Create mamba_vision.py
Browse files- mamba_vision.py +865 -0
mamba_vision.py
ADDED
|
@@ -0,0 +1,865 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
|
| 3 |
+
# Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
|
| 4 |
+
#
|
| 5 |
+
# NVIDIA CORPORATION and its licensors retain all intellectual property
|
| 6 |
+
# and proprietary rights in and to this software, related documentation
|
| 7 |
+
# and any modifications thereto. Any use, reproduction, disclosure or
|
| 8 |
+
# distribution of this software and related documentation without an express
|
| 9 |
+
# license agreement from NVIDIA CORPORATION is strictly prohibited.
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
import torch
|
| 13 |
+
import torch.nn as nn
|
| 14 |
+
from timm.models.registry import register_model
|
| 15 |
+
import math
|
| 16 |
+
from timm.models.layers import trunc_normal_, DropPath, LayerNorm2d
|
| 17 |
+
from timm.models._builder import resolve_pretrained_cfg
|
| 18 |
+
try:
|
| 19 |
+
from timm.models._builder import _update_default_kwargs as update_args
|
| 20 |
+
except:
|
| 21 |
+
from timm.models._builder import _update_default_model_kwargs as update_args
|
| 22 |
+
from timm.models.vision_transformer import Mlp, PatchEmbed
|
| 23 |
+
from timm.models.layers import DropPath, trunc_normal_
|
| 24 |
+
from timm.models.registry import register_model
|
| 25 |
+
import torch.nn.functional as F
|
| 26 |
+
from mamba_ssm.ops.selective_scan_interface import selective_scan_fn
|
| 27 |
+
from einops import rearrange, repeat
|
| 28 |
+
from pathlib import Path
|
| 29 |
+
from huggingface_hub import PyTorchModelHubMixin
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
def _cfg(url='', **kwargs):
|
| 33 |
+
return {'url': url,
|
| 34 |
+
'num_classes': 1000,
|
| 35 |
+
'input_size': (3, 224, 224),
|
| 36 |
+
'pool_size': None,
|
| 37 |
+
'crop_pct': 0.875,
|
| 38 |
+
'interpolation': 'bicubic',
|
| 39 |
+
'fixed_input_size': True,
|
| 40 |
+
'mean': (0.485, 0.456, 0.406),
|
| 41 |
+
'std': (0.229, 0.224, 0.225),
|
| 42 |
+
**kwargs
|
| 43 |
+
}
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
default_cfgs = {
|
| 47 |
+
'mamba_vision_T': _cfg(url='https://huggingface.co/nvidia/MambaVision-T-1K/resolve/main/mambavision_tiny_1k.pth.tar',
|
| 48 |
+
crop_pct=1.0,
|
| 49 |
+
input_size=(3, 224, 224),
|
| 50 |
+
crop_mode='center'),
|
| 51 |
+
'mamba_vision_T2': _cfg(url='https://huggingface.co/nvidia/MambaVision-T2-1K/resolve/main/mambavision_tiny2_1k.pth.tar',
|
| 52 |
+
crop_pct=0.98,
|
| 53 |
+
input_size=(3, 224, 224),
|
| 54 |
+
crop_mode='center'),
|
| 55 |
+
'mamba_vision_S': _cfg(url='https://huggingface.co/nvidia/MambaVision-S-1K/resolve/main/mambavision_small_1k.pth.tar',
|
| 56 |
+
crop_pct=0.93,
|
| 57 |
+
input_size=(3, 224, 224),
|
| 58 |
+
crop_mode='center'),
|
| 59 |
+
'mamba_vision_B': _cfg(url='https://huggingface.co/nvidia/MambaVision-B-1K/resolve/main/mambavision_base_1k.pth.tar',
|
| 60 |
+
crop_pct=1.0,
|
| 61 |
+
input_size=(3, 224, 224),
|
| 62 |
+
crop_mode='center'),
|
| 63 |
+
'mamba_vision_L': _cfg(url='https://huggingface.co/nvidia/MambaVision-L-1K/resolve/main/mambavision_large_1k.pth.tar',
|
| 64 |
+
crop_pct=1.0,
|
| 65 |
+
input_size=(3, 224, 224),
|
| 66 |
+
crop_mode='center'),
|
| 67 |
+
'mamba_vision_L2': _cfg(url='https://huggingface.co/nvidia/MambaVision-L2-1K/resolve/main/mambavision_large2_1k.pth.tar',
|
| 68 |
+
crop_pct=1.0,
|
| 69 |
+
input_size=(3, 224, 224),
|
| 70 |
+
crop_mode='center')
|
| 71 |
+
}
|
| 72 |
+
|
| 73 |
+
|
| 74 |
+
def window_partition(x, window_size):
|
| 75 |
+
"""
|
| 76 |
+
Args:
|
| 77 |
+
x: (B, C, H, W)
|
| 78 |
+
window_size: window size
|
| 79 |
+
h_w: Height of window
|
| 80 |
+
w_w: Width of window
|
| 81 |
+
Returns:
|
| 82 |
+
local window features (num_windows*B, window_size*window_size, C)
|
| 83 |
+
"""
|
| 84 |
+
B, C, H, W = x.shape
|
| 85 |
+
x = x.view(B, C, H // window_size, window_size, W // window_size, window_size)
|
| 86 |
+
windows = x.permute(0, 2, 4, 3, 5, 1).reshape(-1, window_size*window_size, C)
|
| 87 |
+
return windows
|
| 88 |
+
|
| 89 |
+
|
| 90 |
+
def window_reverse(windows, window_size, H, W):
|
| 91 |
+
"""
|
| 92 |
+
Args:
|
| 93 |
+
windows: local window features (num_windows*B, window_size, window_size, C)
|
| 94 |
+
window_size: Window size
|
| 95 |
+
H: Height of image
|
| 96 |
+
W: Width of image
|
| 97 |
+
Returns:
|
| 98 |
+
x: (B, C, H, W)
|
| 99 |
+
"""
|
| 100 |
+
B = int(windows.shape[0] / (H * W / window_size / window_size))
|
| 101 |
+
x = windows.reshape(B, H // window_size, W // window_size, window_size, window_size, -1)
|
| 102 |
+
x = x.permute(0, 5, 1, 3, 2, 4).reshape(B,windows.shape[2], H, W)
|
| 103 |
+
return x
|
| 104 |
+
|
| 105 |
+
|
| 106 |
+
def _load_state_dict(module, state_dict, strict=False, logger=None):
|
| 107 |
+
"""Load state_dict to a module.
|
| 108 |
+
|
| 109 |
+
This method is modified from :meth:`torch.nn.Module.load_state_dict`.
|
| 110 |
+
Default value for ``strict`` is set to ``False`` and the message for
|
| 111 |
+
param mismatch will be shown even if strict is False.
|
| 112 |
+
|
| 113 |
+
Args:
|
| 114 |
+
module (Module): Module that receives the state_dict.
|
| 115 |
+
state_dict (OrderedDict): Weights.
|
| 116 |
+
strict (bool): whether to strictly enforce that the keys
|
| 117 |
+
in :attr:`state_dict` match the keys returned by this module's
|
| 118 |
+
:meth:`~torch.nn.Module.state_dict` function. Default: ``False``.
|
| 119 |
+
logger (:obj:`logging.Logger`, optional): Logger to log the error
|
| 120 |
+
message. If not specified, print function will be used.
|
| 121 |
+
"""
|
| 122 |
+
unexpected_keys = []
|
| 123 |
+
all_missing_keys = []
|
| 124 |
+
err_msg = []
|
| 125 |
+
|
| 126 |
+
metadata = getattr(state_dict, '_metadata', None)
|
| 127 |
+
state_dict = state_dict.copy()
|
| 128 |
+
if metadata is not None:
|
| 129 |
+
state_dict._metadata = metadata
|
| 130 |
+
|
| 131 |
+
def load(module, prefix=''):
|
| 132 |
+
local_metadata = {} if metadata is None else metadata.get(
|
| 133 |
+
prefix[:-1], {})
|
| 134 |
+
module._load_from_state_dict(state_dict, prefix, local_metadata, True,
|
| 135 |
+
all_missing_keys, unexpected_keys,
|
| 136 |
+
err_msg)
|
| 137 |
+
for name, child in module._modules.items():
|
| 138 |
+
if child is not None:
|
| 139 |
+
load(child, prefix + name + '.')
|
| 140 |
+
|
| 141 |
+
load(module)
|
| 142 |
+
load = None
|
| 143 |
+
missing_keys = [
|
| 144 |
+
key for key in all_missing_keys if 'num_batches_tracked' not in key
|
| 145 |
+
]
|
| 146 |
+
|
| 147 |
+
if unexpected_keys:
|
| 148 |
+
err_msg.append('unexpected key in source '
|
| 149 |
+
f'state_dict: {", ".join(unexpected_keys)}\n')
|
| 150 |
+
if missing_keys:
|
| 151 |
+
err_msg.append(
|
| 152 |
+
f'missing keys in source state_dict: {", ".join(missing_keys)}\n')
|
| 153 |
+
|
| 154 |
+
|
| 155 |
+
if len(err_msg) > 0:
|
| 156 |
+
err_msg.insert(
|
| 157 |
+
0, 'The model and loaded state dict do not match exactly\n')
|
| 158 |
+
err_msg = '\n'.join(err_msg)
|
| 159 |
+
if strict:
|
| 160 |
+
raise RuntimeError(err_msg)
|
| 161 |
+
elif logger is not None:
|
| 162 |
+
logger.warning(err_msg)
|
| 163 |
+
else:
|
| 164 |
+
print(err_msg)
|
| 165 |
+
|
| 166 |
+
|
| 167 |
+
def _load_checkpoint(model,
|
| 168 |
+
filename,
|
| 169 |
+
map_location='cpu',
|
| 170 |
+
strict=False,
|
| 171 |
+
logger=None):
|
| 172 |
+
"""Load checkpoint from a file or URI.
|
| 173 |
+
|
| 174 |
+
Args:
|
| 175 |
+
model (Module): Module to load checkpoint.
|
| 176 |
+
filename (str): Accept local filepath, URL, ``torchvision://xxx``,
|
| 177 |
+
``open-mmlab://xxx``. Please refer to ``docs/model_zoo.md`` for
|
| 178 |
+
details.
|
| 179 |
+
map_location (str): Same as :func:`torch.load`.
|
| 180 |
+
strict (bool): Whether to allow different params for the model and
|
| 181 |
+
checkpoint.
|
| 182 |
+
logger (:mod:`logging.Logger` or None): The logger for error message.
|
| 183 |
+
|
| 184 |
+
Returns:
|
| 185 |
+
dict or OrderedDict: The loaded checkpoint.
|
| 186 |
+
"""
|
| 187 |
+
checkpoint = torch.load(filename, map_location=map_location)
|
| 188 |
+
if not isinstance(checkpoint, dict):
|
| 189 |
+
raise RuntimeError(
|
| 190 |
+
f'No state_dict found in checkpoint file {filename}')
|
| 191 |
+
if 'state_dict' in checkpoint:
|
| 192 |
+
state_dict = checkpoint['state_dict']
|
| 193 |
+
elif 'model' in checkpoint:
|
| 194 |
+
state_dict = checkpoint['model']
|
| 195 |
+
else:
|
| 196 |
+
state_dict = checkpoint
|
| 197 |
+
if list(state_dict.keys())[0].startswith('module.'):
|
| 198 |
+
state_dict = {k[7:]: v for k, v in state_dict.items()}
|
| 199 |
+
|
| 200 |
+
if sorted(list(state_dict.keys()))[0].startswith('encoder'):
|
| 201 |
+
state_dict = {k.replace('encoder.', ''): v for k, v in state_dict.items() if k.startswith('encoder.')}
|
| 202 |
+
|
| 203 |
+
_load_state_dict(model, state_dict, strict, logger)
|
| 204 |
+
return checkpoint
|
| 205 |
+
|
| 206 |
+
|
| 207 |
+
class Downsample(nn.Module):
|
| 208 |
+
"""
|
| 209 |
+
Down-sampling block"
|
| 210 |
+
"""
|
| 211 |
+
|
| 212 |
+
def __init__(self,
|
| 213 |
+
dim,
|
| 214 |
+
keep_dim=False,
|
| 215 |
+
):
|
| 216 |
+
"""
|
| 217 |
+
Args:
|
| 218 |
+
dim: feature size dimension.
|
| 219 |
+
norm_layer: normalization layer.
|
| 220 |
+
keep_dim: bool argument for maintaining the resolution.
|
| 221 |
+
"""
|
| 222 |
+
|
| 223 |
+
super().__init__()
|
| 224 |
+
if keep_dim:
|
| 225 |
+
dim_out = dim
|
| 226 |
+
else:
|
| 227 |
+
dim_out = 2 * dim
|
| 228 |
+
self.reduction = nn.Sequential(
|
| 229 |
+
nn.Conv2d(dim, dim_out, 3, 2, 1, bias=False),
|
| 230 |
+
)
|
| 231 |
+
|
| 232 |
+
def forward(self, x):
|
| 233 |
+
x = self.reduction(x)
|
| 234 |
+
return x
|
| 235 |
+
|
| 236 |
+
|
| 237 |
+
class PatchEmbed(nn.Module):
|
| 238 |
+
"""
|
| 239 |
+
Patch embedding block"
|
| 240 |
+
"""
|
| 241 |
+
|
| 242 |
+
def __init__(self, in_chans=3, in_dim=64, dim=96):
|
| 243 |
+
"""
|
| 244 |
+
Args:
|
| 245 |
+
in_chans: number of input channels.
|
| 246 |
+
dim: feature size dimension.
|
| 247 |
+
"""
|
| 248 |
+
# in_dim = 1
|
| 249 |
+
super().__init__()
|
| 250 |
+
self.proj = nn.Identity()
|
| 251 |
+
self.conv_down = nn.Sequential(
|
| 252 |
+
nn.Conv2d(in_chans, in_dim, 3, 2, 1, bias=False),
|
| 253 |
+
nn.BatchNorm2d(in_dim, eps=1e-4),
|
| 254 |
+
nn.ReLU(),
|
| 255 |
+
nn.Conv2d(in_dim, dim, 3, 2, 1, bias=False),
|
| 256 |
+
nn.BatchNorm2d(dim, eps=1e-4),
|
| 257 |
+
nn.ReLU()
|
| 258 |
+
)
|
| 259 |
+
|
| 260 |
+
def forward(self, x):
|
| 261 |
+
x = self.proj(x)
|
| 262 |
+
x = self.conv_down(x)
|
| 263 |
+
return x
|
| 264 |
+
|
| 265 |
+
|
| 266 |
+
class ConvBlock(nn.Module):
|
| 267 |
+
|
| 268 |
+
def __init__(self, dim,
|
| 269 |
+
drop_path=0.,
|
| 270 |
+
layer_scale=None,
|
| 271 |
+
kernel_size=3):
|
| 272 |
+
super().__init__()
|
| 273 |
+
|
| 274 |
+
self.conv1 = nn.Conv2d(dim, dim, kernel_size=kernel_size, stride=1, padding=1)
|
| 275 |
+
self.norm1 = nn.BatchNorm2d(dim, eps=1e-5)
|
| 276 |
+
self.act1 = nn.GELU(approximate= 'tanh')
|
| 277 |
+
self.conv2 = nn.Conv2d(dim, dim, kernel_size=kernel_size, stride=1, padding=1)
|
| 278 |
+
self.norm2 = nn.BatchNorm2d(dim, eps=1e-5)
|
| 279 |
+
self.layer_scale = layer_scale
|
| 280 |
+
if layer_scale is not None and type(layer_scale) in [int, float]:
|
| 281 |
+
self.gamma = nn.Parameter(layer_scale * torch.ones(dim))
|
| 282 |
+
self.layer_scale = True
|
| 283 |
+
else:
|
| 284 |
+
self.layer_scale = False
|
| 285 |
+
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
| 286 |
+
|
| 287 |
+
def forward(self, x):
|
| 288 |
+
input = x
|
| 289 |
+
x = self.conv1(x)
|
| 290 |
+
x = self.norm1(x)
|
| 291 |
+
x = self.act1(x)
|
| 292 |
+
x = self.conv2(x)
|
| 293 |
+
x = self.norm2(x)
|
| 294 |
+
if self.layer_scale:
|
| 295 |
+
x = x * self.gamma.view(1, -1, 1, 1)
|
| 296 |
+
x = input + self.drop_path(x)
|
| 297 |
+
return x
|
| 298 |
+
|
| 299 |
+
|
| 300 |
+
class MambaVisionMixer(nn.Module):
|
| 301 |
+
def __init__(
|
| 302 |
+
self,
|
| 303 |
+
d_model,
|
| 304 |
+
d_state=16,
|
| 305 |
+
d_conv=4,
|
| 306 |
+
expand=2,
|
| 307 |
+
dt_rank="auto",
|
| 308 |
+
dt_min=0.001,
|
| 309 |
+
dt_max=0.1,
|
| 310 |
+
dt_init="random",
|
| 311 |
+
dt_scale=1.0,
|
| 312 |
+
dt_init_floor=1e-4,
|
| 313 |
+
conv_bias=True,
|
| 314 |
+
bias=False,
|
| 315 |
+
use_fast_path=True,
|
| 316 |
+
layer_idx=None,
|
| 317 |
+
device=None,
|
| 318 |
+
dtype=None,
|
| 319 |
+
):
|
| 320 |
+
factory_kwargs = {"device": device, "dtype": dtype}
|
| 321 |
+
super().__init__()
|
| 322 |
+
self.d_model = d_model
|
| 323 |
+
self.d_state = d_state
|
| 324 |
+
self.d_conv = d_conv
|
| 325 |
+
self.expand = expand
|
| 326 |
+
self.d_inner = int(self.expand * self.d_model)
|
| 327 |
+
self.dt_rank = math.ceil(self.d_model / 16) if dt_rank == "auto" else dt_rank
|
| 328 |
+
self.use_fast_path = use_fast_path
|
| 329 |
+
self.layer_idx = layer_idx
|
| 330 |
+
self.in_proj = nn.Linear(self.d_model, self.d_inner, bias=bias, **factory_kwargs)
|
| 331 |
+
self.x_proj = nn.Linear(
|
| 332 |
+
self.d_inner//2, self.dt_rank + self.d_state * 2, bias=False, **factory_kwargs
|
| 333 |
+
)
|
| 334 |
+
self.dt_proj = nn.Linear(self.dt_rank, self.d_inner//2, bias=True, **factory_kwargs)
|
| 335 |
+
dt_init_std = self.dt_rank**-0.5 * dt_scale
|
| 336 |
+
if dt_init == "constant":
|
| 337 |
+
nn.init.constant_(self.dt_proj.weight, dt_init_std)
|
| 338 |
+
elif dt_init == "random":
|
| 339 |
+
nn.init.uniform_(self.dt_proj.weight, -dt_init_std, dt_init_std)
|
| 340 |
+
else:
|
| 341 |
+
raise NotImplementedError
|
| 342 |
+
dt = torch.exp(
|
| 343 |
+
torch.rand(self.d_inner//2, **factory_kwargs) * (math.log(dt_max) - math.log(dt_min))
|
| 344 |
+
+ math.log(dt_min)
|
| 345 |
+
).clamp(min=dt_init_floor)
|
| 346 |
+
inv_dt = dt + torch.log(-torch.expm1(-dt))
|
| 347 |
+
with torch.no_grad():
|
| 348 |
+
self.dt_proj.bias.copy_(inv_dt)
|
| 349 |
+
self.dt_proj.bias._no_reinit = True
|
| 350 |
+
A = repeat(
|
| 351 |
+
torch.arange(1, self.d_state + 1, dtype=torch.float32, device=device),
|
| 352 |
+
"n -> d n",
|
| 353 |
+
d=self.d_inner//2,
|
| 354 |
+
).contiguous()
|
| 355 |
+
A_log = torch.log(A)
|
| 356 |
+
self.A_log = nn.Parameter(A_log)
|
| 357 |
+
self.A_log._no_weight_decay = True
|
| 358 |
+
self.D = nn.Parameter(torch.ones(self.d_inner//2, device=device))
|
| 359 |
+
self.D._no_weight_decay = True
|
| 360 |
+
self.out_proj = nn.Linear(self.d_inner, self.d_model, bias=bias, **factory_kwargs)
|
| 361 |
+
self.conv1d_x = nn.Conv1d(
|
| 362 |
+
in_channels=self.d_inner//2,
|
| 363 |
+
out_channels=self.d_inner//2,
|
| 364 |
+
bias=conv_bias//2,
|
| 365 |
+
kernel_size=d_conv,
|
| 366 |
+
groups=self.d_inner//2,
|
| 367 |
+
**factory_kwargs,
|
| 368 |
+
)
|
| 369 |
+
self.conv1d_z = nn.Conv1d(
|
| 370 |
+
in_channels=self.d_inner//2,
|
| 371 |
+
out_channels=self.d_inner//2,
|
| 372 |
+
bias=conv_bias//2,
|
| 373 |
+
kernel_size=d_conv,
|
| 374 |
+
groups=self.d_inner//2,
|
| 375 |
+
**factory_kwargs,
|
| 376 |
+
)
|
| 377 |
+
|
| 378 |
+
def forward(self, hidden_states):
|
| 379 |
+
"""
|
| 380 |
+
hidden_states: (B, L, D)
|
| 381 |
+
Returns: same shape as hidden_states
|
| 382 |
+
"""
|
| 383 |
+
_, seqlen, _ = hidden_states.shape
|
| 384 |
+
xz = self.in_proj(hidden_states)
|
| 385 |
+
xz = rearrange(xz, "b l d -> b d l")
|
| 386 |
+
x, z = xz.chunk(2, dim=1)
|
| 387 |
+
A = -torch.exp(self.A_log.float())
|
| 388 |
+
x = F.silu(F.conv1d(input=x, weight=self.conv1d_x.weight, bias=self.conv1d_x.bias, padding='same', groups=self.d_inner//2))
|
| 389 |
+
z = F.silu(F.conv1d(input=z, weight=self.conv1d_z.weight, bias=self.conv1d_z.bias, padding='same', groups=self.d_inner//2))
|
| 390 |
+
x_dbl = self.x_proj(rearrange(x, "b d l -> (b l) d"))
|
| 391 |
+
dt, B, C = torch.split(x_dbl, [self.dt_rank, self.d_state, self.d_state], dim=-1)
|
| 392 |
+
dt = rearrange(self.dt_proj(dt), "(b l) d -> b d l", l=seqlen)
|
| 393 |
+
B = rearrange(B, "(b l) dstate -> b dstate l", l=seqlen).contiguous()
|
| 394 |
+
C = rearrange(C, "(b l) dstate -> b dstate l", l=seqlen).contiguous()
|
| 395 |
+
y = selective_scan_fn(x,
|
| 396 |
+
dt,
|
| 397 |
+
A,
|
| 398 |
+
B,
|
| 399 |
+
C,
|
| 400 |
+
self.D.float(),
|
| 401 |
+
z=None,
|
| 402 |
+
delta_bias=self.dt_proj.bias.float(),
|
| 403 |
+
delta_softplus=True,
|
| 404 |
+
return_last_state=None)
|
| 405 |
+
|
| 406 |
+
y = torch.cat([y, z], dim=1)
|
| 407 |
+
y = rearrange(y, "b d l -> b l d")
|
| 408 |
+
out = self.out_proj(y)
|
| 409 |
+
return out
|
| 410 |
+
|
| 411 |
+
|
| 412 |
+
class Attention(nn.Module):
|
| 413 |
+
|
| 414 |
+
def __init__(
|
| 415 |
+
self,
|
| 416 |
+
dim,
|
| 417 |
+
num_heads=8,
|
| 418 |
+
qkv_bias=False,
|
| 419 |
+
qk_norm=False,
|
| 420 |
+
attn_drop=0.,
|
| 421 |
+
proj_drop=0.,
|
| 422 |
+
norm_layer=nn.LayerNorm,
|
| 423 |
+
):
|
| 424 |
+
super().__init__()
|
| 425 |
+
assert dim % num_heads == 0
|
| 426 |
+
self.num_heads = num_heads
|
| 427 |
+
self.head_dim = dim // num_heads
|
| 428 |
+
self.scale = self.head_dim ** -0.5
|
| 429 |
+
self.fused_attn = True
|
| 430 |
+
|
| 431 |
+
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
| 432 |
+
self.q_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity()
|
| 433 |
+
self.k_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity()
|
| 434 |
+
self.attn_drop = nn.Dropout(attn_drop)
|
| 435 |
+
self.proj = nn.Linear(dim, dim)
|
| 436 |
+
self.proj_drop = nn.Dropout(proj_drop)
|
| 437 |
+
|
| 438 |
+
def forward(self, x):
|
| 439 |
+
B, N, C = x.shape
|
| 440 |
+
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, self.head_dim).permute(2, 0, 3, 1, 4)
|
| 441 |
+
q, k, v = qkv.unbind(0)
|
| 442 |
+
q, k = self.q_norm(q), self.k_norm(k)
|
| 443 |
+
|
| 444 |
+
if self.fused_attn:
|
| 445 |
+
x = F.scaled_dot_product_attention(
|
| 446 |
+
q, k, v,
|
| 447 |
+
dropout_p=self.attn_drop.p,
|
| 448 |
+
)
|
| 449 |
+
else:
|
| 450 |
+
q = q * self.scale
|
| 451 |
+
attn = q @ k.transpose(-2, -1)
|
| 452 |
+
attn = attn.softmax(dim=-1)
|
| 453 |
+
attn = self.attn_drop(attn)
|
| 454 |
+
x = attn @ v
|
| 455 |
+
|
| 456 |
+
x = x.transpose(1, 2).reshape(B, N, C)
|
| 457 |
+
x = self.proj(x)
|
| 458 |
+
x = self.proj_drop(x)
|
| 459 |
+
return x
|
| 460 |
+
|
| 461 |
+
|
| 462 |
+
class Block(nn.Module):
|
| 463 |
+
def __init__(self,
|
| 464 |
+
dim,
|
| 465 |
+
num_heads,
|
| 466 |
+
counter,
|
| 467 |
+
transformer_blocks,
|
| 468 |
+
mlp_ratio=4.,
|
| 469 |
+
qkv_bias=False,
|
| 470 |
+
qk_scale=False,
|
| 471 |
+
drop=0.,
|
| 472 |
+
attn_drop=0.,
|
| 473 |
+
drop_path=0.,
|
| 474 |
+
act_layer=nn.GELU,
|
| 475 |
+
norm_layer=nn.LayerNorm,
|
| 476 |
+
Mlp_block=Mlp,
|
| 477 |
+
layer_scale=None,
|
| 478 |
+
):
|
| 479 |
+
super().__init__()
|
| 480 |
+
self.norm1 = norm_layer(dim)
|
| 481 |
+
if counter in transformer_blocks:
|
| 482 |
+
self.mixer = Attention(
|
| 483 |
+
dim,
|
| 484 |
+
num_heads=num_heads,
|
| 485 |
+
qkv_bias=qkv_bias,
|
| 486 |
+
qk_norm=qk_scale,
|
| 487 |
+
attn_drop=attn_drop,
|
| 488 |
+
proj_drop=drop,
|
| 489 |
+
norm_layer=norm_layer,
|
| 490 |
+
)
|
| 491 |
+
else:
|
| 492 |
+
self.mixer = MambaVisionMixer(d_model=dim,
|
| 493 |
+
d_state=8,
|
| 494 |
+
d_conv=3,
|
| 495 |
+
expand=1
|
| 496 |
+
)
|
| 497 |
+
|
| 498 |
+
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
| 499 |
+
self.norm2 = norm_layer(dim)
|
| 500 |
+
mlp_hidden_dim = int(dim * mlp_ratio)
|
| 501 |
+
self.mlp = Mlp_block(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
|
| 502 |
+
use_layer_scale = layer_scale is not None and type(layer_scale) in [int, float]
|
| 503 |
+
self.gamma_1 = nn.Parameter(layer_scale * torch.ones(dim)) if use_layer_scale else 1
|
| 504 |
+
self.gamma_2 = nn.Parameter(layer_scale * torch.ones(dim)) if use_layer_scale else 1
|
| 505 |
+
|
| 506 |
+
def forward(self, x):
|
| 507 |
+
x = x + self.drop_path(self.gamma_1 * self.mixer(self.norm1(x)))
|
| 508 |
+
x = x + self.drop_path(self.gamma_2 * self.mlp(self.norm2(x)))
|
| 509 |
+
return x
|
| 510 |
+
|
| 511 |
+
|
| 512 |
+
class MambaVisionLayer(nn.Module):
|
| 513 |
+
"""
|
| 514 |
+
MambaVision layer"
|
| 515 |
+
"""
|
| 516 |
+
|
| 517 |
+
def __init__(self,
|
| 518 |
+
dim,
|
| 519 |
+
depth,
|
| 520 |
+
num_heads,
|
| 521 |
+
window_size,
|
| 522 |
+
conv=False,
|
| 523 |
+
downsample=True,
|
| 524 |
+
mlp_ratio=4.,
|
| 525 |
+
qkv_bias=True,
|
| 526 |
+
qk_scale=None,
|
| 527 |
+
drop=0.,
|
| 528 |
+
attn_drop=0.,
|
| 529 |
+
drop_path=0.,
|
| 530 |
+
layer_scale=None,
|
| 531 |
+
layer_scale_conv=None,
|
| 532 |
+
transformer_blocks = [],
|
| 533 |
+
):
|
| 534 |
+
"""
|
| 535 |
+
Args:
|
| 536 |
+
dim: feature size dimension.
|
| 537 |
+
depth: number of layers in each stage.
|
| 538 |
+
window_size: window size in each stage.
|
| 539 |
+
conv: bool argument for conv stage flag.
|
| 540 |
+
downsample: bool argument for down-sampling.
|
| 541 |
+
mlp_ratio: MLP ratio.
|
| 542 |
+
num_heads: number of heads in each stage.
|
| 543 |
+
qkv_bias: bool argument for query, key, value learnable bias.
|
| 544 |
+
qk_scale: bool argument to scaling query, key.
|
| 545 |
+
drop: dropout rate.
|
| 546 |
+
attn_drop: attention dropout rate.
|
| 547 |
+
drop_path: drop path rate.
|
| 548 |
+
norm_layer: normalization layer.
|
| 549 |
+
layer_scale: layer scaling coefficient.
|
| 550 |
+
layer_scale_conv: conv layer scaling coefficient.
|
| 551 |
+
transformer_blocks: list of transformer blocks.
|
| 552 |
+
"""
|
| 553 |
+
|
| 554 |
+
super().__init__()
|
| 555 |
+
self.conv = conv
|
| 556 |
+
self.transformer_block = False
|
| 557 |
+
if conv:
|
| 558 |
+
self.blocks = nn.ModuleList([ConvBlock(dim=dim,
|
| 559 |
+
drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
|
| 560 |
+
layer_scale=layer_scale_conv)
|
| 561 |
+
for i in range(depth)])
|
| 562 |
+
self.transformer_block = False
|
| 563 |
+
else:
|
| 564 |
+
self.transformer_block = True
|
| 565 |
+
self.blocks = nn.ModuleList([Block(dim=dim,
|
| 566 |
+
counter=i,
|
| 567 |
+
transformer_blocks=transformer_blocks,
|
| 568 |
+
num_heads=num_heads,
|
| 569 |
+
mlp_ratio=mlp_ratio,
|
| 570 |
+
qkv_bias=qkv_bias,
|
| 571 |
+
qk_scale=qk_scale,
|
| 572 |
+
drop=drop,
|
| 573 |
+
attn_drop=attn_drop,
|
| 574 |
+
drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
|
| 575 |
+
layer_scale=layer_scale)
|
| 576 |
+
for i in range(depth)])
|
| 577 |
+
self.transformer_block = True
|
| 578 |
+
|
| 579 |
+
self.downsample = None if not downsample else Downsample(dim=dim)
|
| 580 |
+
self.do_gt = False
|
| 581 |
+
self.window_size = window_size
|
| 582 |
+
|
| 583 |
+
def forward(self, x):
|
| 584 |
+
_, _, H, W = x.shape
|
| 585 |
+
|
| 586 |
+
if self.transformer_block:
|
| 587 |
+
pad_r = (self.window_size - W % self.window_size) % self.window_size
|
| 588 |
+
pad_b = (self.window_size - H % self.window_size) % self.window_size
|
| 589 |
+
if pad_r > 0 or pad_b > 0:
|
| 590 |
+
x = torch.nn.functional.pad(x, (0,pad_r,0,pad_b))
|
| 591 |
+
_, _, Hp, Wp = x.shape
|
| 592 |
+
else:
|
| 593 |
+
Hp, Wp = H, W
|
| 594 |
+
x = window_partition(x, self.window_size)
|
| 595 |
+
|
| 596 |
+
for _, blk in enumerate(self.blocks):
|
| 597 |
+
x = blk(x)
|
| 598 |
+
if self.transformer_block:
|
| 599 |
+
x = window_reverse(x, self.window_size, Hp, Wp)
|
| 600 |
+
if pad_r > 0 or pad_b > 0:
|
| 601 |
+
x = x[:, :, :H, :W].contiguous()
|
| 602 |
+
if self.downsample is None:
|
| 603 |
+
return x
|
| 604 |
+
return self.downsample(x)
|
| 605 |
+
|
| 606 |
+
|
| 607 |
+
class MambaVision(nn.Module, PyTorchModelHubMixin):
|
| 608 |
+
"""
|
| 609 |
+
MambaVision,
|
| 610 |
+
"""
|
| 611 |
+
|
| 612 |
+
def __init__(self,
|
| 613 |
+
dim,
|
| 614 |
+
in_dim,
|
| 615 |
+
depths,
|
| 616 |
+
window_size,
|
| 617 |
+
mlp_ratio,
|
| 618 |
+
num_heads,
|
| 619 |
+
drop_path_rate=0.2,
|
| 620 |
+
in_chans=3,
|
| 621 |
+
num_classes=1000,
|
| 622 |
+
qkv_bias=True,
|
| 623 |
+
qk_scale=None,
|
| 624 |
+
drop_rate=0.,
|
| 625 |
+
attn_drop_rate=0.,
|
| 626 |
+
layer_scale=None,
|
| 627 |
+
layer_scale_conv=None,
|
| 628 |
+
**kwargs):
|
| 629 |
+
"""
|
| 630 |
+
Args:
|
| 631 |
+
dim: feature size dimension.
|
| 632 |
+
depths: number of layers in each stage.
|
| 633 |
+
window_size: window size in each stage.
|
| 634 |
+
mlp_ratio: MLP ratio.
|
| 635 |
+
num_heads: number of heads in each stage.
|
| 636 |
+
drop_path_rate: drop path rate.
|
| 637 |
+
in_chans: number of input channels.
|
| 638 |
+
num_classes: number of classes.
|
| 639 |
+
qkv_bias: bool argument for query, key, value learnable bias.
|
| 640 |
+
qk_scale: bool argument to scaling query, key.
|
| 641 |
+
drop_rate: dropout rate.
|
| 642 |
+
attn_drop_rate: attention dropout rate.
|
| 643 |
+
norm_layer: normalization layer.
|
| 644 |
+
layer_scale: layer scaling coefficient.
|
| 645 |
+
layer_scale_conv: conv layer scaling coefficient.
|
| 646 |
+
"""
|
| 647 |
+
super().__init__()
|
| 648 |
+
num_features = int(dim * 2 ** (len(depths) - 1))
|
| 649 |
+
self.num_classes = num_classes
|
| 650 |
+
self.patch_embed = PatchEmbed(in_chans=in_chans, in_dim=in_dim, dim=dim)
|
| 651 |
+
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))]
|
| 652 |
+
self.levels = nn.ModuleList()
|
| 653 |
+
for i in range(len(depths)):
|
| 654 |
+
conv = True if (i == 0 or i == 1) else False
|
| 655 |
+
level = MambaVisionLayer(dim=int(dim * 2 ** i),
|
| 656 |
+
depth=depths[i],
|
| 657 |
+
num_heads=num_heads[i],
|
| 658 |
+
window_size=window_size[i],
|
| 659 |
+
mlp_ratio=mlp_ratio,
|
| 660 |
+
qkv_bias=qkv_bias,
|
| 661 |
+
qk_scale=qk_scale,
|
| 662 |
+
conv=conv,
|
| 663 |
+
drop=drop_rate,
|
| 664 |
+
attn_drop=attn_drop_rate,
|
| 665 |
+
drop_path=dpr[sum(depths[:i]):sum(depths[:i + 1])],
|
| 666 |
+
downsample=(i < 3),
|
| 667 |
+
layer_scale=layer_scale,
|
| 668 |
+
layer_scale_conv=layer_scale_conv,
|
| 669 |
+
transformer_blocks=list(range(depths[i]//2+1, depths[i])) if depths[i]%2!=0 else list(range(depths[i]//2, depths[i])),
|
| 670 |
+
)
|
| 671 |
+
self.levels.append(level)
|
| 672 |
+
self.norm = nn.BatchNorm2d(num_features)
|
| 673 |
+
self.avgpool = nn.AdaptiveAvgPool2d(1)
|
| 674 |
+
self.head = nn.Linear(num_features, num_classes) if num_classes > 0 else nn.Identity()
|
| 675 |
+
self.apply(self._init_weights)
|
| 676 |
+
|
| 677 |
+
def _init_weights(self, m):
|
| 678 |
+
if isinstance(m, nn.Linear):
|
| 679 |
+
trunc_normal_(m.weight, std=.02)
|
| 680 |
+
if isinstance(m, nn.Linear) and m.bias is not None:
|
| 681 |
+
nn.init.constant_(m.bias, 0)
|
| 682 |
+
elif isinstance(m, nn.LayerNorm):
|
| 683 |
+
nn.init.constant_(m.bias, 0)
|
| 684 |
+
nn.init.constant_(m.weight, 1.0)
|
| 685 |
+
elif isinstance(m, LayerNorm2d):
|
| 686 |
+
nn.init.constant_(m.bias, 0)
|
| 687 |
+
nn.init.constant_(m.weight, 1.0)
|
| 688 |
+
elif isinstance(m, nn.BatchNorm2d):
|
| 689 |
+
nn.init.ones_(m.weight)
|
| 690 |
+
nn.init.zeros_(m.bias)
|
| 691 |
+
|
| 692 |
+
@torch.jit.ignore
|
| 693 |
+
def no_weight_decay_keywords(self):
|
| 694 |
+
return {'rpb'}
|
| 695 |
+
|
| 696 |
+
def forward_features(self, x):
|
| 697 |
+
x = self.patch_embed(x)
|
| 698 |
+
for level in self.levels:
|
| 699 |
+
x = level(x)
|
| 700 |
+
x = self.norm(x)
|
| 701 |
+
x = self.avgpool(x)
|
| 702 |
+
x = torch.flatten(x, 1)
|
| 703 |
+
return x
|
| 704 |
+
|
| 705 |
+
def forward(self, x):
|
| 706 |
+
x = self.forward_features(x)
|
| 707 |
+
x = self.head(x)
|
| 708 |
+
return x
|
| 709 |
+
|
| 710 |
+
def _load_state_dict(self,
|
| 711 |
+
pretrained,
|
| 712 |
+
strict: bool = False):
|
| 713 |
+
_load_checkpoint(self,
|
| 714 |
+
pretrained,
|
| 715 |
+
strict=strict)
|
| 716 |
+
|
| 717 |
+
|
| 718 |
+
@register_model
|
| 719 |
+
def mamba_vision_T(pretrained=False, **kwargs):
|
| 720 |
+
model_path = kwargs.pop("model_path", "/tmp/mamba_vision_T.pth.tar")
|
| 721 |
+
pretrained_cfg = resolve_pretrained_cfg('mamba_vision_T').to_dict()
|
| 722 |
+
update_args(pretrained_cfg, kwargs, kwargs_filter=None)
|
| 723 |
+
model = MambaVision(depths=[1, 3, 8, 4],
|
| 724 |
+
num_heads=[2, 4, 8, 16],
|
| 725 |
+
window_size=[8, 8, 14, 7],
|
| 726 |
+
dim=80,
|
| 727 |
+
in_dim=32,
|
| 728 |
+
mlp_ratio=4,
|
| 729 |
+
resolution=224,
|
| 730 |
+
drop_path_rate=0.2,
|
| 731 |
+
**kwargs)
|
| 732 |
+
model.pretrained_cfg = pretrained_cfg
|
| 733 |
+
model.default_cfg = model.pretrained_cfg
|
| 734 |
+
if pretrained:
|
| 735 |
+
if not Path(model_path).is_file():
|
| 736 |
+
url = model.default_cfg['url']
|
| 737 |
+
torch.hub.download_url_to_file(url=url, dst=model_path)
|
| 738 |
+
model._load_state_dict(model_path)
|
| 739 |
+
return model
|
| 740 |
+
|
| 741 |
+
|
| 742 |
+
@register_model
|
| 743 |
+
def mamba_vision_T2(pretrained=False, **kwargs):
|
| 744 |
+
model_path = kwargs.pop("model_path", "/tmp/mamba_vision_T2.pth.tar")
|
| 745 |
+
pretrained_cfg = resolve_pretrained_cfg('mamba_vision_T2').to_dict()
|
| 746 |
+
update_args(pretrained_cfg, kwargs, kwargs_filter=None)
|
| 747 |
+
model = MambaVision(depths=[1, 3, 11, 4],
|
| 748 |
+
num_heads=[2, 4, 8, 16],
|
| 749 |
+
window_size=[8, 8, 14, 7],
|
| 750 |
+
dim=80,
|
| 751 |
+
in_dim=32,
|
| 752 |
+
mlp_ratio=4,
|
| 753 |
+
resolution=224,
|
| 754 |
+
drop_path_rate=0.2,
|
| 755 |
+
**kwargs)
|
| 756 |
+
model.pretrained_cfg = pretrained_cfg
|
| 757 |
+
model.default_cfg = model.pretrained_cfg
|
| 758 |
+
if pretrained:
|
| 759 |
+
if not Path(model_path).is_file():
|
| 760 |
+
url = model.default_cfg['url']
|
| 761 |
+
torch.hub.download_url_to_file(url=url, dst=model_path)
|
| 762 |
+
model._load_state_dict(model_path)
|
| 763 |
+
return model
|
| 764 |
+
|
| 765 |
+
|
| 766 |
+
@register_model
|
| 767 |
+
def mamba_vision_S(pretrained=False, **kwargs):
|
| 768 |
+
model_path = kwargs.pop("model_path", "/tmp/mamba_vision_S.pth.tar")
|
| 769 |
+
pretrained_cfg = resolve_pretrained_cfg('mamba_vision_S').to_dict()
|
| 770 |
+
update_args(pretrained_cfg, kwargs, kwargs_filter=None)
|
| 771 |
+
model = MambaVision(depths=[3, 3, 7, 5],
|
| 772 |
+
num_heads=[2, 4, 8, 16],
|
| 773 |
+
window_size=[8, 8, 14, 7],
|
| 774 |
+
dim=96,
|
| 775 |
+
in_dim=64,
|
| 776 |
+
mlp_ratio=4,
|
| 777 |
+
resolution=224,
|
| 778 |
+
drop_path_rate=0.2,
|
| 779 |
+
**kwargs)
|
| 780 |
+
model.pretrained_cfg = pretrained_cfg
|
| 781 |
+
model.default_cfg = model.pretrained_cfg
|
| 782 |
+
if pretrained:
|
| 783 |
+
if not Path(model_path).is_file():
|
| 784 |
+
url = model.default_cfg['url']
|
| 785 |
+
torch.hub.download_url_to_file(url=url, dst=model_path)
|
| 786 |
+
model._load_state_dict(model_path)
|
| 787 |
+
return model
|
| 788 |
+
|
| 789 |
+
|
| 790 |
+
@register_model
|
| 791 |
+
def mamba_vision_B(pretrained=False, **kwargs):
|
| 792 |
+
model_path = kwargs.pop("model_path", "/tmp/mamba_vision_B.pth.tar")
|
| 793 |
+
pretrained_cfg = resolve_pretrained_cfg('mamba_vision_B').to_dict()
|
| 794 |
+
update_args(pretrained_cfg, kwargs, kwargs_filter=None)
|
| 795 |
+
model = MambaVision(depths=[3, 3, 10, 5],
|
| 796 |
+
num_heads=[2, 4, 8, 16],
|
| 797 |
+
window_size=[8, 8, 14, 7],
|
| 798 |
+
dim=128,
|
| 799 |
+
in_dim=64,
|
| 800 |
+
mlp_ratio=4,
|
| 801 |
+
resolution=224,
|
| 802 |
+
drop_path_rate=0.3,
|
| 803 |
+
layer_scale=1e-5,
|
| 804 |
+
layer_scale_conv=None,
|
| 805 |
+
**kwargs)
|
| 806 |
+
model.pretrained_cfg = pretrained_cfg
|
| 807 |
+
model.default_cfg = model.pretrained_cfg
|
| 808 |
+
if pretrained:
|
| 809 |
+
if not Path(model_path).is_file():
|
| 810 |
+
url = model.default_cfg['url']
|
| 811 |
+
torch.hub.download_url_to_file(url=url, dst=model_path)
|
| 812 |
+
model._load_state_dict(model_path)
|
| 813 |
+
return model
|
| 814 |
+
|
| 815 |
+
|
| 816 |
+
@register_model
|
| 817 |
+
def mamba_vision_L(pretrained=False, **kwargs):
|
| 818 |
+
model_path = kwargs.pop("model_path", "/tmp/mamba_vision_L.pth.tar")
|
| 819 |
+
pretrained_cfg = resolve_pretrained_cfg('mamba_vision_L').to_dict()
|
| 820 |
+
update_args(pretrained_cfg, kwargs, kwargs_filter=None)
|
| 821 |
+
model = MambaVision(depths=[3, 3, 10, 5],
|
| 822 |
+
num_heads=[4, 8, 16, 32],
|
| 823 |
+
window_size=[8, 8, 14, 7],
|
| 824 |
+
dim=196,
|
| 825 |
+
in_dim=64,
|
| 826 |
+
mlp_ratio=4,
|
| 827 |
+
resolution=224,
|
| 828 |
+
drop_path_rate=0.3,
|
| 829 |
+
layer_scale=1e-5,
|
| 830 |
+
layer_scale_conv=None,
|
| 831 |
+
**kwargs)
|
| 832 |
+
model.pretrained_cfg = pretrained_cfg
|
| 833 |
+
model.default_cfg = model.pretrained_cfg
|
| 834 |
+
if pretrained:
|
| 835 |
+
if not Path(model_path).is_file():
|
| 836 |
+
url = model.default_cfg['url']
|
| 837 |
+
torch.hub.download_url_to_file(url=url, dst=model_path)
|
| 838 |
+
model._load_state_dict(model_path)
|
| 839 |
+
return model
|
| 840 |
+
|
| 841 |
+
|
| 842 |
+
@register_model
|
| 843 |
+
def mamba_vision_L2(pretrained=False, **kwargs):
|
| 844 |
+
model_path = kwargs.pop("model_path", "/tmp/mamba_vision_L2.pth.tar")
|
| 845 |
+
pretrained_cfg = resolve_pretrained_cfg('mamba_vision_L2').to_dict()
|
| 846 |
+
update_args(pretrained_cfg, kwargs, kwargs_filter=None)
|
| 847 |
+
model = MambaVision(depths=[3, 3, 12, 5],
|
| 848 |
+
num_heads=[4, 8, 16, 32],
|
| 849 |
+
window_size=[8, 8, 14, 7],
|
| 850 |
+
dim=196,
|
| 851 |
+
in_dim=64,
|
| 852 |
+
mlp_ratio=4,
|
| 853 |
+
resolution=224,
|
| 854 |
+
drop_path_rate=0.3,
|
| 855 |
+
layer_scale=1e-5,
|
| 856 |
+
layer_scale_conv=None,
|
| 857 |
+
**kwargs)
|
| 858 |
+
model.pretrained_cfg = pretrained_cfg
|
| 859 |
+
model.default_cfg = model.pretrained_cfg
|
| 860 |
+
if pretrained:
|
| 861 |
+
if not Path(model_path).is_file():
|
| 862 |
+
url = model.default_cfg['url']
|
| 863 |
+
torch.hub.download_url_to_file(url=url, dst=model_path)
|
| 864 |
+
model._load_state_dict(model_path)
|
| 865 |
+
return model
|