add asr results to metadata
Browse filesSigned-off-by: monica-sekoyan <[email protected]>
README.md
CHANGED
@@ -35,6 +35,639 @@ metrics:
|
|
35 |
- comet
|
36 |
pipeline_tag: automatic-speech-recognition
|
37 |
library_name: nemo
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
---
|
39 |
## <span style="color:#ffb300;">🐤 Canary 1B v2: Multitask Speech Transcription and Translation Model </span>
|
40 |
|
|
|
35 |
- comet
|
36 |
pipeline_tag: automatic-speech-recognition
|
37 |
library_name: nemo
|
38 |
+
tags:
|
39 |
+
- automatic-speech-recognition
|
40 |
+
- automatic-speech-translation
|
41 |
+
- speech
|
42 |
+
- audio
|
43 |
+
- Transformer
|
44 |
+
- FastConformer
|
45 |
+
- Conformer
|
46 |
+
- pytorch
|
47 |
+
- NeMo
|
48 |
+
- hf-asr-leaderboard
|
49 |
+
model-index:
|
50 |
+
- name: canary-1b-v2
|
51 |
+
results:
|
52 |
+
# FLEURS ASR Results
|
53 |
+
- task:
|
54 |
+
type: Automatic Speech Recognition
|
55 |
+
name: automatic-speech-recognition
|
56 |
+
dataset:
|
57 |
+
name: FLEURS
|
58 |
+
type: google/fleurs
|
59 |
+
config: bg_bg
|
60 |
+
split: test
|
61 |
+
args:
|
62 |
+
language: bg
|
63 |
+
metrics:
|
64 |
+
- name: Test WER (Bg)
|
65 |
+
type: wer
|
66 |
+
value: 9.25
|
67 |
+
- task:
|
68 |
+
type: Automatic Speech Recognition
|
69 |
+
name: automatic-speech-recognition
|
70 |
+
dataset:
|
71 |
+
name: FLEURS
|
72 |
+
type: google/fleurs
|
73 |
+
config: cs_cz
|
74 |
+
split: test
|
75 |
+
args:
|
76 |
+
language: cs
|
77 |
+
metrics:
|
78 |
+
- name: Test WER (Cs)
|
79 |
+
type: wer
|
80 |
+
value: 7.86
|
81 |
+
- task:
|
82 |
+
type: Automatic Speech Recognition
|
83 |
+
name: automatic-speech-recognition
|
84 |
+
dataset:
|
85 |
+
name: FLEURS
|
86 |
+
type: google/fleurs
|
87 |
+
config: da_dk
|
88 |
+
split: test
|
89 |
+
args:
|
90 |
+
language: da
|
91 |
+
metrics:
|
92 |
+
- name: Test WER (Da)
|
93 |
+
type: wer
|
94 |
+
value: 11.25
|
95 |
+
- task:
|
96 |
+
type: Automatic Speech Recognition
|
97 |
+
name: automatic-speech-recognition
|
98 |
+
dataset:
|
99 |
+
name: FLEURS
|
100 |
+
type: google/fleurs
|
101 |
+
config: de_de
|
102 |
+
split: test
|
103 |
+
args:
|
104 |
+
language: de
|
105 |
+
metrics:
|
106 |
+
- name: Test WER (De)
|
107 |
+
type: wer
|
108 |
+
value: 4.40
|
109 |
+
- task:
|
110 |
+
type: Automatic Speech Recognition
|
111 |
+
name: automatic-speech-recognition
|
112 |
+
dataset:
|
113 |
+
name: FLEURS
|
114 |
+
type: google/fleurs
|
115 |
+
config: el_gr
|
116 |
+
split: test
|
117 |
+
args:
|
118 |
+
language: el
|
119 |
+
metrics:
|
120 |
+
- name: Test WER (El)
|
121 |
+
type: wer
|
122 |
+
value: 9.21
|
123 |
+
- task:
|
124 |
+
type: Automatic Speech Recognition
|
125 |
+
name: automatic-speech-recognition
|
126 |
+
dataset:
|
127 |
+
name: FLEURS
|
128 |
+
type: google/fleurs
|
129 |
+
config: en_us
|
130 |
+
split: test
|
131 |
+
args:
|
132 |
+
language: en
|
133 |
+
metrics:
|
134 |
+
- name: Test WER (En)
|
135 |
+
type: wer
|
136 |
+
value: 4.50
|
137 |
+
- task:
|
138 |
+
type: Automatic Speech Recognition
|
139 |
+
name: automatic-speech-recognition
|
140 |
+
dataset:
|
141 |
+
name: FLEURS
|
142 |
+
type: google/fleurs
|
143 |
+
config: es_419
|
144 |
+
split: test
|
145 |
+
args:
|
146 |
+
language: es
|
147 |
+
metrics:
|
148 |
+
- name: Test WER (Es)
|
149 |
+
type: wer
|
150 |
+
value: 2.90
|
151 |
+
- task:
|
152 |
+
type: Automatic Speech Recognition
|
153 |
+
name: automatic-speech-recognition
|
154 |
+
dataset:
|
155 |
+
name: FLEURS
|
156 |
+
type: google/fleurs
|
157 |
+
config: et_ee
|
158 |
+
split: test
|
159 |
+
args:
|
160 |
+
language: et
|
161 |
+
metrics:
|
162 |
+
- name: Test WER (Et)
|
163 |
+
type: wer
|
164 |
+
value: 12.55
|
165 |
+
- task:
|
166 |
+
type: Automatic Speech Recognition
|
167 |
+
name: automatic-speech-recognition
|
168 |
+
dataset:
|
169 |
+
name: FLEURS
|
170 |
+
type: google/fleurs
|
171 |
+
config: fi_fi
|
172 |
+
split: test
|
173 |
+
args:
|
174 |
+
language: fi
|
175 |
+
metrics:
|
176 |
+
- name: Test WER (Fi)
|
177 |
+
type: wer
|
178 |
+
value: 8.59
|
179 |
+
- task:
|
180 |
+
type: Automatic Speech Recognition
|
181 |
+
name: automatic-speech-recognition
|
182 |
+
dataset:
|
183 |
+
name: FLEURS
|
184 |
+
type: google/fleurs
|
185 |
+
config: fr_fr
|
186 |
+
split: test
|
187 |
+
args:
|
188 |
+
language: fr
|
189 |
+
metrics:
|
190 |
+
- name: Test WER (Fr)
|
191 |
+
type: wer
|
192 |
+
value: 5.02
|
193 |
+
- task:
|
194 |
+
type: Automatic Speech Recognition
|
195 |
+
name: automatic-speech-recognition
|
196 |
+
dataset:
|
197 |
+
name: FLEURS
|
198 |
+
type: google/fleurs
|
199 |
+
config: hr_hr
|
200 |
+
split: test
|
201 |
+
args:
|
202 |
+
language: hr
|
203 |
+
metrics:
|
204 |
+
- name: Test WER (Hr)
|
205 |
+
type: wer
|
206 |
+
value: 8.29
|
207 |
+
- task:
|
208 |
+
type: Automatic Speech Recognition
|
209 |
+
name: automatic-speech-recognition
|
210 |
+
dataset:
|
211 |
+
name: FLEURS
|
212 |
+
type: google/fleurs
|
213 |
+
config: hu_hu
|
214 |
+
split: test
|
215 |
+
args:
|
216 |
+
language: hu
|
217 |
+
metrics:
|
218 |
+
- name: Test WER (Hu)
|
219 |
+
type: wer
|
220 |
+
value: 12.90
|
221 |
+
- task:
|
222 |
+
type: Automatic Speech Recognition
|
223 |
+
name: automatic-speech-recognition
|
224 |
+
dataset:
|
225 |
+
name: FLEURS
|
226 |
+
type: google/fleurs
|
227 |
+
config: it_it
|
228 |
+
split: test
|
229 |
+
args:
|
230 |
+
language: it
|
231 |
+
metrics:
|
232 |
+
- name: Test WER (It)
|
233 |
+
type: wer
|
234 |
+
value: 3.07
|
235 |
+
- task:
|
236 |
+
type: Automatic Speech Recognition
|
237 |
+
name: automatic-speech-recognition
|
238 |
+
dataset:
|
239 |
+
name: FLEURS
|
240 |
+
type: google/fleurs
|
241 |
+
config: lt_lt
|
242 |
+
split: test
|
243 |
+
args:
|
244 |
+
language: lt
|
245 |
+
metrics:
|
246 |
+
- name: Test WER (Lt)
|
247 |
+
type: wer
|
248 |
+
value: 12.36
|
249 |
+
- task:
|
250 |
+
type: Automatic Speech Recognition
|
251 |
+
name: automatic-speech-recognition
|
252 |
+
dataset:
|
253 |
+
name: FLEURS
|
254 |
+
type: google/fleurs
|
255 |
+
config: lv_lv
|
256 |
+
split: test
|
257 |
+
args:
|
258 |
+
language: lv
|
259 |
+
metrics:
|
260 |
+
- name: Test WER (Lv)
|
261 |
+
type: wer
|
262 |
+
value: 9.66
|
263 |
+
- task:
|
264 |
+
type: Automatic Speech Recognition
|
265 |
+
name: automatic-speech-recognition
|
266 |
+
dataset:
|
267 |
+
name: FLEURS
|
268 |
+
type: google/fleurs
|
269 |
+
config: mt_mt
|
270 |
+
split: test
|
271 |
+
args:
|
272 |
+
language: mt
|
273 |
+
metrics:
|
274 |
+
- name: Test WER (Mt)
|
275 |
+
type: wer
|
276 |
+
value: 18.31
|
277 |
+
- task:
|
278 |
+
type: Automatic Speech Recognition
|
279 |
+
name: automatic-speech-recognition
|
280 |
+
dataset:
|
281 |
+
name: FLEURS
|
282 |
+
type: google/fleurs
|
283 |
+
config: nl_nl
|
284 |
+
split: test
|
285 |
+
args:
|
286 |
+
language: nl
|
287 |
+
metrics:
|
288 |
+
- name: Test WER (Nl)
|
289 |
+
type: wer
|
290 |
+
value: 6.12
|
291 |
+
- task:
|
292 |
+
type: Automatic Speech Recognition
|
293 |
+
name: automatic-speech-recognition
|
294 |
+
dataset:
|
295 |
+
name: FLEURS
|
296 |
+
type: google/fleurs
|
297 |
+
config: pl_pl
|
298 |
+
split: test
|
299 |
+
args:
|
300 |
+
language: pl
|
301 |
+
metrics:
|
302 |
+
- name: Test WER (Pl)
|
303 |
+
type: wer
|
304 |
+
value: 6.64
|
305 |
+
- task:
|
306 |
+
type: Automatic Speech Recognition
|
307 |
+
name: automatic-speech-recognition
|
308 |
+
dataset:
|
309 |
+
name: FLEURS
|
310 |
+
type: google/fleurs
|
311 |
+
config: pt_br
|
312 |
+
split: test
|
313 |
+
args:
|
314 |
+
language: pt
|
315 |
+
metrics:
|
316 |
+
- name: Test WER (Pt)
|
317 |
+
type: wer
|
318 |
+
value: 4.39
|
319 |
+
- task:
|
320 |
+
type: Automatic Speech Recognition
|
321 |
+
name: automatic-speech-recognition
|
322 |
+
dataset:
|
323 |
+
name: FLEURS
|
324 |
+
type: google/fleurs
|
325 |
+
config: ro_ro
|
326 |
+
split: test
|
327 |
+
args:
|
328 |
+
language: ro
|
329 |
+
metrics:
|
330 |
+
- name: Test WER (Ro)
|
331 |
+
type: wer
|
332 |
+
value: 6.61
|
333 |
+
- task:
|
334 |
+
type: Automatic Speech Recognition
|
335 |
+
name: automatic-speech-recognition
|
336 |
+
dataset:
|
337 |
+
name: FLEURS
|
338 |
+
type: google/fleurs
|
339 |
+
config: ru_ru
|
340 |
+
split: test
|
341 |
+
args:
|
342 |
+
language: ru
|
343 |
+
metrics:
|
344 |
+
- name: Test WER (Ru)
|
345 |
+
type: wer
|
346 |
+
value: 6.90
|
347 |
+
- task:
|
348 |
+
type: Automatic Speech Recognition
|
349 |
+
name: automatic-speech-recognition
|
350 |
+
dataset:
|
351 |
+
name: FLEURS
|
352 |
+
type: google/fleurs
|
353 |
+
config: sk_sk
|
354 |
+
split: test
|
355 |
+
args:
|
356 |
+
language: sk
|
357 |
+
metrics:
|
358 |
+
- name: Test WER (Sk)
|
359 |
+
type: wer
|
360 |
+
value: 5.74
|
361 |
+
- task:
|
362 |
+
type: Automatic Speech Recognition
|
363 |
+
name: automatic-speech-recognition
|
364 |
+
dataset:
|
365 |
+
name: FLEURS
|
366 |
+
type: google/fleurs
|
367 |
+
config: sl_si
|
368 |
+
split: test
|
369 |
+
args:
|
370 |
+
language: sl
|
371 |
+
metrics:
|
372 |
+
- name: Test WER (Sl)
|
373 |
+
type: wer
|
374 |
+
value: 13.32
|
375 |
+
- task:
|
376 |
+
type: Automatic Speech Recognition
|
377 |
+
name: automatic-speech-recognition
|
378 |
+
dataset:
|
379 |
+
name: FLEURS
|
380 |
+
type: google/fleurs
|
381 |
+
config: sv_se
|
382 |
+
split: test
|
383 |
+
args:
|
384 |
+
language: sv
|
385 |
+
metrics:
|
386 |
+
- name: Test WER (Sv)
|
387 |
+
type: wer
|
388 |
+
value: 9.57
|
389 |
+
- task:
|
390 |
+
type: Automatic Speech Recognition
|
391 |
+
name: automatic-speech-recognition
|
392 |
+
dataset:
|
393 |
+
name: FLEURS
|
394 |
+
type: google/fleurs
|
395 |
+
config: uk_ua
|
396 |
+
split: test
|
397 |
+
args:
|
398 |
+
language: uk
|
399 |
+
metrics:
|
400 |
+
- name: Test WER (Uk)
|
401 |
+
type: wer
|
402 |
+
value: 10.50
|
403 |
+
# Multilingual LibriSpeech ASR Results
|
404 |
+
- task:
|
405 |
+
type: Automatic Speech Recognition
|
406 |
+
name: automatic-speech-recognition
|
407 |
+
dataset:
|
408 |
+
name: Multilingual LibriSpeech
|
409 |
+
type: facebook/multilingual_librispeech
|
410 |
+
config: spanish
|
411 |
+
split: test
|
412 |
+
args:
|
413 |
+
language: es
|
414 |
+
metrics:
|
415 |
+
- name: Test WER (Es)
|
416 |
+
type: wer
|
417 |
+
value: 2.94
|
418 |
+
- task:
|
419 |
+
type: Automatic Speech Recognition
|
420 |
+
name: automatic-speech-recognition
|
421 |
+
dataset:
|
422 |
+
name: Multilingual LibriSpeech
|
423 |
+
type: facebook/multilingual_librispeech
|
424 |
+
config: french
|
425 |
+
split: test
|
426 |
+
args:
|
427 |
+
language: fr
|
428 |
+
metrics:
|
429 |
+
- name: Test WER (Fr)
|
430 |
+
type: wer
|
431 |
+
value: 3.36
|
432 |
+
- task:
|
433 |
+
type: Automatic Speech Recognition
|
434 |
+
name: automatic-speech-recognition
|
435 |
+
dataset:
|
436 |
+
name: Multilingual LibriSpeech
|
437 |
+
type: facebook/multilingual_librispeech
|
438 |
+
config: italian
|
439 |
+
split: test
|
440 |
+
args:
|
441 |
+
language: it
|
442 |
+
metrics:
|
443 |
+
- name: Test WER (It)
|
444 |
+
type: wer
|
445 |
+
value: 9.16
|
446 |
+
- task:
|
447 |
+
type: Automatic Speech Recognition
|
448 |
+
name: automatic-speech-recognition
|
449 |
+
dataset:
|
450 |
+
name: Multilingual LibriSpeech
|
451 |
+
type: facebook/multilingual_librispeech
|
452 |
+
config: dutch
|
453 |
+
split: test
|
454 |
+
args:
|
455 |
+
language: nl
|
456 |
+
metrics:
|
457 |
+
- name: Test WER (Nl)
|
458 |
+
type: wer
|
459 |
+
value: 11.27
|
460 |
+
- task:
|
461 |
+
type: Automatic Speech Recognition
|
462 |
+
name: automatic-speech-recognition
|
463 |
+
dataset:
|
464 |
+
name: Multilingual LibriSpeech
|
465 |
+
type: facebook/multilingual_librispeech
|
466 |
+
config: polish
|
467 |
+
split: test
|
468 |
+
args:
|
469 |
+
language: pl
|
470 |
+
metrics:
|
471 |
+
- name: Test WER (Pl)
|
472 |
+
type: wer
|
473 |
+
value: 8.77
|
474 |
+
- task:
|
475 |
+
type: Automatic Speech Recognition
|
476 |
+
name: automatic-speech-recognition
|
477 |
+
dataset:
|
478 |
+
name: Multilingual LibriSpeech
|
479 |
+
type: facebook/multilingual_librispeech
|
480 |
+
config: portuguese
|
481 |
+
split: test
|
482 |
+
args:
|
483 |
+
language: pt
|
484 |
+
metrics:
|
485 |
+
- name: Test WER (Pt)
|
486 |
+
type: wer
|
487 |
+
value: 8.14
|
488 |
+
# CoVoST2 ASR Results
|
489 |
+
- task:
|
490 |
+
type: Automatic Speech Recognition
|
491 |
+
name: automatic-speech-recognition
|
492 |
+
dataset:
|
493 |
+
name: CoVoST2
|
494 |
+
type: covost2
|
495 |
+
config: de
|
496 |
+
split: test
|
497 |
+
args:
|
498 |
+
language: de
|
499 |
+
metrics:
|
500 |
+
- name: Test WER (De)
|
501 |
+
type: wer
|
502 |
+
value: 5.53
|
503 |
+
- task:
|
504 |
+
type: Automatic Speech Recognition
|
505 |
+
name: automatic-speech-recognition
|
506 |
+
dataset:
|
507 |
+
name: CoVoST2
|
508 |
+
type: covost2
|
509 |
+
config: en
|
510 |
+
split: test
|
511 |
+
args:
|
512 |
+
language: en
|
513 |
+
metrics:
|
514 |
+
- name: Test WER (En)
|
515 |
+
type: wer
|
516 |
+
value: 6.85
|
517 |
+
- task:
|
518 |
+
type: Automatic Speech Recognition
|
519 |
+
name: automatic-speech-recognition
|
520 |
+
dataset:
|
521 |
+
name: CoVoST2
|
522 |
+
type: covost2
|
523 |
+
config: es
|
524 |
+
split: test
|
525 |
+
args:
|
526 |
+
language: es
|
527 |
+
metrics:
|
528 |
+
- name: Test WER (Es)
|
529 |
+
type: wer
|
530 |
+
value: 3.81
|
531 |
+
- task:
|
532 |
+
type: Automatic Speech Recognition
|
533 |
+
name: automatic-speech-recognition
|
534 |
+
dataset:
|
535 |
+
name: CoVoST2
|
536 |
+
type: covost2
|
537 |
+
config: et
|
538 |
+
split: test
|
539 |
+
args:
|
540 |
+
language: et
|
541 |
+
metrics:
|
542 |
+
- name: Test WER (Et)
|
543 |
+
type: wer
|
544 |
+
value: 18.28
|
545 |
+
- task:
|
546 |
+
type: Automatic Speech Recognition
|
547 |
+
name: automatic-speech-recognition
|
548 |
+
dataset:
|
549 |
+
name: CoVoST2
|
550 |
+
type: covost2
|
551 |
+
config: fr
|
552 |
+
split: test
|
553 |
+
args:
|
554 |
+
language: fr
|
555 |
+
metrics:
|
556 |
+
- name: Test WER (Fr)
|
557 |
+
type: wer
|
558 |
+
value: 6.30
|
559 |
+
- task:
|
560 |
+
type: Automatic Speech Recognition
|
561 |
+
name: automatic-speech-recognition
|
562 |
+
dataset:
|
563 |
+
name: CoVoST2
|
564 |
+
type: covost2
|
565 |
+
config: it
|
566 |
+
split: test
|
567 |
+
args:
|
568 |
+
language: it
|
569 |
+
metrics:
|
570 |
+
- name: Test WER (It)
|
571 |
+
type: wer
|
572 |
+
value: 4.80
|
573 |
+
- task:
|
574 |
+
type: Automatic Speech Recognition
|
575 |
+
name: automatic-speech-recognition
|
576 |
+
dataset:
|
577 |
+
name: CoVoST2
|
578 |
+
type: covost2
|
579 |
+
config: lv
|
580 |
+
split: test
|
581 |
+
args:
|
582 |
+
language: lv
|
583 |
+
metrics:
|
584 |
+
- name: Test WER (Lv)
|
585 |
+
type: wer
|
586 |
+
value: 11.49
|
587 |
+
- task:
|
588 |
+
type: Automatic Speech Recognition
|
589 |
+
name: automatic-speech-recognition
|
590 |
+
dataset:
|
591 |
+
name: CoVoST2
|
592 |
+
type: covost2
|
593 |
+
config: nl
|
594 |
+
split: test
|
595 |
+
args:
|
596 |
+
language: nl
|
597 |
+
metrics:
|
598 |
+
- name: Test WER (Nl)
|
599 |
+
type: wer
|
600 |
+
value: 6.93
|
601 |
+
- task:
|
602 |
+
type: Automatic Speech Recognition
|
603 |
+
name: automatic-speech-recognition
|
604 |
+
dataset:
|
605 |
+
name: CoVoST2
|
606 |
+
type: covost2
|
607 |
+
config: pt
|
608 |
+
split: test
|
609 |
+
args:
|
610 |
+
language: pt
|
611 |
+
metrics:
|
612 |
+
- name: Test WER (Pt)
|
613 |
+
type: wer
|
614 |
+
value: 6.87
|
615 |
+
- task:
|
616 |
+
type: Automatic Speech Recognition
|
617 |
+
name: automatic-speech-recognition
|
618 |
+
dataset:
|
619 |
+
name: CoVoST2
|
620 |
+
type: covost2
|
621 |
+
config: ru
|
622 |
+
split: test
|
623 |
+
args:
|
624 |
+
language: ru
|
625 |
+
metrics:
|
626 |
+
- name: Test WER (Ru)
|
627 |
+
type: wer
|
628 |
+
value: 5.14
|
629 |
+
- task:
|
630 |
+
type: Automatic Speech Recognition
|
631 |
+
name: automatic-speech-recognition
|
632 |
+
dataset:
|
633 |
+
name: CoVoST2
|
634 |
+
type: covost2
|
635 |
+
config: sl
|
636 |
+
split: test
|
637 |
+
args:
|
638 |
+
language: sl
|
639 |
+
metrics:
|
640 |
+
- name: Test WER (Sl)
|
641 |
+
type: wer
|
642 |
+
value: 7.59
|
643 |
+
- task:
|
644 |
+
type: Automatic Speech Recognition
|
645 |
+
name: automatic-speech-recognition
|
646 |
+
dataset:
|
647 |
+
name: CoVoST2
|
648 |
+
type: covost2
|
649 |
+
config: sv
|
650 |
+
split: test
|
651 |
+
args:
|
652 |
+
language: sv
|
653 |
+
metrics:
|
654 |
+
- name: Test WER (Sv)
|
655 |
+
type: wer
|
656 |
+
value: 13.32
|
657 |
+
- task:
|
658 |
+
type: Automatic Speech Recognition
|
659 |
+
name: automatic-speech-recognition
|
660 |
+
dataset:
|
661 |
+
name: CoVoST2
|
662 |
+
type: covost2
|
663 |
+
config: uk
|
664 |
+
split: test
|
665 |
+
args:
|
666 |
+
language: uk
|
667 |
+
metrics:
|
668 |
+
- name: Test WER (Uk)
|
669 |
+
type: wer
|
670 |
+
value: 18.15
|
671 |
---
|
672 |
## <span style="color:#ffb300;">🐤 Canary 1B v2: Multitask Speech Transcription and Translation Model </span>
|
673 |
|