File size: 14,071 Bytes
1e8e8e6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
961cb9f
1e8e8e6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
# --------------------------------------------------------
# Adapted from https://huggingface.co/OpenGVLab/InternVL2-Llama3-76B under MIT License
#     LICENSE is in incl_licenses directory.
# --------------------------------------------------------


import warnings
from typing import List, Optional, Tuple, Union

import torch.utils.checkpoint
import transformers
from torch import nn
from torch.nn import CrossEntropyLoss
from transformers import AutoModel, AutoModelForCausalLM, GenerationConfig
from transformers.modeling_outputs import CausalLMOutputWithPast
from transformers.modeling_utils import PreTrainedModel
from transformers.utils import logging

from .configuration import Llama_Nemotron_Nano_VL_Config

logger = logging.get_logger(__name__)


"""
The following code is adapted from the
https://huggingface.co/OpenGVLab/InternVL2-Llama3-76B/blob/main/modeling_internvl_chat.py repository

The chat function is adapted to handle NVLM 1-D tile-tagging design for dynamic high-resolution images.
"""
def version_cmp(v1, v2, op='eq'):
    import operator

    from packaging import version
    op_func = getattr(operator, op)
    return op_func(version.parse(v1), version.parse(v2))


class Llama_Nemotron_Nano_VL(PreTrainedModel):
    config_class = Llama_Nemotron_Nano_VL_Config
    main_input_name = 'pixel_values'
    _supports_flash_attn_2 = True
    _no_split_modules = ['InternVisionModel', 'SiglipVisionModel', 'Qwen2DecoderLayer']

    def __init__(self, config: Llama_Nemotron_Nano_VL_Config):
        super().__init__(config)

        assert version_cmp(transformers.__version__, '4.36.2', 'ge')
        image_size = config.force_image_size
        patch_size = config.patch_size
        self.patch_size = patch_size
        self.template = config.template
        self.num_image_token = int((image_size // patch_size) ** 2 * (config.downsample_ratio ** 2))
        self.downsample_ratio = config.downsample_ratio
        self.ps_version = config.ps_version
        self.image_tag_type = config.image_tag_type

        logger.info(f'num_image_token: {self.num_image_token}')
        logger.info(f'ps_version: {self.ps_version}')

        self.language_model = AutoModelForCausalLM.from_config(config.llm_config, torch_dtype=torch.bfloat16)
        self.vision_model = AutoModel.from_config(config.vision_config, trust_remote_code=True)
        self.vision_model.model._initialize_weights = self.vision_model.model._init_weights  # WAR for transformers issue 38358 

        self.drop_vision_class_token = True

        # Construct the vision projection.
        # Default
        vit_hidden_size = config.vit_hidden_size
        vision_projection_hidden_size = config.projector_hidden_size
        llm_hidden_size = config.llm_config.hidden_size

        self.mlp1 = nn.Sequential(
            nn.LayerNorm(vit_hidden_size * int(1 / self.downsample_ratio) ** 2, bias=True),
            nn.Linear(vit_hidden_size * int(1 / self.downsample_ratio) ** 2, vision_projection_hidden_size, bias=True),
            nn.GELU(),
            nn.Linear(vision_projection_hidden_size, llm_hidden_size, bias=True)
        )
        self.mlp1 = self.mlp1.to(self.language_model.config.torch_dtype)

        self.img_context_token_id = None

    def forward(
            self,
            pixel_values: torch.FloatTensor,
            input_ids: torch.LongTensor = None,
            attention_mask: Optional[torch.Tensor] = None,
            position_ids: Optional[torch.LongTensor] = None,
            image_flags: Optional[torch.LongTensor] = None,
            past_key_values: Optional[List[torch.FloatTensor]] = None,
            labels: Optional[torch.LongTensor] = None,
            use_cache: Optional[bool] = None,
            output_attentions: Optional[bool] = None,
            output_hidden_states: Optional[bool] = None,
            return_dict: Optional[bool] = None,
    ) -> Union[Tuple, CausalLMOutputWithPast]:
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        image_flags = image_flags.squeeze(-1)
        input_embeds = self.language_model.get_input_embeddings()(input_ids)

        vit_embeds = self.extract_feature(pixel_values)
        vit_embeds = vit_embeds[image_flags == 1]
        vit_batch_size = pixel_values.shape[0]

        B, N, C = input_embeds.shape
        input_embeds = input_embeds.reshape(B * N, C)

        if torch.distributed.get_rank() == 0:
            print(f'dynamic ViT batch size: {vit_batch_size}, images per sample: {vit_batch_size / B}, dynamic token length: {N}')

        input_ids = input_ids.reshape(B * N)
        selected = (input_ids == self.img_context_token_id)
        try:
            input_embeds[selected] = input_embeds[selected] * 0.0 + vit_embeds.reshape(-1, C)
        except Exception as e:
            vit_embeds = vit_embeds.reshape(-1, C)
            print(f'warning: {e}, input_embeds[selected].shape={input_embeds[selected].shape}, '
                  f'vit_embeds.shape={vit_embeds.shape}')
            n_token = selected.sum()
            input_embeds[selected] = input_embeds[selected] * 0.0 + vit_embeds[:n_token]

        input_embeds = input_embeds.reshape(B, N, C)

        outputs = self.language_model(
            inputs_embeds=input_embeds,
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_values=past_key_values,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )
        logits = outputs.logits

        loss = None
        if labels is not None:
            # Shift so that tokens < n predict n
            shift_logits = logits[..., :-1, :].contiguous()
            shift_labels = labels[..., 1:].contiguous()
            # Flatten the tokens
            loss_fct = CrossEntropyLoss()
            shift_logits = shift_logits.view(-1, self.language_model.config.vocab_size)
            shift_labels = shift_labels.view(-1)
            # Enable model parallelism
            shift_labels = shift_labels.to(shift_logits.device)
            loss = loss_fct(shift_logits, shift_labels)

        if not return_dict:
            output = (logits,) + outputs[1:]
            return (loss,) + output if loss is not None else output

        return CausalLMOutputWithPast(
            loss=loss,
            logits=logits,
            past_key_values=outputs.past_key_values,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )

    def pixel_shuffle(self, x, scale_factor=0.5):
        n, w, h, c = x.size()
        # N, W, H, C --> N, W, H * scale, C // scale
        x = x.view(n, w, int(h * scale_factor), int(c / scale_factor))
        # N, W, H * scale, C // scale --> N, H * scale, W, C // scale
        x = x.permute(0, 2, 1, 3).contiguous()
        # N, H * scale, W, C // scale --> N, H * scale, W * scale, C // (scale ** 2)
        x = x.view(n, int(h * scale_factor), int(w * scale_factor),
                   int(c / (scale_factor * scale_factor)))
        if self.ps_version == 'v1':
            warnings.warn("In ps_version 'v1', the height and width have not been swapped back, "
                          'which results in a transposed image.')
        else:
            x = x.permute(0, 2, 1, 3).contiguous()
        return x

    def extract_feature(self, pixel_values):
        vit_embeds = self.vision_model(pixel_values).features
        vit_embeds = vit_embeds.to(dtype=torch.bfloat16)
        h = w = int(vit_embeds.shape[1] ** 0.5)
        vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], h, w, -1)
        vit_embeds = self.pixel_shuffle(vit_embeds, scale_factor=self.downsample_ratio)
        vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], -1, vit_embeds.shape[-1])
        vit_embeds = self.mlp1(vit_embeds)
        return vit_embeds

    def _format_image_token(self, query, num_patches_list, IMG_CONTEXT_TOKEN):
        # Split by '<image>' and rejoin with appropriate tokens
        parts = query.split('<image>')
        if len(parts) - 1 != len(num_patches_list):
            raise ValueError(f"Number of <image> tokens ({len(parts) - 1}) doesn't match num_patches_list length ({len(num_patches_list)})")
        
        result = parts[0]
        for num_patches, part in zip(num_patches_list, parts[1:]):
            if self.image_tag_type == "nvlm":
                tile_pos_identifiers = [f"<tile_{j}>" for j in range(1, num_patches)] + ["<tile_global_thumbnail>"]
                image_tokens = ''
                for tile_pos_identifier in tile_pos_identifiers:
                    image_tokens += tile_pos_identifier + IMG_CONTEXT_TOKEN * self.num_image_token
                image_tokens = '<Image>' + image_tokens + '</Image>'
            elif self.image_tag_type == "internvl":
                image_tokens = IMG_CONTEXT_TOKEN * self.num_image_token * num_patches
                image_tokens = '<img>' + image_tokens + '</img>'
            else:
                raise ValueError(f"Unknown image tag type {self.image_tag_type}")
            
            result += image_tokens + part
        
        return result

    """
    Adapts the chat function to handle NVLM 1-D tile-tagging design for dynamic high-resolution images.
    Additionally, it supports the following:
        - Chat without a system prompt.
        - Chat without an image prompt.
    """
    def chat(self, tokenizer, pixel_values, question, generation_config, history=None, return_history=False,
             num_patches=None, IMG_START_TOKEN='<img>', IMG_END_TOKEN='</img>',
             IMG_CONTEXT_TOKEN='<image>', verbose=False, visual_features=None, system_prompt=None):

        if num_patches is None:
            num_patches_list = [pixel_values.shape[0]] if pixel_values is not None else []
        elif isinstance(num_patches, torch.Tensor):
            num_patches_list = num_patches.tolist()
        else:
            num_patches_list = num_patches

        if history is None and pixel_values is not None and '<image>' not in question:
            question = '<image>\n' * len(num_patches_list) + question

        assert pixel_values is None or len(pixel_values) == sum(num_patches_list)

        img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN)
        self.img_context_token_id = img_context_token_id

        eos_token_id = tokenizer.eos_token_id

        messages = []
        if system_prompt is not None:
            messages.append({"role": "system", "content": system_prompt})

        history = [] if history is None else history
        for (old_question, old_answer) in history:
            messages.append({"role": "user", "content": old_question})
            messages.append({"role": "assistant", "content": old_answer})
        
        messages.append({"role": "user", "content": question})
        query = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)

        if verbose and pixel_values is not None:
            image_bs = pixel_values.shape[0]
            print(f'dynamic ViT batch size: {image_bs}')

        query = self._format_image_token(query, num_patches_list, IMG_CONTEXT_TOKEN)

        model_inputs = tokenizer(query, return_tensors='pt', add_special_tokens=False)
        input_ids = model_inputs['input_ids'].cuda()
        attention_mask = model_inputs['attention_mask'].cuda()
        generation_config['eos_token_id'] = eos_token_id
        generation_output = self.generate(
            pixel_values=pixel_values,
            visual_features=visual_features,
            input_ids=input_ids,
            attention_mask=attention_mask,
            **generation_config
        )

        response = tokenizer.batch_decode(generation_output)[0]
        response = response.split(tokenizer.eos_token)[0].strip()
        history.append((question, response))
        if return_history:
            return response, history
        else:
            query_to_print = query.replace(IMG_CONTEXT_TOKEN, '')
            query_to_print = query_to_print.replace(f'{IMG_START_TOKEN}{IMG_END_TOKEN}', '<image>')
            if verbose:
                print(query_to_print, response)
            return response

    @torch.no_grad()
    def generate(
            self,
            pixel_values: Optional[torch.FloatTensor] = None,
            input_ids: Optional[torch.FloatTensor] = None,
            attention_mask: Optional[torch.LongTensor] = None,
            visual_features: Optional[torch.FloatTensor] = None,
            generation_config: Optional[GenerationConfig] = None,
            output_hidden_states: Optional[bool] = None,
            return_dict: Optional[bool] = None,
            **generate_kwargs,
    ) -> torch.LongTensor:

        assert self.img_context_token_id is not None
        if pixel_values is not None:
            if visual_features is not None:
                vit_embeds = visual_features.cuda()
                vit_embeds = self.mlp1(vit_embeds)
            else:
                vit_embeds = self.extract_feature(pixel_values)

            input_embeds = self.language_model.get_input_embeddings()(input_ids)
            B, N, C = input_embeds.shape
            input_embeds = input_embeds.reshape(B * N, C)

            input_ids = input_ids.reshape(B * N)
            selected = (input_ids == self.img_context_token_id)
            assert selected.sum() != 0
            input_embeds[selected] = vit_embeds.reshape(-1, C).to(input_embeds.device)

            input_embeds = input_embeds.reshape(B, N, C)
        else:
            input_embeds = self.language_model.get_input_embeddings()(input_ids)

        outputs = self.language_model.generate(
            inputs_embeds=input_embeds,
            attention_mask=attention_mask,
            generation_config=generation_config,
            output_hidden_states=output_hidden_states,
            use_cache=True,
            **generate_kwargs,
        )

        return outputs