Upload model
Browse files- hf_model.py +2 -1
- vitdet.py +173 -0
hf_model.py
CHANGED
|
@@ -30,7 +30,8 @@ from .eradio_model import eradio
|
|
| 30 |
from .radio_model import create_model_from_args
|
| 31 |
from .radio_model import RADIOModel as RADIOModelBase, Resolution
|
| 32 |
from .input_conditioner import get_default_conditioner, InputConditioner
|
| 33 |
-
|
|
|
|
| 34 |
|
| 35 |
# Register extra models
|
| 36 |
from .extra_timm_models import *
|
|
|
|
| 30 |
from .radio_model import create_model_from_args
|
| 31 |
from .radio_model import RADIOModel as RADIOModelBase, Resolution
|
| 32 |
from .input_conditioner import get_default_conditioner, InputConditioner
|
| 33 |
+
from .vit_patch_generator import ViTPatchGenerator
|
| 34 |
+
from .vitdet import apply_vitdet_arch, VitDetArgs
|
| 35 |
|
| 36 |
# Register extra models
|
| 37 |
from .extra_timm_models import *
|
vitdet.py
ADDED
|
@@ -0,0 +1,173 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from collections import defaultdict
|
| 2 |
+
from contextlib import contextmanager
|
| 3 |
+
from logging import getLogger
|
| 4 |
+
import math
|
| 5 |
+
import sys
|
| 6 |
+
from typing import List, Union, Iterable
|
| 7 |
+
|
| 8 |
+
import numpy as np
|
| 9 |
+
import torch
|
| 10 |
+
from torch import nn
|
| 11 |
+
|
| 12 |
+
from timm.models import VisionTransformer
|
| 13 |
+
from einops import rearrange
|
| 14 |
+
|
| 15 |
+
DEFAULT_NUM_WINDOWED = 5
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
class VitDetArgs:
|
| 19 |
+
def __init__(self,
|
| 20 |
+
window_size: int,
|
| 21 |
+
num_summary_tokens: int,
|
| 22 |
+
num_windowed: int = DEFAULT_NUM_WINDOWED,
|
| 23 |
+
):
|
| 24 |
+
self.window_size = window_size
|
| 25 |
+
self.num_summary_tokens = num_summary_tokens
|
| 26 |
+
self.num_windowed = num_windowed
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
def apply_vitdet_arch(model: VisionTransformer, args: VitDetArgs):
|
| 30 |
+
if isinstance(model, VisionTransformer):
|
| 31 |
+
patch_embed = getattr(model, 'patch_generator', model.patch_embed)
|
| 32 |
+
|
| 33 |
+
return ViTDetHook(patch_embed, model.blocks, args)
|
| 34 |
+
else:
|
| 35 |
+
print(f'Warning: Unable to apply VitDet aug!', file=sys.stderr)
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
class ViTDetHook:
|
| 39 |
+
def __init__(self,
|
| 40 |
+
embedder: nn.Module,
|
| 41 |
+
blocks: nn.Sequential,
|
| 42 |
+
args: VitDetArgs,
|
| 43 |
+
):
|
| 44 |
+
self.blocks = blocks
|
| 45 |
+
self.num_summary_tokens = args.num_summary_tokens
|
| 46 |
+
self.window_size = args.window_size
|
| 47 |
+
|
| 48 |
+
self._input_resolution = None
|
| 49 |
+
self._num_windows = None
|
| 50 |
+
self._cls_patch = None
|
| 51 |
+
self._order_cache = dict()
|
| 52 |
+
|
| 53 |
+
embedder.register_forward_pre_hook(self._enter_model)
|
| 54 |
+
|
| 55 |
+
# This will decide if we window-fy the patches
|
| 56 |
+
# and enable vit-det for this iteration, and if so,
|
| 57 |
+
# rearrange the patches for efficient mode switching
|
| 58 |
+
blocks.register_forward_pre_hook(self._enter_blocks)
|
| 59 |
+
|
| 60 |
+
is_global = True
|
| 61 |
+
period = args.num_windowed + 1
|
| 62 |
+
for i, layer in enumerate(blocks[:-1]):
|
| 63 |
+
ctr = i % period
|
| 64 |
+
if ctr == 0:
|
| 65 |
+
layer.register_forward_pre_hook(self._to_windows)
|
| 66 |
+
is_global = False
|
| 67 |
+
elif ctr == args.num_windowed:
|
| 68 |
+
layer.register_forward_pre_hook(self._to_global)
|
| 69 |
+
is_global = True
|
| 70 |
+
|
| 71 |
+
# Always ensure the final layer is a global layer
|
| 72 |
+
if not is_global:
|
| 73 |
+
blocks[-1].register_forward_pre_hook(self._to_global)
|
| 74 |
+
|
| 75 |
+
blocks.register_forward_hook(self._exit_model)
|
| 76 |
+
|
| 77 |
+
def _enter_model(self, _, input: List[torch.Tensor]):
|
| 78 |
+
self._input_resolution = input[0].shape[-2:]
|
| 79 |
+
|
| 80 |
+
def _enter_blocks(self, _, input: List[torch.Tensor]):
|
| 81 |
+
# print(f'{get_rank()} - ViTDet Window Size: {self._window_size}', file=sys.stderr)
|
| 82 |
+
|
| 83 |
+
patches = input[0]
|
| 84 |
+
patches = self._rearrange_patches(patches)
|
| 85 |
+
|
| 86 |
+
return (patches,) + input[1:]
|
| 87 |
+
|
| 88 |
+
def _to_windows(self, _, input: List[torch.Tensor]):
|
| 89 |
+
patches = input[0]
|
| 90 |
+
|
| 91 |
+
if self.num_summary_tokens:
|
| 92 |
+
self._cls_patch = patches[:, :self.num_summary_tokens]
|
| 93 |
+
patches = patches[:, self.num_summary_tokens:]
|
| 94 |
+
|
| 95 |
+
patches = rearrange(
|
| 96 |
+
patches, 'b (p t) c -> (b p) t c',
|
| 97 |
+
p=self._num_windows, t=self.window_size ** 2,
|
| 98 |
+
)
|
| 99 |
+
|
| 100 |
+
return (patches,) + input[1:]
|
| 101 |
+
|
| 102 |
+
def _to_global(self, _, input: List[torch.Tensor]):
|
| 103 |
+
patches = input[0]
|
| 104 |
+
|
| 105 |
+
patches = rearrange(
|
| 106 |
+
patches, '(b p) t c -> b (p t) c',
|
| 107 |
+
p=self._num_windows, t=self.window_size ** 2,
|
| 108 |
+
b=patches.shape[0] // self._num_windows,
|
| 109 |
+
)
|
| 110 |
+
|
| 111 |
+
if self.num_summary_tokens:
|
| 112 |
+
patches = torch.cat([
|
| 113 |
+
self._cls_patch,
|
| 114 |
+
patches,
|
| 115 |
+
], dim=1)
|
| 116 |
+
|
| 117 |
+
return (patches,) + input[1:]
|
| 118 |
+
|
| 119 |
+
def _exit_model(self, _, inputs: List[torch.Tensor], patches: torch.Tensor):
|
| 120 |
+
# Return patches to their original order
|
| 121 |
+
patch_order = self._order_cache[self._input_resolution][0]
|
| 122 |
+
patch_order = patch_order.reshape(1, -1, 1).expand_as(patches)
|
| 123 |
+
|
| 124 |
+
ret_patches = torch.empty_like(patches)
|
| 125 |
+
ret_patches = torch.scatter(
|
| 126 |
+
ret_patches,
|
| 127 |
+
dim=1,
|
| 128 |
+
index=patch_order,
|
| 129 |
+
src=patches,
|
| 130 |
+
)
|
| 131 |
+
|
| 132 |
+
return ret_patches
|
| 133 |
+
|
| 134 |
+
def _rearrange_patches(self, patches: torch.Tensor):
|
| 135 |
+
# We rearrange the patches so that we can efficiently
|
| 136 |
+
# switch between windowed and global mode by just
|
| 137 |
+
# reshaping the tensor
|
| 138 |
+
|
| 139 |
+
patch_order, self._num_windows = self._order_cache.get(self._input_resolution, (None, None))
|
| 140 |
+
if patch_order is None:
|
| 141 |
+
num_feat_patches = patches.shape[1] - self.num_summary_tokens
|
| 142 |
+
num_pixels = self._input_resolution[0] * self._input_resolution[1]
|
| 143 |
+
|
| 144 |
+
patch_size = int(round(math.sqrt(num_pixels / num_feat_patches)))
|
| 145 |
+
rows = self._input_resolution[-2] // patch_size
|
| 146 |
+
cols = self._input_resolution[-1] // patch_size
|
| 147 |
+
|
| 148 |
+
w_rows = rows // self.window_size
|
| 149 |
+
w_cols = cols // self.window_size
|
| 150 |
+
|
| 151 |
+
patch_order = torch.arange(0, num_feat_patches, device=patches.device)
|
| 152 |
+
|
| 153 |
+
patch_order = rearrange(
|
| 154 |
+
patch_order, '(wy py wx px) -> (wy wx py px)',
|
| 155 |
+
wy=w_rows, wx=w_cols,
|
| 156 |
+
py=self.window_size, px=self.window_size,
|
| 157 |
+
)
|
| 158 |
+
|
| 159 |
+
if self.num_summary_tokens:
|
| 160 |
+
patch_order = torch.cat([
|
| 161 |
+
torch.arange(self.num_summary_tokens, dtype=patch_order.dtype, device=patch_order.device),
|
| 162 |
+
patch_order + self.num_summary_tokens,
|
| 163 |
+
])
|
| 164 |
+
|
| 165 |
+
self._num_windows = w_rows * w_cols
|
| 166 |
+
self._order_cache[self._input_resolution] = (
|
| 167 |
+
patch_order,
|
| 168 |
+
self._num_windows,
|
| 169 |
+
)
|
| 170 |
+
|
| 171 |
+
patch_order = patch_order.reshape(1, -1, 1).expand_as(patches)
|
| 172 |
+
patches = torch.gather(patches, dim=1, index=patch_order)
|
| 173 |
+
return patches
|