic, Human
377
+
378
+ **Properties:**
379
+
380
+ * Noise robust data from various sources
381
+ * Single channel, 16kHz sampled data
382
+
383
+ #### Evaluation Datasets
384
+
385
+ For multilingual ASR performance evaluation:
386
+ - Fleurs [10]
387
+ - MLS [11]
388
+ - CoVoST [12]
389
+
390
+ For English ASR performance evaluation:
391
+ - Hugging Face Open ASR Leaderboard [13] datasets
392
+
393
+ **Data Collection Method by dataset**
394
+ * Human
395
+
396
+ **Labeling Method by dataset**
397
+ * Human
398
+
399
+ **Properties:**
400
+
401
+ * All are commonly used for benchmarking English ASR systems.
402
+ * Audio data is typically processed into a 16kHz mono channel format for ASR evaluation, consistent with benchmarks like the [Open ASR Leaderboard](https://huggingface.co/spaces/hf-audio/open_asr_leaderboard).
403
+
404
+ ## <span style="color:#466f00;">Performance</span>
405
+
406
+ #### Multilingual ASR
407
+
408
+ The tables below summarizes the WER (%) using a Transducer decoder with greedy decoding (without an external language model):
409
+
410
+
411
+ | Language | Fleurs | MLS | CoVoST |
412
+ |----------|--------|-----|--------|
413
+ | **Average WER ↓** | *11.94%* | *7.84%* | *11.98%* |
414
+ | **bg** | 12.62% | - | - |
415
+ | **cs** | 10.92% | - | - |
416
+ | **da** | 18.37% | - | - |
417
+ | **de** | 5.07% | - | 4.84% |
418
+ | **el** | 20.76% | - | - |
419
+ | **en** | 4.85% | - | 6.80% |
420
+ | **es** | 3.39% | 4.39% | 3.40% |
421
+ | **et** | 17.74% | - | 22.06% |
422
+ | **fi** | 13.19% | - | - |
423
+ | **fr** | 5.12% | 4.96% | 6.05% |
424
+ | **hr** | 12.42% | - | - |
425
+ | **hu** | 15.64% | - | - |
426
+ | **it** | 2.93% | 10.05% | 3.68% |
427
+ | **lt** | 20.34% | - | - |
428
+ | **lv** | 22.74% | - | 38.33% |
429
+ | **mt** | 20.33% | - | - |
430
+ | **nl** | 7.44% | 12.82% | 6.50% |
431
+ | **pl** | 7.30% | 7.28% | - |
432
+ | **pt** | 4.68% | 7.52% | 4.03% |
433
+ | **ro** | 12.40% | - | - |
434
+ | **ru** | 5.47% | - | 3.00% |
435
+ | **sk** | 8.76% | - | - |
436
+ | **sl** | 24.06% | - | 31.80% |
437
+ | **sv** | 15.11% | - | 20.16% |
438
+ | **uk** | 6.86% | - | 5.10% |
439
+
440
+ **Note:** WERs are calculated after removing Punctuation and Capitalization from reference and predicted text.
441
+
442
+
443
+ #### Huggingface Open-ASR-Leaderboard
444
+
445
+ | **Model** | **Avg WER** | **AMI** | **Earnings-22** | **GigaSpeech** | **LS test-clean** | **LS test-other** | **SPGI Speech** | **TEDLIUM-v3** | **VoxPopuli** |
446
+ |:-------------|:-------------:|:---------:|:------------------:|:----------------:|:-----------------:|:-----------------:|:------------------:|:----------------:|:---------------:|
447
+ | `parakeet-tdt-0.6b-v3` | 6.35 | 11.36 | 11.42 | 9.57 | 1.93 | 3.59 | 3.98 | 2.80 | 6.13 |
448
+
449
+ Additional evaluation details are available on the [Hugging Face ASR Leaderboard](https://huggingface.co/spaces/hf-audio/open_asr_leaderboard).[13]
450
+
451
+ ### Noise Robustness
452
+ Performance across different Signal-to-Noise Ratios (SNR) using MUSAN music and noise samples [14]:
453
+
454
+ | **SNR Level** | **Avg WER** | **AMI** | **Earnings** | **GigaSpeech** | **LS test-clean** | **LS test-other** | **SPGI** | **Tedlium** | **VoxPopuli** | **Relative Change** |
455
+ |:---------------|:-------------:|:----------:|:------------:|:----------------:|:-----------------:|:-----------------:|:-----------:|:-------------:|:---------------:|:-----------------:|
456
+ | Clean | 6.35 | 11.36 | 11.42 | 9.57 | 1.93 | 3.59 | 3.98 | 2.80 | 6.13 | - |
457
+ | SNR 50 | TBD | TBD | TBD | TBD | TBD | TBD | TBD | TBD | TBD | TBD |
458
+ | SNR 25 | TBD | TBD | TBD | TBD | TBD | TBD | TBD | TBD | TBD | TBD |
459
+ | SNR 5 | TBD | TBD | TBD | TBD | TBD | TBD | TBD | TBD | TBD | TBD |
460
+
461
+
462
+
463
+ ## <span style="color:#466f00;">References</span>
464
+
465
+ [1] [Granary: Speech Recognition and Translation Dataset in 25 European Languages](https://arxiv.org/abs/2505.13404)
466
+
467
+ [2] [NVIDIA Granary Dataset Card](https://huggingface.co/datasets/nvidia/Granary)
468
+
469
+ [3] [Fast Conformer with Linearly Scalable Attention for Efficient Speech Recognition](https://arxiv.org/abs/2305.05084)
470
+
471
+ [4] [Efficient Sequence Transduction by Jointly Predicting Tokens and Durations](https://arxiv.org/abs/2304.06795)
472
+
473
+ [5] [NVIDIA NeMo Toolkit](https://github.com/NVIDIA/NeMo)
474
+
475
+ [6] [Google Sentencepiece Tokenizer](https://github.com/google/sentencepiece)
476
+
477
+ [7] [Youtube-Commons](https://huggingface.co/datasets/PleIAs/YouTube-Commons)
478
+
479
+ [8] [MOSEL: 950,000 Hours of Speech Data for Open-Source Speech Foundation Model Training on EU Languages](https://arxiv.org/abs/2410.01036)
480
+
481
+ [9] [YODAS: Youtube-Oriented Dataset for Audio and Speech](https://arxiv.org/pdf/2406.00899)
482
+
483
+ [10] [FLEURS: Few-shot Learning Evaluation of Universal Representations of Speech](https://arxiv.org/abs/2205.12446)
484
+
485
+ [11] [MLS: A Large-Scale Multilingual Dataset for Speech Research](https://arxiv.org/abs/2012.03411)
486
+
487
+ [12] [CoVoST 2 and Massively Multilingual Speech-to-Text Translation](https://arxiv.org/abs/2007.10310)
488
+
489
+ [13] [HuggingFace ASR Leaderboard](https://huggingface.co/spaces/hf-audio/open_asr_leaderboard)
490
+
491
+ [14] [MUSAN: A Music, Speech, and Noise Corpus](https://arxiv.org/abs/1510.08484)
492
+
493
+ ## <span style="color:#466f00;">Inference:</span>
494
+
495
+ **Engine**:
496
+ * NVIDIA NeMo
497
+
498
+ **Test Hardware**:
499
+ * NVIDIA A10
500
+ * NVIDIA A100
501
+ * NVIDIA A30
502
+ * NVIDIA H100
503
+ * NVIDIA L4
504
+ * NVIDIA L40
505
+ * NVIDIA Turing T4
506
+ * NVIDIA Volta V100
507
+
508
+ ## <span style="color:#466f00;">Ethical Considerations:</span>
509
+ NVIDIA believes Trustworthy AI is a shared responsibility and we have established policies and practices to enable development for a wide array of AI applications. When downloaded or used in accordance with our terms of service, developers should work with their supporting model team to ensure this model meets requirements for the relevant industry and use case and addresses unforeseen product misuse.
510
+
511
+ For more detailed information on ethical considerations for this model, please see the Model Card++ Explainability, Bias, Safety & Security, and Privacy Subcards [here](https://developer.nvidia.com/blog/enhancing-ai-transparency-and-ethical-considerations-with-model-card/).
512
+
513
+ Please report security vulnerabilities or NVIDIA AI Concerns [here](https://www.nvidia.com/en-us/support/submit-security-vulnerability/).