|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | from enum import Enum | 
					
						
						|  | from functools import partial | 
					
						
						|  | import logging | 
					
						
						|  | import math | 
					
						
						|  | import os | 
					
						
						|  | import sys | 
					
						
						|  | from typing import Any, Callable, Dict, List, Optional, Sequence, Tuple, Union | 
					
						
						|  | import warnings | 
					
						
						|  |  | 
					
						
						|  | import torch | 
					
						
						|  | from torch import nn | 
					
						
						|  | from torch.nn import functional as F | 
					
						
						|  | from torch.nn.init import trunc_normal_ | 
					
						
						|  |  | 
					
						
						|  | _torch_has_sdpa = hasattr(F, 'scaled_dot_product_attention') | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | XFORMERS_ENABLED = os.environ.get("XFORMERS_DISABLED") is None | 
					
						
						|  | try: | 
					
						
						|  | if XFORMERS_ENABLED: | 
					
						
						|  | from xformers.ops import fmha, scaled_index_add, index_select_cat, SwiGLU, memory_efficient_attention, unbind | 
					
						
						|  |  | 
					
						
						|  | XFORMERS_AVAILABLE = True | 
					
						
						|  | else: | 
					
						
						|  | raise ImportError | 
					
						
						|  | except ImportError: | 
					
						
						|  | XFORMERS_AVAILABLE = False | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def make_2tuple(x): | 
					
						
						|  | if isinstance(x, tuple): | 
					
						
						|  | assert len(x) == 2 | 
					
						
						|  | return x | 
					
						
						|  |  | 
					
						
						|  | assert isinstance(x, int) | 
					
						
						|  | return (x, x) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class PatchEmbed(nn.Module): | 
					
						
						|  | """ | 
					
						
						|  | 2D image to patch embedding: (B,C,H,W) -> (B,N,D) | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | img_size: Image size. | 
					
						
						|  | patch_size: Patch token size. | 
					
						
						|  | in_chans: Number of input image channels. | 
					
						
						|  | embed_dim: Number of linear projection output channels. | 
					
						
						|  | norm_layer: Normalization layer. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | img_size: Union[int, Tuple[int, int]] = 224, | 
					
						
						|  | patch_size: Union[int, Tuple[int, int]] = 16, | 
					
						
						|  | in_chans: int = 3, | 
					
						
						|  | embed_dim: int = 768, | 
					
						
						|  | norm_layer: Optional[Callable] = None, | 
					
						
						|  | flatten_embedding: bool = True, | 
					
						
						|  | ) -> None: | 
					
						
						|  | super().__init__() | 
					
						
						|  |  | 
					
						
						|  | image_HW = make_2tuple(img_size) | 
					
						
						|  | patch_HW = make_2tuple(patch_size) | 
					
						
						|  | patch_grid_size = ( | 
					
						
						|  | image_HW[0] // patch_HW[0], | 
					
						
						|  | image_HW[1] // patch_HW[1], | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | self.img_size = image_HW | 
					
						
						|  | self.patch_size = patch_HW | 
					
						
						|  | self.patches_resolution = patch_grid_size | 
					
						
						|  | self.num_patches = patch_grid_size[0] * patch_grid_size[1] | 
					
						
						|  |  | 
					
						
						|  | self.in_chans = in_chans | 
					
						
						|  | self.embed_dim = embed_dim | 
					
						
						|  |  | 
					
						
						|  | self.flatten_embedding = flatten_embedding | 
					
						
						|  |  | 
					
						
						|  | self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_HW, stride=patch_HW) | 
					
						
						|  | self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity() | 
					
						
						|  |  | 
					
						
						|  | def forward(self, x: torch.Tensor) -> torch.Tensor: | 
					
						
						|  | _, _, H, W = x.shape | 
					
						
						|  | patch_H, patch_W = self.patch_size | 
					
						
						|  |  | 
					
						
						|  | assert H % patch_H == 0, f"Input image height {H} is not a multiple of patch height {patch_H}" | 
					
						
						|  | assert W % patch_W == 0, f"Input image width {W} is not a multiple of patch width: {patch_W}" | 
					
						
						|  |  | 
					
						
						|  | x = self.proj(x) | 
					
						
						|  | H, W = x.size(2), x.size(3) | 
					
						
						|  | x = x.flatten(2).transpose(1, 2) | 
					
						
						|  | x = self.norm(x) | 
					
						
						|  | if not self.flatten_embedding: | 
					
						
						|  | x = x.reshape(-1, H, W, self.embed_dim) | 
					
						
						|  | return x | 
					
						
						|  |  | 
					
						
						|  | def flops(self) -> float: | 
					
						
						|  | Ho, Wo = self.patches_resolution | 
					
						
						|  | flops = Ho * Wo * self.embed_dim * self.in_chans * (self.patch_size[0] * self.patch_size[1]) | 
					
						
						|  | if self.norm is not None: | 
					
						
						|  | flops += Ho * Wo * self.embed_dim | 
					
						
						|  | return flops | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class Attention(nn.Module): | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | dim: int, | 
					
						
						|  | num_heads: int = 8, | 
					
						
						|  | qkv_bias: bool = False, | 
					
						
						|  | proj_bias: bool = True, | 
					
						
						|  | attn_drop: float = 0.0, | 
					
						
						|  | proj_drop: float = 0.0, | 
					
						
						|  | ) -> None: | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.num_heads = num_heads | 
					
						
						|  | head_dim = dim // num_heads | 
					
						
						|  | self.scale = head_dim**-0.5 | 
					
						
						|  |  | 
					
						
						|  | self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) | 
					
						
						|  | self.attn_drop = nn.Dropout(attn_drop) | 
					
						
						|  | self.proj = nn.Linear(dim, dim, bias=proj_bias) | 
					
						
						|  | self.proj_drop = nn.Dropout(proj_drop) | 
					
						
						|  |  | 
					
						
						|  | def forward(self, x: torch.Tensor) -> torch.Tensor: | 
					
						
						|  | B, N, C = x.shape | 
					
						
						|  | qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) | 
					
						
						|  |  | 
					
						
						|  | q, k, v = qkv[0], qkv[1], qkv[2] | 
					
						
						|  | if _torch_has_sdpa: | 
					
						
						|  | x = F.scaled_dot_product_attention( | 
					
						
						|  | q, k, v, | 
					
						
						|  | is_causal=False, | 
					
						
						|  | dropout_p=self.attn_drop.p if self.training else 0., | 
					
						
						|  | scale=self.scale, | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | q = q * self.scale | 
					
						
						|  | attn = q @ k.transpose(-2, -1) | 
					
						
						|  |  | 
					
						
						|  | attn = attn.softmax(dim=-1) | 
					
						
						|  | attn = self.attn_drop(attn) | 
					
						
						|  | x = attn @ v | 
					
						
						|  |  | 
					
						
						|  | x = x.transpose(1, 2).reshape(B, N, C) | 
					
						
						|  | x = self.proj(x) | 
					
						
						|  | x = self.proj_drop(x) | 
					
						
						|  | return x | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class MemEffAttention(Attention): | 
					
						
						|  | def forward(self, x: torch.Tensor, attn_bias=None) -> torch.Tensor: | 
					
						
						|  | if not XFORMERS_AVAILABLE: | 
					
						
						|  | if attn_bias is not None: | 
					
						
						|  | raise AssertionError("xFormers is required for using nested tensors") | 
					
						
						|  | return super().forward(x) | 
					
						
						|  |  | 
					
						
						|  | B, N, C = x.shape | 
					
						
						|  | qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads) | 
					
						
						|  |  | 
					
						
						|  | q, k, v = unbind(qkv, 2) | 
					
						
						|  |  | 
					
						
						|  | x = memory_efficient_attention(q, k, v, attn_bias=attn_bias) | 
					
						
						|  | x = x.reshape([B, N, C]) | 
					
						
						|  |  | 
					
						
						|  | x = self.proj(x) | 
					
						
						|  | x = self.proj_drop(x) | 
					
						
						|  | return x | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class Mlp(nn.Module): | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | in_features: int, | 
					
						
						|  | hidden_features: Optional[int] = None, | 
					
						
						|  | out_features: Optional[int] = None, | 
					
						
						|  | act_layer: Callable[..., nn.Module] = nn.GELU, | 
					
						
						|  | drop: float = 0.0, | 
					
						
						|  | bias: bool = True, | 
					
						
						|  | ) -> None: | 
					
						
						|  | super().__init__() | 
					
						
						|  | out_features = out_features or in_features | 
					
						
						|  | hidden_features = hidden_features or in_features | 
					
						
						|  | self.fc1 = nn.Linear(in_features, hidden_features, bias=bias) | 
					
						
						|  | self.act = act_layer() | 
					
						
						|  | self.fc2 = nn.Linear(hidden_features, out_features, bias=bias) | 
					
						
						|  | self.drop = nn.Dropout(drop) | 
					
						
						|  |  | 
					
						
						|  | def forward(self, x: torch.Tensor) -> torch.Tensor: | 
					
						
						|  | x = self.fc1(x) | 
					
						
						|  | x = self.act(x) | 
					
						
						|  | x = self.drop(x) | 
					
						
						|  | x = self.fc2(x) | 
					
						
						|  | x = self.drop(x) | 
					
						
						|  | return x | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class SwiGLUFFN(nn.Module): | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | in_features: int, | 
					
						
						|  | hidden_features: Optional[int] = None, | 
					
						
						|  | out_features: Optional[int] = None, | 
					
						
						|  | act_layer: Callable[..., nn.Module] = None, | 
					
						
						|  | drop: float = 0.0, | 
					
						
						|  | bias: bool = True, | 
					
						
						|  | ) -> None: | 
					
						
						|  | super().__init__() | 
					
						
						|  | out_features = out_features or in_features | 
					
						
						|  | hidden_features = hidden_features or in_features | 
					
						
						|  | self.w12 = nn.Linear(in_features, 2 * hidden_features, bias=bias) | 
					
						
						|  | self.w3 = nn.Linear(hidden_features, out_features, bias=bias) | 
					
						
						|  |  | 
					
						
						|  | def forward(self, x: torch.Tensor) -> torch.Tensor: | 
					
						
						|  | x12 = self.w12(x) | 
					
						
						|  | x1, x2 = x12.chunk(2, dim=-1) | 
					
						
						|  | hidden = F.silu(x1) * x2 | 
					
						
						|  | return self.w3(hidden) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if not XFORMERS_AVAILABLE: | 
					
						
						|  | SwiGLU = SwiGLUFFN | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class SwiGLUFFNFused(SwiGLU): | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | in_features: int, | 
					
						
						|  | hidden_features: Optional[int] = None, | 
					
						
						|  | out_features: Optional[int] = None, | 
					
						
						|  | act_layer: Callable[..., nn.Module] = None, | 
					
						
						|  | drop: float = 0.0, | 
					
						
						|  | bias: bool = True, | 
					
						
						|  | ) -> None: | 
					
						
						|  | out_features = out_features or in_features | 
					
						
						|  | hidden_features = hidden_features or in_features | 
					
						
						|  | hidden_features = (int(hidden_features * 2 / 3) + 7) // 8 * 8 | 
					
						
						|  | super().__init__( | 
					
						
						|  | in_features=in_features, | 
					
						
						|  | hidden_features=hidden_features, | 
					
						
						|  | out_features=out_features, | 
					
						
						|  | bias=bias, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def drop_path(x, drop_prob: float = 0.0, training: bool = False): | 
					
						
						|  | if drop_prob == 0.0 or not training: | 
					
						
						|  | return x | 
					
						
						|  | keep_prob = 1 - drop_prob | 
					
						
						|  | shape = (x.shape[0],) + (1,) * (x.ndim - 1) | 
					
						
						|  | random_tensor = x.new_empty(shape).bernoulli_(keep_prob) | 
					
						
						|  | if keep_prob > 0.0: | 
					
						
						|  | random_tensor.div_(keep_prob) | 
					
						
						|  | output = x * random_tensor | 
					
						
						|  | return output | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class DropPath(nn.Module): | 
					
						
						|  | """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).""" | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, drop_prob=None): | 
					
						
						|  | super(DropPath, self).__init__() | 
					
						
						|  | self.drop_prob = drop_prob | 
					
						
						|  |  | 
					
						
						|  | def forward(self, x): | 
					
						
						|  | return drop_path(x, self.drop_prob, self.training) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class LayerScale(nn.Module): | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | dim: int, | 
					
						
						|  | init_values: Union[float, torch.Tensor] = 1e-5, | 
					
						
						|  | inplace: bool = False, | 
					
						
						|  | ) -> None: | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.inplace = inplace | 
					
						
						|  | self.grandma = nn.Parameter(init_values * torch.ones(dim)) | 
					
						
						|  |  | 
					
						
						|  | def forward(self, x: torch.Tensor) -> torch.Tensor: | 
					
						
						|  | return x.mul_(self.grandma) if self.inplace else x * self.grandma | 
					
						
						|  |  | 
					
						
						|  | def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs): | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | key_a = f'{prefix}gamma' | 
					
						
						|  | key_b = f'{prefix}grandma' | 
					
						
						|  | if key_a in state_dict: | 
					
						
						|  | gamma = state_dict[key_a] | 
					
						
						|  | elif key_b in state_dict: | 
					
						
						|  | gamma = state_dict[key_b] | 
					
						
						|  | else: | 
					
						
						|  | if strict: | 
					
						
						|  | raise KeyError(f"Couldn't find the key {key_a} nor {key_b} in the state dict!") | 
					
						
						|  | else: | 
					
						
						|  | missing_keys.append(key_a) | 
					
						
						|  | missing_keys.append(key_b) | 
					
						
						|  | unexpected_keys.extend(state_dict.keys()) | 
					
						
						|  | gamma = None | 
					
						
						|  |  | 
					
						
						|  | if gamma is not None: | 
					
						
						|  | self.grandma.data.copy_(gamma) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class Block(nn.Module): | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | dim: int, | 
					
						
						|  | num_heads: int, | 
					
						
						|  | mlp_ratio: float = 4.0, | 
					
						
						|  | qkv_bias: bool = False, | 
					
						
						|  | proj_bias: bool = True, | 
					
						
						|  | ffn_bias: bool = True, | 
					
						
						|  | drop: float = 0.0, | 
					
						
						|  | attn_drop: float = 0.0, | 
					
						
						|  | init_values=None, | 
					
						
						|  | drop_path: float = 0.0, | 
					
						
						|  | act_layer: Callable[..., nn.Module] = nn.GELU, | 
					
						
						|  | norm_layer: Callable[..., nn.Module] = nn.LayerNorm, | 
					
						
						|  | attn_class: Callable[..., nn.Module] = Attention, | 
					
						
						|  | ffn_layer: Callable[..., nn.Module] = Mlp, | 
					
						
						|  | ) -> None: | 
					
						
						|  | super().__init__() | 
					
						
						|  |  | 
					
						
						|  | self.norm1 = norm_layer(dim) | 
					
						
						|  | self.attn = attn_class( | 
					
						
						|  | dim, | 
					
						
						|  | num_heads=num_heads, | 
					
						
						|  | qkv_bias=qkv_bias, | 
					
						
						|  | proj_bias=proj_bias, | 
					
						
						|  | attn_drop=attn_drop, | 
					
						
						|  | proj_drop=drop, | 
					
						
						|  | ) | 
					
						
						|  | self.ls1 = LayerScale(dim, init_values=init_values) if init_values else nn.Identity() | 
					
						
						|  | self.drop_path1 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() | 
					
						
						|  |  | 
					
						
						|  | self.norm2 = norm_layer(dim) | 
					
						
						|  | mlp_hidden_dim = int(dim * mlp_ratio) | 
					
						
						|  | self.mlp = ffn_layer( | 
					
						
						|  | in_features=dim, | 
					
						
						|  | hidden_features=mlp_hidden_dim, | 
					
						
						|  | act_layer=act_layer, | 
					
						
						|  | drop=drop, | 
					
						
						|  | bias=ffn_bias, | 
					
						
						|  | ) | 
					
						
						|  | self.ls2 = LayerScale(dim, init_values=init_values) if init_values else nn.Identity() | 
					
						
						|  | self.drop_path2 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() | 
					
						
						|  |  | 
					
						
						|  | self.sample_drop_ratio = drop_path | 
					
						
						|  |  | 
					
						
						|  | def forward(self, x: torch.Tensor) -> torch.Tensor: | 
					
						
						|  | def attn_residual_func(x: torch.Tensor) -> torch.Tensor: | 
					
						
						|  | return self.ls1(self.attn(self.norm1(x))) | 
					
						
						|  |  | 
					
						
						|  | def ffn_residual_func(x: torch.Tensor) -> torch.Tensor: | 
					
						
						|  | return self.ls2(self.mlp(self.norm2(x))) | 
					
						
						|  |  | 
					
						
						|  | if self.training and self.sample_drop_ratio > 0.1: | 
					
						
						|  |  | 
					
						
						|  | x = drop_add_residual_stochastic_depth( | 
					
						
						|  | x, | 
					
						
						|  | residual_func=attn_residual_func, | 
					
						
						|  | sample_drop_ratio=self.sample_drop_ratio, | 
					
						
						|  | ) | 
					
						
						|  | x = drop_add_residual_stochastic_depth( | 
					
						
						|  | x, | 
					
						
						|  | residual_func=ffn_residual_func, | 
					
						
						|  | sample_drop_ratio=self.sample_drop_ratio, | 
					
						
						|  | ) | 
					
						
						|  | elif self.training and self.sample_drop_ratio > 0.0: | 
					
						
						|  | x = x + self.drop_path1(attn_residual_func(x)) | 
					
						
						|  | x = x + self.drop_path1(ffn_residual_func(x)) | 
					
						
						|  | else: | 
					
						
						|  | x = x + attn_residual_func(x) | 
					
						
						|  | x = x + ffn_residual_func(x) | 
					
						
						|  | return x | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class NestedTensorBlock(Block): | 
					
						
						|  | def forward_nested(self, x_list: List[torch.Tensor]) -> List[torch.Tensor]: | 
					
						
						|  | """ | 
					
						
						|  | x_list contains a list of tensors to nest together and run | 
					
						
						|  | """ | 
					
						
						|  | assert isinstance(self.attn, MemEffAttention) | 
					
						
						|  |  | 
					
						
						|  | if self.training and self.sample_drop_ratio > 0.0: | 
					
						
						|  |  | 
					
						
						|  | def attn_residual_func(x: torch.Tensor, attn_bias=None) -> torch.Tensor: | 
					
						
						|  | return self.attn(self.norm1(x), attn_bias=attn_bias) | 
					
						
						|  |  | 
					
						
						|  | def ffn_residual_func(x: torch.Tensor, attn_bias=None) -> torch.Tensor: | 
					
						
						|  | return self.mlp(self.norm2(x)) | 
					
						
						|  |  | 
					
						
						|  | x_list = drop_add_residual_stochastic_depth_list( | 
					
						
						|  | x_list, | 
					
						
						|  | residual_func=attn_residual_func, | 
					
						
						|  | sample_drop_ratio=self.sample_drop_ratio, | 
					
						
						|  | scaling_vector=self.ls1.grandma if isinstance(self.ls1, LayerScale) else None, | 
					
						
						|  | ) | 
					
						
						|  | x_list = drop_add_residual_stochastic_depth_list( | 
					
						
						|  | x_list, | 
					
						
						|  | residual_func=ffn_residual_func, | 
					
						
						|  | sample_drop_ratio=self.sample_drop_ratio, | 
					
						
						|  | scaling_vector=self.ls2.grandma if isinstance(self.ls1, LayerScale) else None, | 
					
						
						|  | ) | 
					
						
						|  | return x_list | 
					
						
						|  | else: | 
					
						
						|  |  | 
					
						
						|  | def attn_residual_func(x: torch.Tensor, attn_bias=None) -> torch.Tensor: | 
					
						
						|  | return self.ls1(self.attn(self.norm1(x), attn_bias=attn_bias)) | 
					
						
						|  |  | 
					
						
						|  | def ffn_residual_func(x: torch.Tensor, attn_bias=None) -> torch.Tensor: | 
					
						
						|  | return self.ls2(self.mlp(self.norm2(x))) | 
					
						
						|  |  | 
					
						
						|  | attn_bias, x = get_attn_bias_and_cat(x_list) | 
					
						
						|  | x = x + attn_residual_func(x, attn_bias=attn_bias) | 
					
						
						|  | x = x + ffn_residual_func(x) | 
					
						
						|  | return attn_bias.split(x) | 
					
						
						|  |  | 
					
						
						|  | def forward(self, x_or_x_list): | 
					
						
						|  | if isinstance(x_or_x_list, torch.Tensor): | 
					
						
						|  | return super().forward(x_or_x_list) | 
					
						
						|  | elif isinstance(x_or_x_list, list): | 
					
						
						|  | if not XFORMERS_AVAILABLE: | 
					
						
						|  | raise AssertionError("xFormers is required for using nested tensors") | 
					
						
						|  | return self.forward_nested(x_or_x_list) | 
					
						
						|  | else: | 
					
						
						|  | raise AssertionError | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def drop_add_residual_stochastic_depth( | 
					
						
						|  | x: torch.Tensor, | 
					
						
						|  | residual_func: Callable[[torch.Tensor], torch.Tensor], | 
					
						
						|  | sample_drop_ratio: float = 0.0, | 
					
						
						|  | ) -> torch.Tensor: | 
					
						
						|  |  | 
					
						
						|  | b, n, d = x.shape | 
					
						
						|  | sample_subset_size = max(int(b * (1 - sample_drop_ratio)), 1) | 
					
						
						|  | brange = (torch.randperm(b, device=x.device))[:sample_subset_size] | 
					
						
						|  | x_subset = x[brange] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | residual = residual_func(x_subset) | 
					
						
						|  |  | 
					
						
						|  | x_flat = x.flatten(1) | 
					
						
						|  | residual = residual.flatten(1) | 
					
						
						|  |  | 
					
						
						|  | residual_scale_factor = b / sample_subset_size | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | x_plus_residual = torch.index_add(x_flat, 0, brange, residual.to(dtype=x.dtype), alpha=residual_scale_factor) | 
					
						
						|  | return x_plus_residual.view_as(x) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def get_branges_scales(x, sample_drop_ratio=0.0): | 
					
						
						|  | b, n, d = x.shape | 
					
						
						|  | sample_subset_size = max(int(b * (1 - sample_drop_ratio)), 1) | 
					
						
						|  | brange = (torch.randperm(b, device=x.device))[:sample_subset_size] | 
					
						
						|  | residual_scale_factor = b / sample_subset_size | 
					
						
						|  | return brange, residual_scale_factor | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def add_residual(x, brange, residual, residual_scale_factor, scaling_vector=None): | 
					
						
						|  | if scaling_vector is None: | 
					
						
						|  | x_flat = x.flatten(1) | 
					
						
						|  | residual = residual.flatten(1) | 
					
						
						|  | x_plus_residual = torch.index_add(x_flat, 0, brange, residual.to(dtype=x.dtype), alpha=residual_scale_factor) | 
					
						
						|  | else: | 
					
						
						|  | x_plus_residual = scaled_index_add( | 
					
						
						|  | x, brange, residual.to(dtype=x.dtype), scaling=scaling_vector, alpha=residual_scale_factor | 
					
						
						|  | ) | 
					
						
						|  | return x_plus_residual | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | attn_bias_cache: Dict[Tuple, Any] = {} | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def get_attn_bias_and_cat(x_list, branges=None): | 
					
						
						|  | """ | 
					
						
						|  | this will perform the index select, cat the tensors, and provide the attn_bias from cache | 
					
						
						|  | """ | 
					
						
						|  | batch_sizes = [b.shape[0] for b in branges] if branges is not None else [x.shape[0] for x in x_list] | 
					
						
						|  | all_shapes = tuple((b, x.shape[1]) for b, x in zip(batch_sizes, x_list)) | 
					
						
						|  | if all_shapes not in attn_bias_cache.keys(): | 
					
						
						|  | seqlens = [] | 
					
						
						|  | for b, x in zip(batch_sizes, x_list): | 
					
						
						|  | for _ in range(b): | 
					
						
						|  | seqlens.append(x.shape[1]) | 
					
						
						|  | attn_bias = fmha.BlockDiagonalMask.from_seqlens(seqlens) | 
					
						
						|  | attn_bias._batch_sizes = batch_sizes | 
					
						
						|  | attn_bias_cache[all_shapes] = attn_bias | 
					
						
						|  |  | 
					
						
						|  | if branges is not None: | 
					
						
						|  | cat_tensors = index_select_cat([x.flatten(1) for x in x_list], branges).view(1, -1, x_list[0].shape[-1]) | 
					
						
						|  | else: | 
					
						
						|  | tensors_bs1 = tuple(x.reshape([1, -1, *x.shape[2:]]) for x in x_list) | 
					
						
						|  | cat_tensors = torch.cat(tensors_bs1, dim=1) | 
					
						
						|  |  | 
					
						
						|  | return attn_bias_cache[all_shapes], cat_tensors | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def drop_add_residual_stochastic_depth_list( | 
					
						
						|  | x_list: List[torch.Tensor], | 
					
						
						|  | residual_func: Callable[[torch.Tensor, Any], torch.Tensor], | 
					
						
						|  | sample_drop_ratio: float = 0.0, | 
					
						
						|  | scaling_vector=None, | 
					
						
						|  | ) -> torch.Tensor: | 
					
						
						|  |  | 
					
						
						|  | branges_scales = [get_branges_scales(x, sample_drop_ratio=sample_drop_ratio) for x in x_list] | 
					
						
						|  | branges = [s[0] for s in branges_scales] | 
					
						
						|  | residual_scale_factors = [s[1] for s in branges_scales] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | attn_bias, x_cat = get_attn_bias_and_cat(x_list, branges) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | residual_list = attn_bias.split(residual_func(x_cat, attn_bias=attn_bias)) | 
					
						
						|  |  | 
					
						
						|  | outputs = [] | 
					
						
						|  | for x, brange, residual, residual_scale_factor in zip(x_list, branges, residual_list, residual_scale_factors): | 
					
						
						|  | outputs.append(add_residual(x, brange, residual, residual_scale_factor, scaling_vector).view_as(x)) | 
					
						
						|  | return outputs | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def named_apply(fn: Callable, module: nn.Module, name="", depth_first=True, include_root=False) -> nn.Module: | 
					
						
						|  | if not depth_first and include_root: | 
					
						
						|  | fn(module=module, name=name) | 
					
						
						|  | for child_name, child_module in module.named_children(): | 
					
						
						|  | child_name = ".".join((name, child_name)) if name else child_name | 
					
						
						|  | named_apply(fn=fn, module=child_module, name=child_name, depth_first=depth_first, include_root=True) | 
					
						
						|  | if depth_first and include_root: | 
					
						
						|  | fn(module=module, name=name) | 
					
						
						|  | return module | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class BlockChunk(nn.ModuleList): | 
					
						
						|  | def forward(self, x): | 
					
						
						|  | for b in self: | 
					
						
						|  | x = b(x) | 
					
						
						|  | return x | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class DinoVisionTransformer(nn.Module): | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | img_size=224, | 
					
						
						|  | patch_size=16, | 
					
						
						|  | in_chans=3, | 
					
						
						|  | embed_dim=768, | 
					
						
						|  | depth=12, | 
					
						
						|  | num_heads=12, | 
					
						
						|  | mlp_ratio=4.0, | 
					
						
						|  | qkv_bias=True, | 
					
						
						|  | ffn_bias=True, | 
					
						
						|  | proj_bias=True, | 
					
						
						|  | drop_path_rate=0.0, | 
					
						
						|  | drop_path_uniform=False, | 
					
						
						|  | init_values=None, | 
					
						
						|  | embed_layer=PatchEmbed, | 
					
						
						|  | act_layer=nn.GELU, | 
					
						
						|  | block_fn=Block, | 
					
						
						|  | ffn_layer="mlp", | 
					
						
						|  | block_chunks=1, | 
					
						
						|  | num_register_tokens=0, | 
					
						
						|  | interpolate_antialias=False, | 
					
						
						|  | interpolate_offset=0.1, | 
					
						
						|  | ): | 
					
						
						|  | """ | 
					
						
						|  | Args: | 
					
						
						|  | img_size (int, tuple): input image size | 
					
						
						|  | patch_size (int, tuple): patch size | 
					
						
						|  | in_chans (int): number of input channels | 
					
						
						|  | embed_dim (int): embedding dimension | 
					
						
						|  | depth (int): depth of transformer | 
					
						
						|  | num_heads (int): number of attention heads | 
					
						
						|  | mlp_ratio (int): ratio of mlp hidden dim to embedding dim | 
					
						
						|  | qkv_bias (bool): enable bias for qkv if True | 
					
						
						|  | proj_bias (bool): enable bias for proj in attn if True | 
					
						
						|  | ffn_bias (bool): enable bias for ffn if True | 
					
						
						|  | drop_path_rate (float): stochastic depth rate | 
					
						
						|  | drop_path_uniform (bool): apply uniform drop rate across blocks | 
					
						
						|  | weight_init (str): weight init scheme | 
					
						
						|  | init_values (float): layer-scale init values | 
					
						
						|  | embed_layer (nn.Module): patch embedding layer | 
					
						
						|  | act_layer (nn.Module): MLP activation layer | 
					
						
						|  | block_fn (nn.Module): transformer block class | 
					
						
						|  | ffn_layer (str): "mlp", "swiglu", "swiglufused" or "identity" | 
					
						
						|  | block_chunks: (int) split block sequence into block_chunks units for FSDP wrap | 
					
						
						|  | num_register_tokens: (int) number of extra cls tokens (so-called "registers") | 
					
						
						|  | interpolate_antialias: (str) flag to apply anti-aliasing when interpolating positional embeddings | 
					
						
						|  | interpolate_offset: (float) work-around offset to apply when interpolating positional embeddings | 
					
						
						|  | """ | 
					
						
						|  | super().__init__() | 
					
						
						|  | norm_layer = partial(nn.LayerNorm, eps=1e-6) | 
					
						
						|  |  | 
					
						
						|  | self.num_features = self.embed_dim = embed_dim | 
					
						
						|  | self.num_tokens = 1 | 
					
						
						|  | self.n_blocks = depth | 
					
						
						|  | self.num_heads = num_heads | 
					
						
						|  | self.patch_size = patch_size | 
					
						
						|  | self.num_register_tokens = num_register_tokens | 
					
						
						|  | self.interpolate_antialias = interpolate_antialias | 
					
						
						|  | self.interpolate_offset = interpolate_offset | 
					
						
						|  |  | 
					
						
						|  | self.patch_embed = embed_layer(img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim) | 
					
						
						|  | num_patches = self.patch_embed.num_patches | 
					
						
						|  |  | 
					
						
						|  | self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) | 
					
						
						|  | self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + self.num_tokens, embed_dim)) | 
					
						
						|  | assert num_register_tokens >= 0 | 
					
						
						|  | self.register_tokens = ( | 
					
						
						|  | nn.Parameter(torch.zeros(1, num_register_tokens, embed_dim)) if num_register_tokens else None | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if drop_path_uniform is True: | 
					
						
						|  | dpr = [drop_path_rate] * depth | 
					
						
						|  | else: | 
					
						
						|  | dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] | 
					
						
						|  |  | 
					
						
						|  | if ffn_layer == "mlp": | 
					
						
						|  | ffn_layer = Mlp | 
					
						
						|  | elif ffn_layer == "swiglufused" or ffn_layer == "swiglu": | 
					
						
						|  | ffn_layer = SwiGLUFFNFused | 
					
						
						|  | elif ffn_layer == "identity": | 
					
						
						|  | def f(*args, **kwargs): | 
					
						
						|  | return nn.Identity() | 
					
						
						|  |  | 
					
						
						|  | ffn_layer = f | 
					
						
						|  | else: | 
					
						
						|  | raise NotImplementedError | 
					
						
						|  |  | 
					
						
						|  | blocks_list = [ | 
					
						
						|  | block_fn( | 
					
						
						|  | dim=embed_dim, | 
					
						
						|  | num_heads=num_heads, | 
					
						
						|  | mlp_ratio=mlp_ratio, | 
					
						
						|  | qkv_bias=qkv_bias, | 
					
						
						|  | proj_bias=proj_bias, | 
					
						
						|  | ffn_bias=ffn_bias, | 
					
						
						|  | drop_path=dpr[i], | 
					
						
						|  | norm_layer=norm_layer, | 
					
						
						|  | act_layer=act_layer, | 
					
						
						|  | ffn_layer=ffn_layer, | 
					
						
						|  | init_values=init_values, | 
					
						
						|  | ) | 
					
						
						|  | for i in range(depth) | 
					
						
						|  | ] | 
					
						
						|  | if block_chunks > 0: | 
					
						
						|  | self.chunked_blocks = True | 
					
						
						|  | chunked_blocks = [] | 
					
						
						|  | chunksize = depth // block_chunks | 
					
						
						|  | for i in range(0, depth, chunksize): | 
					
						
						|  |  | 
					
						
						|  | chunked_blocks.append([nn.Identity()] * i + blocks_list[i : i + chunksize]) | 
					
						
						|  | self.blocks = nn.ModuleList([BlockChunk(p) for p in chunked_blocks]) | 
					
						
						|  | else: | 
					
						
						|  | self.chunked_blocks = False | 
					
						
						|  | self.blocks = nn.ModuleList(blocks_list) | 
					
						
						|  |  | 
					
						
						|  | self.norm = norm_layer(embed_dim) | 
					
						
						|  | self.head = nn.Identity() | 
					
						
						|  |  | 
					
						
						|  | self.mask_token = nn.Parameter(torch.zeros(1, embed_dim)) | 
					
						
						|  |  | 
					
						
						|  | def interpolate_pos_encoding(self, x, w, h): | 
					
						
						|  | previous_dtype = x.dtype | 
					
						
						|  | npatch = x.shape[1] - 1 | 
					
						
						|  | N = self.pos_embed.shape[1] - 1 | 
					
						
						|  | if npatch == N and w == h: | 
					
						
						|  | return self.pos_embed | 
					
						
						|  | pos_embed = self.pos_embed.float() | 
					
						
						|  | class_pos_embed = pos_embed[:, 0] | 
					
						
						|  | patch_pos_embed = pos_embed[:, 1:] | 
					
						
						|  | dim = x.shape[-1] | 
					
						
						|  | w0 = w // self.patch_size | 
					
						
						|  | h0 = h // self.patch_size | 
					
						
						|  | M = int(math.sqrt(N)) | 
					
						
						|  | assert N == M * M | 
					
						
						|  | kwargs = {} | 
					
						
						|  | if self.interpolate_offset: | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | sx = float(w0 + self.interpolate_offset) / M | 
					
						
						|  | sy = float(h0 + self.interpolate_offset) / M | 
					
						
						|  | kwargs["scale_factor"] = (sx, sy) | 
					
						
						|  | else: | 
					
						
						|  |  | 
					
						
						|  | kwargs["size"] = (w0, h0) | 
					
						
						|  | patch_pos_embed = nn.functional.interpolate( | 
					
						
						|  | patch_pos_embed.reshape(1, M, M, dim).permute(0, 3, 1, 2), | 
					
						
						|  | mode="bicubic", | 
					
						
						|  | antialias=self.interpolate_antialias, | 
					
						
						|  | **kwargs, | 
					
						
						|  | ) | 
					
						
						|  | assert (w0, h0) == patch_pos_embed.shape[-2:] | 
					
						
						|  | patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim) | 
					
						
						|  | return torch.cat((class_pos_embed.unsqueeze(0), patch_pos_embed), dim=1).to(previous_dtype) | 
					
						
						|  |  | 
					
						
						|  | def prepare_tokens_with_masks(self, x, masks=None): | 
					
						
						|  | B, nc, w, h = x.shape | 
					
						
						|  | x = self.patch_embed(x) | 
					
						
						|  | if masks is not None: | 
					
						
						|  | x = torch.where(masks.unsqueeze(-1), self.mask_token.to(x.dtype).unsqueeze(0), x) | 
					
						
						|  |  | 
					
						
						|  | x = torch.cat((self.cls_token.expand(x.shape[0], -1, -1), x), dim=1) | 
					
						
						|  | x = x + self.interpolate_pos_encoding(x, w, h) | 
					
						
						|  |  | 
					
						
						|  | if self.register_tokens is not None: | 
					
						
						|  | x = torch.cat( | 
					
						
						|  | ( | 
					
						
						|  | x[:, :1], | 
					
						
						|  | self.register_tokens.expand(x.shape[0], -1, -1), | 
					
						
						|  | x[:, 1:], | 
					
						
						|  | ), | 
					
						
						|  | dim=1, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | return x | 
					
						
						|  |  | 
					
						
						|  | def forward_features_list(self, x_list, masks_list): | 
					
						
						|  | x = [self.prepare_tokens_with_masks(x, masks) for x, masks in zip(x_list, masks_list)] | 
					
						
						|  | for blk in self.blocks: | 
					
						
						|  | x = blk(x) | 
					
						
						|  |  | 
					
						
						|  | all_x = x | 
					
						
						|  | output = [] | 
					
						
						|  | for x, masks in zip(all_x, masks_list): | 
					
						
						|  | x_norm = self.norm(x) | 
					
						
						|  | output.append( | 
					
						
						|  | { | 
					
						
						|  | "x_norm_clstoken": x_norm[:, 0], | 
					
						
						|  | "x_norm_regtokens": x_norm[:, 1 : self.num_register_tokens + 1], | 
					
						
						|  | "x_norm_patchtokens": x_norm[:, self.num_register_tokens + 1 :], | 
					
						
						|  | "x_prenorm": x, | 
					
						
						|  | "masks": masks, | 
					
						
						|  | } | 
					
						
						|  | ) | 
					
						
						|  | return output | 
					
						
						|  |  | 
					
						
						|  | def forward_features(self, x, masks=None): | 
					
						
						|  | if isinstance(x, list): | 
					
						
						|  | return self.forward_features_list(x, masks) | 
					
						
						|  |  | 
					
						
						|  | x = self.prepare_tokens_with_masks(x, masks) | 
					
						
						|  |  | 
					
						
						|  | for blk in self.blocks: | 
					
						
						|  | x = blk(x) | 
					
						
						|  |  | 
					
						
						|  | x_norm = self.norm(x) | 
					
						
						|  | return { | 
					
						
						|  | "x_norm_clstoken": x_norm[:, 0], | 
					
						
						|  | "x_norm_regtokens": x_norm[:, 1 : self.num_register_tokens + 1], | 
					
						
						|  | "x_norm_patchtokens": x_norm[:, self.num_register_tokens + 1 :], | 
					
						
						|  | "x_prenorm": x, | 
					
						
						|  | "masks": masks, | 
					
						
						|  | } | 
					
						
						|  |  | 
					
						
						|  | def _get_intermediate_layers_not_chunked(self, x, n=1): | 
					
						
						|  | x = self.prepare_tokens_with_masks(x) | 
					
						
						|  |  | 
					
						
						|  | output, total_block_len = [], len(self.blocks) | 
					
						
						|  | blocks_to_take = range(total_block_len - n, total_block_len) if isinstance(n, int) else n | 
					
						
						|  | for i, blk in enumerate(self.blocks): | 
					
						
						|  | x = blk(x) | 
					
						
						|  | if i in blocks_to_take: | 
					
						
						|  | output.append(x) | 
					
						
						|  | assert len(output) == len(blocks_to_take), f"only {len(output)} / {len(blocks_to_take)} blocks found" | 
					
						
						|  | return output | 
					
						
						|  |  | 
					
						
						|  | def _get_intermediate_layers_chunked(self, x, n=1): | 
					
						
						|  | x = self.prepare_tokens_with_masks(x) | 
					
						
						|  | output, i, total_block_len = [], 0, len(self.blocks[-1]) | 
					
						
						|  |  | 
					
						
						|  | blocks_to_take = range(total_block_len - n, total_block_len) if isinstance(n, int) else n | 
					
						
						|  | for block_chunk in self.blocks: | 
					
						
						|  | for blk in block_chunk[i:]: | 
					
						
						|  | x = blk(x) | 
					
						
						|  | if i in blocks_to_take: | 
					
						
						|  | output.append(x) | 
					
						
						|  | i += 1 | 
					
						
						|  | assert len(output) == len(blocks_to_take), f"only {len(output)} / {len(blocks_to_take)} blocks found" | 
					
						
						|  | return output | 
					
						
						|  |  | 
					
						
						|  | def get_intermediate_layers( | 
					
						
						|  | self, | 
					
						
						|  | x: torch.Tensor, | 
					
						
						|  | n: Union[int, Sequence] = 1, | 
					
						
						|  | reshape: bool = False, | 
					
						
						|  | return_class_token: bool = False, | 
					
						
						|  | norm=True, | 
					
						
						|  | ) -> Tuple[Union[torch.Tensor, Tuple[torch.Tensor]]]: | 
					
						
						|  | if self.chunked_blocks: | 
					
						
						|  | outputs = self._get_intermediate_layers_chunked(x, n) | 
					
						
						|  | else: | 
					
						
						|  | outputs = self._get_intermediate_layers_not_chunked(x, n) | 
					
						
						|  | if norm: | 
					
						
						|  | outputs = [self.norm(out) for out in outputs] | 
					
						
						|  | class_tokens = [out[:, 0] for out in outputs] | 
					
						
						|  | outputs = [out[:, 1 + self.num_register_tokens :] for out in outputs] | 
					
						
						|  | if reshape: | 
					
						
						|  | B, _, w, h = x.shape | 
					
						
						|  | outputs = [ | 
					
						
						|  | out.reshape(B, w // self.patch_size, h // self.patch_size, -1).permute(0, 3, 1, 2).contiguous() | 
					
						
						|  | for out in outputs | 
					
						
						|  | ] | 
					
						
						|  | if return_class_token: | 
					
						
						|  | return tuple(zip(outputs, class_tokens)) | 
					
						
						|  | return tuple(outputs) | 
					
						
						|  |  | 
					
						
						|  | def forward(self, *args, is_training=False, **kwargs): | 
					
						
						|  | ret = self.forward_features(*args, **kwargs) | 
					
						
						|  | if is_training: | 
					
						
						|  | return ret | 
					
						
						|  | else: | 
					
						
						|  | return self.head(ret["x_norm_clstoken"]) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def vit_small(patch_size=16, num_register_tokens=0, **kwargs): | 
					
						
						|  | model = DinoVisionTransformer( | 
					
						
						|  | patch_size=patch_size, | 
					
						
						|  | embed_dim=384, | 
					
						
						|  | depth=12, | 
					
						
						|  | num_heads=6, | 
					
						
						|  | mlp_ratio=4, | 
					
						
						|  | block_fn=partial(Block, attn_class=MemEffAttention), | 
					
						
						|  | num_register_tokens=num_register_tokens, | 
					
						
						|  | **kwargs, | 
					
						
						|  | ) | 
					
						
						|  | return model | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def vit_base(patch_size=16, num_register_tokens=0, **kwargs): | 
					
						
						|  | model = DinoVisionTransformer( | 
					
						
						|  | patch_size=patch_size, | 
					
						
						|  | embed_dim=768, | 
					
						
						|  | depth=12, | 
					
						
						|  | num_heads=12, | 
					
						
						|  | mlp_ratio=4, | 
					
						
						|  | block_fn=partial(Block, attn_class=MemEffAttention), | 
					
						
						|  | num_register_tokens=num_register_tokens, | 
					
						
						|  | **kwargs, | 
					
						
						|  | ) | 
					
						
						|  | return model | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def vit_large(patch_size=16, num_register_tokens=0, **kwargs): | 
					
						
						|  | model = DinoVisionTransformer( | 
					
						
						|  | patch_size=patch_size, | 
					
						
						|  | embed_dim=1024, | 
					
						
						|  | depth=24, | 
					
						
						|  | num_heads=16, | 
					
						
						|  | mlp_ratio=4, | 
					
						
						|  | block_fn=partial(Block, attn_class=MemEffAttention), | 
					
						
						|  | num_register_tokens=num_register_tokens, | 
					
						
						|  | **kwargs, | 
					
						
						|  | ) | 
					
						
						|  | return model | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def vit_giant2(patch_size=16, num_register_tokens=0, **kwargs): | 
					
						
						|  | """ | 
					
						
						|  | Close to ViT-giant, with embed-dim 1536 and 24 heads => embed-dim per head 64 | 
					
						
						|  | """ | 
					
						
						|  | model = DinoVisionTransformer( | 
					
						
						|  | patch_size=patch_size, | 
					
						
						|  | embed_dim=1536, | 
					
						
						|  | depth=40, | 
					
						
						|  | num_heads=24, | 
					
						
						|  | mlp_ratio=4, | 
					
						
						|  | block_fn=partial(Block, attn_class=MemEffAttention), | 
					
						
						|  | num_register_tokens=num_register_tokens, | 
					
						
						|  | **kwargs, | 
					
						
						|  | ) | 
					
						
						|  | return model | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class Weights(Enum): | 
					
						
						|  | LVD142M = "LVD142M" | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def _make_dinov2_model( | 
					
						
						|  | *, | 
					
						
						|  | arch_name: str = "vit_large", | 
					
						
						|  | img_size: int = 518, | 
					
						
						|  | patch_size: int = 14, | 
					
						
						|  | init_values: float = 1.0, | 
					
						
						|  | ffn_layer: str = "mlp", | 
					
						
						|  | block_chunks: int = 0, | 
					
						
						|  | num_register_tokens: int = 0, | 
					
						
						|  | interpolate_antialias: bool = False, | 
					
						
						|  | interpolate_offset: float = 0.1, | 
					
						
						|  | weights: Union[Weights, str] = Weights.LVD142M, | 
					
						
						|  | **kwargs, | 
					
						
						|  | ): | 
					
						
						|  | if isinstance(weights, str): | 
					
						
						|  | try: | 
					
						
						|  | weights = Weights[weights] | 
					
						
						|  | except KeyError: | 
					
						
						|  | raise AssertionError(f"Unsupported weights: {weights}") | 
					
						
						|  |  | 
					
						
						|  | vit_kwargs = dict( | 
					
						
						|  | img_size=img_size, | 
					
						
						|  | patch_size=patch_size, | 
					
						
						|  | init_values=init_values, | 
					
						
						|  | ffn_layer=ffn_layer, | 
					
						
						|  | block_chunks=block_chunks, | 
					
						
						|  | num_register_tokens=num_register_tokens, | 
					
						
						|  | interpolate_antialias=interpolate_antialias, | 
					
						
						|  | interpolate_offset=interpolate_offset, | 
					
						
						|  | ) | 
					
						
						|  | vit_kwargs.update(**kwargs) | 
					
						
						|  | model = sys.modules[__name__].__dict__[arch_name](**vit_kwargs) | 
					
						
						|  |  | 
					
						
						|  | return model | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def dinov2_vits14(**kwargs): | 
					
						
						|  | """ | 
					
						
						|  | DINOv2 ViT-S/14 model (optionally) pretrained on the LVD-142M dataset. | 
					
						
						|  | """ | 
					
						
						|  | return _make_dinov2_model(arch_name="vit_small", **kwargs) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def dinov2_vitb14(**kwargs): | 
					
						
						|  | """ | 
					
						
						|  | DINOv2 ViT-B/14 model (optionally) pretrained on the LVD-142M dataset. | 
					
						
						|  | """ | 
					
						
						|  | return _make_dinov2_model(arch_name="vit_base", **kwargs) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def dinov2_vitl14(**kwargs): | 
					
						
						|  | """ | 
					
						
						|  | DINOv2 ViT-L/14 model (optionally) pretrained on the LVD-142M dataset. | 
					
						
						|  | """ | 
					
						
						|  | return _make_dinov2_model(arch_name="vit_large", **kwargs) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def dinov2_vitg14(**kwargs): | 
					
						
						|  | """ | 
					
						
						|  | DINOv2 ViT-g/14 model (optionally) pretrained on the LVD-142M dataset. | 
					
						
						|  | """ | 
					
						
						|  | return _make_dinov2_model( | 
					
						
						|  | arch_name="vit_giant2", | 
					
						
						|  | ffn_layer="swiglufused", | 
					
						
						|  | **kwargs, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def dinov2_vits14_reg(**kwargs): | 
					
						
						|  | """ | 
					
						
						|  | DINOv2 ViT-S/14 model with registers (optionally) pretrained on the LVD-142M dataset. | 
					
						
						|  | """ | 
					
						
						|  | return _make_dinov2_model( | 
					
						
						|  | arch_name="vit_small", | 
					
						
						|  | num_register_tokens=4, | 
					
						
						|  | interpolate_antialias=True, | 
					
						
						|  | interpolate_offset=0.0, | 
					
						
						|  | **kwargs, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def dinov2_vitb14_reg(**kwargs): | 
					
						
						|  | """ | 
					
						
						|  | DINOv2 ViT-B/14 model with registers (optionally) pretrained on the LVD-142M dataset. | 
					
						
						|  | """ | 
					
						
						|  | return _make_dinov2_model( | 
					
						
						|  | arch_name="vit_base", | 
					
						
						|  | num_register_tokens=4, | 
					
						
						|  | interpolate_antialias=True, | 
					
						
						|  | interpolate_offset=0.0, | 
					
						
						|  | **kwargs, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def dinov2_vitl14_reg(**kwargs): | 
					
						
						|  | """ | 
					
						
						|  | DINOv2 ViT-L/14 model with registers (optionally) pretrained on the LVD-142M dataset. | 
					
						
						|  | """ | 
					
						
						|  | return _make_dinov2_model( | 
					
						
						|  | arch_name="vit_large", | 
					
						
						|  | num_register_tokens=4, | 
					
						
						|  | interpolate_antialias=True, | 
					
						
						|  | interpolate_offset=0.0, | 
					
						
						|  | **kwargs, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def dinov2_vitg14_reg(**kwargs): | 
					
						
						|  | """ | 
					
						
						|  | DINOv2 ViT-g/14 model with registers (optionally) pretrained on the LVD-142M dataset. | 
					
						
						|  | """ | 
					
						
						|  | return _make_dinov2_model( | 
					
						
						|  | arch_name="vit_giant2", | 
					
						
						|  | ffn_layer="swiglufused", | 
					
						
						|  | num_register_tokens=4, | 
					
						
						|  | interpolate_antialias=True, | 
					
						
						|  | interpolate_offset=0.0, | 
					
						
						|  | **kwargs, | 
					
						
						|  | ) | 
					
						
						|  |  |