update for min latency server
Browse files
README.md
CHANGED
@@ -88,7 +88,7 @@ This model was obtained by quantizing the weights and activations of DeepSeek R1
|
|
88 |
|
89 |
To deploy the quantized FP4 checkpoint with [TensorRT-LLM](https://github.com/NVIDIA/TensorRT-LLM) LLM API, follow the sample codes below (you need 8xB200 GPU and TensorRT LLM built from source with the latest main branch):
|
90 |
|
91 |
-
|
92 |
```
|
93 |
from tensorrt_llm import SamplingParams
|
94 |
from tensorrt_llm._torch import LLM
|
@@ -120,6 +120,51 @@ if __name__ == '__main__':
|
|
120 |
|
121 |
```
|
122 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
123 |
### Evaluation
|
124 |
The accuracy benchmark results are presented in the table below:
|
125 |
<table>
|
|
|
88 |
|
89 |
To deploy the quantized FP4 checkpoint with [TensorRT-LLM](https://github.com/NVIDIA/TensorRT-LLM) LLM API, follow the sample codes below (you need 8xB200 GPU and TensorRT LLM built from source with the latest main branch):
|
90 |
|
91 |
+
#### LLM API sample usage:
|
92 |
```
|
93 |
from tensorrt_llm import SamplingParams
|
94 |
from tensorrt_llm._torch import LLM
|
|
|
120 |
|
121 |
```
|
122 |
|
123 |
+
|
124 |
+
#### Minimum Latency Server Deployment
|
125 |
+
|
126 |
+
|
127 |
+
**Step 1: Create configuration file (`args.yaml`)**
|
128 |
+
|
129 |
+
```yaml
|
130 |
+
moe_backend: TRTLLM
|
131 |
+
use_cuda_graph: true
|
132 |
+
speculative_config:
|
133 |
+
decoding_type: MTP
|
134 |
+
num_nextn_predict_layers: 3
|
135 |
+
use_relaxed_acceptance_for_thinking: true
|
136 |
+
relaxed_topk: 10
|
137 |
+
relaxed_delta: 0.6
|
138 |
+
```
|
139 |
+
|
140 |
+
**Step 2: Start the TensorRT-LLM server**
|
141 |
+
|
142 |
+
```bash
|
143 |
+
trtllm-serve nvidia/DeepSeek-R1-0528-FP4 \
|
144 |
+
--host 0.0.0.0 \
|
145 |
+
--port 8000 \
|
146 |
+
--backend pytorch \
|
147 |
+
--max_batch_size 4 \
|
148 |
+
--tp_size 8 \
|
149 |
+
--ep_size 2 \
|
150 |
+
--max_num_tokens 32768 \
|
151 |
+
--trust_remote_code \
|
152 |
+
--extra_llm_api_options args.yaml \
|
153 |
+
--kv_cache_free_gpu_memory_fraction 0.75
|
154 |
+
```
|
155 |
+
|
156 |
+
**Step 3: Send an example query**
|
157 |
+
|
158 |
+
```bash
|
159 |
+
curl localhost:8000/v1/chat/completions \
|
160 |
+
-H "Content-Type: application/json" \
|
161 |
+
-d '{
|
162 |
+
"model": "nvidia/DeepSeek-R1-0528-FP4",
|
163 |
+
"messages": [{"role": "user", "content": "Why is NVIDIA a great company?"}],
|
164 |
+
"max_tokens": 1024
|
165 |
+
}'
|
166 |
+
```
|
167 |
+
|
168 |
### Evaluation
|
169 |
The accuracy benchmark results are presented in the table below:
|
170 |
<table>
|