msekoyan commited on
Commit
b77a135
·
verified ·
1 Parent(s): a298b18

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +459 -3
README.md CHANGED
@@ -1,3 +1,459 @@
1
- ---
2
- license: cc-by-4.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ## <span style="color:#ffb300;">🐤 Canary 1B v2: Multitask Speech Transcription and Translation Model </span>
2
+
3
+ ## <span style="color:#b37800;">Description</span>
4
+
5
+ **``Canary-1b-v2``** is a powerful 1-billion parameter model built for high-quality speech transcription and translation across 25 European languages.
6
+
7
+ It excels at both automatic speech recognition (ASR) and speech translation (AST), supporting:
8
+
9
+ * **Speech Transcription (ASR) for 25 languages**
10
+ * **Speech Translation (AST) from English → 24 languages**
11
+ * **Speech Translation (AST) from 24 languages → English**
12
+
13
+
14
+ **Supported Languages:**
15
+ Bulgarian (**bg**), Croatian (**hr**), Czech (**cs**), Danish (**da**), Dutch (**nl**), English (**en**), Estonian (**et**), Finnish (**fi**), French (**fr**), German (**de**), Greek (**el**), Hungarian (**hu**), Italian (**it**), Latvian (**lv**), Lithuanian (**lt**), Maltese (**mt**), Polish (**pl**), Portuguese (**pt**), Romanian (**ro**), Slovak (**sk**), Slovenian (**sl**), Spanish (**es**), Swedish (**sv**), Russian (**ru**), Ukrainian (**uk**)
16
+
17
+ 🗣️ **Experience `Canary-1b-v2` in action**: [Hugging Face Demo](https://huggingface.co/spaces/nvidia/`canary-1b-v2`)
18
+
19
+ ## <span style="color:#b37800;">Key Features</span>
20
+
21
+ **`Canary-1b-v2`** is a scaled and enhanced version of the Canary model family, offering:
22
+
23
+ * Support for **25 European languages**, expanding from the **4 languages** in [canary-1b](https://huggingface.co/nvidia/canary-1b)/[canary-1b-flash](nvidia/canary-1b-flash) to **21 additional languages**
24
+ * **State-of-the-art performance** among models of similar size
25
+ * **Comparable quality to models 3× larger**, while being up to **10× faster**
26
+ * Automatic **punctuation** and **capitalization**
27
+ * Accurate **word-level** and **segment-level** timestamps
28
+ * Segment-level timestamps also available for **translated outputs**
29
+ * Released under a **permissive CC BY 4.0 license**
30
+
31
+ `Canary-1b-v2` model is the first model from NeMo team that leveraged full Nvidia's Granary dataset \[1] \[2], showcasing its multitask and multilingual capabilities.
32
+
33
+ For more information, refer to the [Model Architecture](#model-architecture) section and the [NeMo documentation](https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/main/asr/models.html#fast-conformer).
34
+
35
+ For a deeper glimpse to Canary family models, explore this comprehensive [NeMo tutorial on multitask speech models](https://github.com/NVIDIA/NeMo/blob/main/tutorials/asr/Canary_Multitask_Speech_Model.ipynb).
36
+
37
+ We will soon release a comprehensive **Canary-1b-v2 technical report** detailing the model architecture, training methodology, datasets, and evaluation results.
38
+
39
+ `Canary-1b-v2` model is ready for commercial/non-commercial use.
40
+
41
+ ---
42
+
43
+ ### Automatic Speech Recognition (ASR)
44
+
45
+ ![ASR WER Comparison](plots/asr_performance.png)
46
+
47
+ *Figure 1: ASR WER comparison across different models. This does not include Punctuation and Capitalisation errors.*
48
+
49
+ ---
50
+
51
+ ### Speech Translation (AST)
52
+
53
+ #### X → English
54
+
55
+ ![AST X-En Comparison](plots/x_en_performance.png)
56
+
57
+ *Figure 2: AST X → En COMET scores comparison across different models*
58
+
59
+ #### English → X
60
+
61
+
62
+ ![AST En-X Comparison](plots/en_x_performance.png)
63
+
64
+ *Figure 3: AST En → X COMET scores comparison across different models*
65
+
66
+ ---
67
+
68
+ ### Evaluation Notes
69
+
70
+ **Note 1:** The above evaluations are conducted in two settings: (1) **All supported languages** (24 languages, excluding Latvian since `seamless-m4t-v2-large` does not support it), and (2) **Common languages** (6 languages supported by all compared models: en, fr, de, it, pt, es).
71
+
72
+ **Note 2:** Performance differences may be partly attributed to Portuguese variant differences - our training data uses European Portuguese while most benchmarks use Brazilian Portuguese.
73
+
74
+ ---
75
+
76
+
77
+ ## <span style="color:#b37800;">License/Terms of Use</span>
78
+
79
+ GOVERNING TERMS: Use of this model is governed by the [CC-BY-4.0](https://creativecommons.org/licenses/by/4.0/legalcode.en) license.
80
+
81
+ ## <span style="color:#b37800;">Deployment Geography</span>
82
+
83
+ Global
84
+
85
+ ## <span style="color:#b37800;">Use case</span>
86
+
87
+ This model serves developers, researchers, academics, and industries building applications that require speech-to-text capabilities, including but not limited to: conversational AI, voice assistants, transcription services, subtitle generation, and voice analytics platforms.
88
+
89
+ ## <span style="color:#b37800;">Release Date</span>
90
+
91
+ 08/14/2025
92
+
93
+ ## <span style="color:#b37800;">Model Architecture</span>
94
+
95
+ `Canary-1b-v2` is an encoder-decoder architecture featuring a FastConformer Encoder \[3] and a Transformer Decoder \[4]. The model extracts audio features through the encoder and uses task-specific tokens—such as `<source language>` and `<target language>`—to guide the Transformer Decoder in generating text output.
96
+
97
+ It uses a unified SentencePiece Tokenizer \[5] with a vocabulary of **16,384 tokens**, optimized across all 25 supported languages. The architecture includes **32 encoder layers** and **8 decoder layers**, totaling **978 million parameters**.
98
+
99
+ For implementation details, see the [NeMo repository](https://github.com/NVIDIA/NeMo).
100
+
101
+
102
+ ## <span style="color:#b37800;">Input</span>
103
+ - **Input Type(s):** 16kHz Audio
104
+ - **Input Format(s):** `.wav` and `.flac` audio formats
105
+ - **Input Parameters:** 1D (audio signal)
106
+ - **Other Properties Related to Input:** Monochannel audio
107
+
108
+ ## <span style="color:#b37800;">Output</span>
109
+ - **Output Type(s):** Text
110
+ - **Output Format:** String
111
+ - **Output Parameters:** 1D (text)
112
+ - **Other Properties Related to Output:** Punctuation and Capitalization included.
113
+
114
+ Our AI models are designed and/or optimized to run on NVIDIA GPU-accelerated systems. By leveraging NVIDIA's hardware (e.g. GPU cores) and software frameworks (e.g., CUDA libraries), the model achieves faster training and inference times compared to CPU-only solutions.
115
+
116
+ ## <span style="color:#b37800;">How to Use This Model</span>
117
+
118
+
119
+ To train, fine-tune or play with the model you will need to install [NVIDIA NeMo](https://github.com/NVIDIA/NeMo) \[6]. We recommend you install it after you've installed latest PyTorch version.
120
+ ```bash
121
+ pip install -U nemo_toolkit['asr']
122
+ ```
123
+ The model is available for use in the NeMo toolkit [6], and can be used as a pre-trained checkpoint for inference or for fine-tuning on another dataset.
124
+
125
+ #### Automatically instantiate the model
126
+
127
+ ```python
128
+ from nemo.collections.asr import ASRModel
129
+ asr_ast_model = ASRModel.from_pretrained(model_name="nvidia/canary-1b-v2")
130
+ ```
131
+
132
+ #### Transcribing using Python
133
+ First, let's get a sample:
134
+ ```bash
135
+ wget https://dldata-public.s3.us-east-2.amazonaws.com/2086-149220-0033.wav
136
+ ```
137
+ Then simply do:
138
+ ```python
139
+ output = asr_ast_model.transcribe(['2086-149220-0033.wav'], source_lang='en', target_lang='en')
140
+ print(output[0].text)
141
+ ```
142
+
143
+ #### Translating using Python
144
+
145
+ Be sure to specify necessary `target_lang` for proper translation:
146
+
147
+ ```python
148
+ output = asr_ast_model.transcribe(['2086-149220-0033.wav'], source_lang='en', target_lang='fr')
149
+ print(output[0].text)
150
+ ```
151
+
152
+ #### Transcribing with timestamps
153
+
154
+ To transcribe with timestamps:
155
+ ```python
156
+ output = asr_model.transcribe(['2086-149220-0033.wav'], source_lang='en', target_lang='en', timestamps=True)
157
+ # by default, timestamps are enabled for word and segment level
158
+ word_timestamps = output[0].timestamp['word'] # word level timestamps for first sample
159
+ segment_timestamps = output[0].timestamp['segment'] # segment level timestamps
160
+
161
+ for stamp in segment_timestamps:
162
+ print(f"{stamp['start']}s - {stamp['end']}s : {stamp['segment']}")
163
+ ```
164
+
165
+ #### Translating with timestamps
166
+
167
+ To translate with timestamps:
168
+ ```python
169
+ output = asr_model.transcribe(['2086-149220-0033.wav'], source_lang='en', target_lang='fr', timestamps=True)
170
+
171
+ segment_timestamps = output[0].timestamp['segment'] # only supports segment level timestamps for translation
172
+
173
+ for stamp in segment_timestamps:
174
+ print(f"{stamp['start']}s - {stamp['end']}s : {stamp['segment']}")
175
+ ```
176
+
177
+ For translation task, please, refer to segment-level timestamps for getting intuitive and accurate alignment.
178
+
179
+
180
+ ## <span style="color:#b37800;">Software Integration</span>
181
+
182
+ **Runtime Engine(s):**
183
+
184
+ * NeMo 2.2
185
+
186
+ **Supported Hardware Microarchitecture Compatibility:**
187
+
188
+ * NVIDIA Ampere
189
+ * NVIDIA Blackwell
190
+ * NVIDIA Hopper
191
+
192
+ **\[Preferred/Supported] Operating System(s):**
193
+
194
+ * Linux
195
+
196
+ **Hardware Specific Requirements:**
197
+ At least 6GB RAM for model to load.
198
+
199
+ #### Model Version
200
+
201
+ Current version: `Canary-1b-v2`. Previous versions can be [accessed](https://huggingface.co/collections/nvidia/canary-65c3b83ff19b126a3ca62926) here.
202
+
203
+
204
+
205
+ ## <span style="color:#b37800;">Training and Evaluation Datasets</span>
206
+
207
+ ### Training
208
+
209
+ The model was trained using the NeMo toolkit \[4], following a 3-stage training procedure:
210
+
211
+ * Initialized from a 4-language ASR model
212
+ * Stage 1: Trained for 150,000 steps on X→En and English ASR tasks using 64 A100 GPUs
213
+ * Stage 2: Trained for 115,000 additional steps on the full dataset (ASR, X→En, En→X)
214
+ * Stage 3: Fine-tuned for 10,000 steps on a language-balanced high-quality subset of Granary and NeMo ASR Set 3.0
215
+
216
+ For all the stages of training, both languages and corpora are weighted using temperature sampling (τ = 0.5).
217
+
218
+ Training script: [speech\_to\_text\_aed.py](https://github.com/NVIDIA/NeMo/blob/main/examples/asr/speech_multitask/speech_to_text_aed.py)
219
+
220
+ Tokenizer script: [process\_asr\_text\_tokenizer.py](https://github.com/NVIDIA/NeMo/blob/main/scripts/tokenizers/process_asr_text_tokenizer.py)
221
+
222
+ ---
223
+
224
+ ### Training Dataset
225
+
226
+ `Canary-1b-v2` was trained on a massive multilingual speech recognition and translation dataset combining Nvidia's newly published [Granary](https://huggingface.co/datasets/nvidia/Granary) and in-house dataset NeMo ASR Set 3.0.
227
+
228
+ **Granary Dataset \[5] \[6] with improved pseudo-labels and efficiently filtered versions of the following corpora:**
229
+
230
+ * [YTC](https://huggingface.co/datasets/FBK-MT/mosel) \[7]
231
+ * [MOSEL](https://huggingface.co/datasets/FBK-MT/mosel) \[8]
232
+ * [YODAS](https://huggingface.co/datasets/espnet/yodas-granary) \[9]
233
+
234
+ Granary is now available on [Hugging Face](https://huggingface.co/datasets/nvidia/Granary).
235
+
236
+ To read more about the pseudo-labeling technique and [pipeline](https://github.com/NVIDIA/NeMo-speech-data-processor/tree/main/dataset_configs/multilingual/granary), please refer to the [Granary Paper](https://arxiv.org/abs/2505.13404).
237
+
238
+ **NeMo ASR Set 3.0 including human-labeled transcriptions from the following corpora:**
239
+
240
+ * Multilingual LibriSpeech (MLS)
241
+ * Mozilla Common Voice (v7.0)
242
+ * AMI (70 hrs)
243
+ * Fleurs
244
+ * LibriSpeech (960 hours)
245
+ * Fisher Corpus
246
+ * National Speech Corpus Part 1
247
+ * VCTK
248
+ * Europarl-ASR
249
+
250
+
251
+
252
+ **Total training hours:** 1.7M
253
+
254
+ * ASR: 660,000 hrs
255
+ * X→En: 360,000 hrs
256
+ * En→X: 690,000 hrs
257
+ * Non-speech: 36,000 hrs
258
+
259
+ All transcripts include punctuation and capitalization.
260
+
261
+
262
+ **Labels**: Hybrid (Human-labeled, Pseudo-Labeled)
263
+
264
+
265
+ ---
266
+
267
+ ### Evaluation Dataset
268
+
269
+ * Fleurs \[10], MLS \[11], CoVoST \[12]
270
+ * Hugging Face Open ASR Leaderboard \[13]
271
+ * Earnings-22 \[14], This American Life \[15] (long-form)
272
+ * MUSAN \[16]
273
+
274
+ **Labels**: Human-labeled
275
+
276
+ ## <span style="color:#b37800;">Benchmark Results</span>
277
+
278
+ This section reports the evaluation results of the ``Canary-1b-v2`` model across multiple tasks, including Automatic Speech Recognition (ASR), Speech Translation (AST), robustness to noise, and long-form transcription.
279
+
280
+ ---
281
+
282
+ ### Automatic Speech Recognition (ASR)
283
+
284
+ | **WER ↓** | Fleurs-25 Langs | CoVoST-13 Langs | MLS - 6 Langs |
285
+ | --------------- | -------------------- | -------------------- | ------------------ |
286
+ | **`Canary-1b-v2`** | 8.42% | 7.61% | 7.29% |
287
+
288
+
289
+ **Note:** Presented WERs do not include Punctuation and Capitalization errors.
290
+
291
+ ---
292
+
293
+ #### Hugging Face Open ASR Leaderboard
294
+
295
+ | **WER ↓** | **RTFx** | **Mean** | **AMI** | **GigaSpeech** | **LS Clean** | **LS Other** | **Earnings22** | **SPGISpech** | **Tedlium** | **Voxpopuli** |
296
+ |:-----------:|:------:|:------:|:------:|:------:|:------:|:------:|:------:|:------:|:------:|:------:|
297
+ | `Canary-1b-v2` | 749 | 7.15 | 16.01 | 10.82 | 2.18 | 3.56 | 11.79 | 2.28 | 4.29 | 6.25 |
298
+
299
+ More details on evaluation can be found at [HuggingFace ASR Leaderboard](https://huggingface.co/spaces/hf-audio/open_asr_leaderboard)
300
+
301
+ ---
302
+
303
+ ### Speech Translation (AST)
304
+
305
+ #### X → English
306
+
307
+ | | **COMET ↑** | | **BLEU ↑** | |
308
+ | --------------- | --------------- | --------------- | --------------- | -------------- |
309
+ | | Fleurs-24 Langs | CoVoST-13 Langs | Fleurs-24 Langs | CoVoST-13 Langs|
310
+ | **`Canary-1b-v2`** | 79.30 | 77.48 | 29.08 | 40.48 |
311
+
312
+
313
+
314
+ #### English → X
315
+
316
+ | | **COMET ↑** | | **BLEU ↑** | |
317
+ | --------------- | ------------- | --------------- | --------------- | -------------- |
318
+ | | Fleurs-24 Langs | CoVoST-5 Langs | Fleurs-24 Langs | CoVoST-5 Langs |
319
+ | **`Canary-1b-v2`** | 84.56 | 80.29 | 29.4 | 32.33 |
320
+
321
+ ---
322
+
323
+
324
+ ### Noise Robustness
325
+
326
+ Performance across different Signal-to-Noise Ratios (SNR) using MUSAN music and noise samples \[16] on the [LibriSpeech Clean test set](https://www.openslr.org/12).
327
+ **Metric**: Word Error Rate (**WER**)
328
+
329
+ | **SNR (dB)** | 100 | 50 | 25 | 15 | 10 | 5 | 0 | -5 |
330
+ | --------------- | ----- | ----- | ----- | ----- | ----- | ----- | ----- | ------ |
331
+ | **`Canary-1b-v2`** | 2.19% | 2.16% | 2.01% | 2.17% | 2.29% | 2.80% | 5.08% | 19.38% |
332
+
333
+
334
+ ### Hallucination Robustness
335
+ Number of characters per minute on [MUSAN](https://www.openslr.org/17) \[16] 48 hrs eval set:
336
+ | | **# of character per minute ↓** |
337
+ |:---------:|:----------:|
338
+ | **`Canary-1b-v2`** | 134.7 |
339
+
340
+
341
+ ---
342
+
343
+ ### Long-form Inference
344
+
345
+ `Canary-1b-v2` achieves strong performance on long-form transcription by using dynamic chunking with 1-second overlap between chunks, allowing for efficient parallel processing. This feature is automatically enabled when calling `.transcribe()` with `batch_size=1` on audio exceeding 40 seconds.
346
+
347
+ | **Dataset** | **WER ↓** |
348
+ | ----------------------- | --------- |
349
+ | Earnings-22 | TBD |
350
+ | This American Life | TBD |
351
+
352
+ **Note:** Presented WERs do not include Punctuation and Capitalization errors.
353
+
354
+
355
+ ---
356
+
357
+ ## <span style="color:#b37800;">Inference</span>
358
+
359
+ **Engine**:
360
+
361
+ * NVIDIA NeMo
362
+
363
+ **Test Hardware**:
364
+
365
+ * NVIDIA A10
366
+ * NVIDIA A100
367
+ * NVIDIA A30
368
+ * NVIDIA A5000
369
+ * NVIDIA H100
370
+ * NVIDIA L4
371
+ * NVIDIA L40
372
+
373
+ ---
374
+
375
+ ## <span style="color:#b37800;">Ethical Considerations</span>
376
+
377
+ NVIDIA believes Trustworthy AI is a shared responsibility and we have established policies and practices to enable development for a wide array of AI applications. When downloaded or used in accordance with our terms of service, developers should work with their supporting model team to ensure this model meets requirements for the relevant industry and use case and addresses unforeseen product misuse.
378
+
379
+ For more detailed information on ethical considerations for this model, please see the Model Card++ Explainability, Bias, Safety & Security, and Privacy Subcards [here](https://developer.nvidia.com/blog/enhancing-ai-transparency-and-ethical-considerations-with-model-card/).
380
+
381
+ Please report security vulnerabilities or NVIDIA AI Concerns [here](https://www.nvidia.com/en-us/support/submit-security-vulnerability/).
382
+
383
+ ## <span style="color:#b37800;">Bias:</span>
384
+
385
+ Field | Response
386
+ :---------------------------------------------------------------------------------------------------|:---------------:
387
+ Participation considerations from adversely impacted groups [protected classes](https://www.senate.ca.gov/content/protected-classes) in model design and testing | None
388
+ Measures taken to mitigate against unwanted bias | None
389
+
390
+ ## <span style="color:#b37800;">Explainability:</span>
391
+
392
+ Field | Response
393
+ :------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------:
394
+ Intended Domain | Speech to Text Transcription and Translation
395
+ Model Type | Attention Encoder-Decoder
396
+ Intended Users | This model is intended for developers, researchers, academics, and industries building conversational based applications.
397
+ Output | Text
398
+ Describe how the model works | Speech input is encoded into embeddings and passed into conformer-based model and output a text response.
399
+ Name the adversely impacted groups this has been tested to deliver comparable outcomes regardless of | Not Applicable
400
+ Technical Limitations & Mitigation | Transcripts and translations may be not 100% accurate. Accuracy varies based on source and target language and characteristics of input audio (Domain, Use Case, Accent, Noise, Speech Type, Context of speech, etc.)
401
+ Verified to have met prescribed NVIDIA quality standards | Yes
402
+ Performance Metrics | Word Error Rate (Speech Transcription) / BLEU score (Speech Translation) / COMET score (Speech Translation)
403
+ Potential Known Risks | If a word is not trained in the language model and not presented in vocabulary, the word is not likely to be recognized. Not recommended for word-for-word/incomplete sentences as accuracy varies based on the context of input text
404
+ Licensing | GOVERNING TERMS: Use of this model is governed by the [CC-BY-4.0](https://creativecommons.org/licenses/by/4.0/legalcode.en) license.
405
+
406
+ ## <span style="color:#b37800;">Privacy:</span>
407
+
408
+ Field | Response
409
+ :----------------------------------------------------------------------------------------------------------------------------------:|:-----------------------------------------------:
410
+ Generatable or reverse engineerable personal data? | None
411
+ Personal data used to create this model? | None
412
+ Is there provenance for all datasets used in training? | Yes
413
+ Does data labeling (annotation, metadata) comply with privacy laws? | Yes
414
+ Is data compliant with data subject requests for data correction or removal, if such a request was made? | No, not possible with externally-sourced data.
415
+ Applicable Privacy Policy | https://www.nvidia.com/en-us/about-nvidia/privacy-policy/
416
+
417
+ ## <span style="color:#b37800;">Safety:</span>
418
+
419
+ Field | Response
420
+ :---------------------------------------------------:|:----------------------------------
421
+ Model Application(s) | Speech to Text Transcription
422
+ Describe the life critical impact | None
423
+ Use Case Restrictions | Abide by [CC-BY-4.0](https://creativecommons.org/licenses/by/4.0/legalcode.en) License
424
+ Model and dataset restrictions | The Principle of least privilege (PoLP) is applied limiting access for dataset generation and model development. Restrictions enforce dataset access during training, and dataset license constraints adhered to.
425
+
426
+
427
+ ## <span style="color:#b37800;">References</span>
428
+
429
+ \[1] [Granary: Speech Recognition and Translation Dataset in 25 European Languages](https://arxiv.org/abs/2505.13404)
430
+
431
+ \[2] [NVIDIA Granary Dataset Card](https://huggingface.co/datasets/nvidia/Granary)
432
+
433
+ \[3] [Fast Conformer with Linearly Scalable Attention for Efficient Speech Recognition](https://arxiv.org/abs/2305.05084)
434
+
435
+ \[4] [Attention is All You Need](https://arxiv.org/abs/1706.03762)
436
+
437
+ \[5] [Google Sentencepiece Tokenizer](https://github.com/google/sentencepiece)
438
+
439
+ \[6] [NVIDIA NeMo Toolkit](https://github.com/NVIDIA/NeMo)
440
+
441
+ \[7] [Youtube-Commons](https://huggingface.co/datasets/PleIAs/YouTube-Commons)
442
+
443
+ \[8] [MOSEL: 950,000 Hours of Speech Data for Open-Source Speech Foundation Model Training on EU Languages](https://arxiv.org/abs/2410.01036)
444
+
445
+ \[9] [YODAS: Youtube-Oriented Dataset for Audio and Speech](https://arxiv.org/pdf/2406.00899)
446
+
447
+ \[10] [FLEURS: Few-shot Learning Evaluation of Universal Representations of Speech](https://arxiv.org/abs/2205.12446)
448
+
449
+ \[11] [MLS: A Large-Scale Multilingual Dataset for Speech Research](https://arxiv.org/abs/2012.03411)
450
+
451
+ \[12] [CoVoST 2 and Massively Multilingual Speech-to-Text Translation](https://arxiv.org/abs/2007.10310)
452
+
453
+ \[13] [HuggingFace Open ASR Leaderboard](https://huggingface.co/spaces/hf-audio/open_asr_leaderboard)
454
+
455
+ \[14] [Earnings-22 Benchmark](https://github.com/revdotcom/speech-datasets/tree/main/earnings22)
456
+
457
+ \[15] [Speech Recognition and Multi-Speaker Diarization of Long Conversations](https://arxiv.org/abs/2005.08072)
458
+
459
+ \[16] [MUSAN: A Music, Speech, and Noise Corpus](https://arxiv.org/abs/1510.08484)